Commit graph

45 commits

Author SHA1 Message Date
Jarkko Sakkinen 050bf3c793 KEYS: trusted: Do not use WARN when encode fails
When asn1_encode_sequence() fails, WARN is not the correct solution.

1. asn1_encode_sequence() is not an internal function (located
   in lib/asn1_encode.c).
2. Location is known, which makes the stack trace useless.
3. Results a crash if panic_on_warn is set.

It is also noteworthy that the use of WARN is undocumented, and it
should be avoided unless there is a carefully considered rationale to
use it.

Replace WARN with pr_err, and print the return value instead, which is
only useful piece of information.

Cc: stable@vger.kernel.org # v5.13+
Fixes: f221974525 ("security: keys: trusted: use ASN.1 TPM2 key format for the blobs")
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2024-05-21 02:35:10 +03:00
Jarkko Sakkinen ffcaa2172c KEYS: trusted: Fix memory leak in tpm2_key_encode()
'scratch' is never freed. Fix this by calling kfree() in the success, and
in the error case.

Cc: stable@vger.kernel.org # +v5.13
Fixes: f221974525 ("security: keys: trusted: use ASN.1 TPM2 key format for the blobs")
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2024-05-21 02:35:10 +03:00
Linus Torvalds b19239143e Hi,
These are the changes for the TPM driver with a single major new
 feature: TPM bus encryption and integrity protection. The key pair
 on TPM side is generated from so called null random seed per power
 on of the machine [1]. This supports the TPM encryption of the hard
 drive by adding layer of protection against bus interposer attacks.
 
 Other than the pull request a few minor fixes and documentation for
 tpm_tis to clarify basics of TPM localities for future patch review
 discussions (will be extended and refined over times, just a seed).
 
 [1] https://lore.kernel.org/linux-integrity/20240429202811.13643-1-James.Bottomley@HansenPartnership.com/
 
 BR, Jarkko
 -----BEGIN PGP SIGNATURE-----
 
 iJYEABYKAD4WIQRE6pSOnaBC00OEHEIaerohdGur0gUCZj0l2iAcamFya2tvLnNh
 a2tpbmVuQGxpbnV4LmludGVsLmNvbQAKCRAaerohdGur0m8yAP4hBjMtpgAJZ4eZ
 5o9tEQJrh/1JFZJ+8HU5IKPc4RU8BAEAyyYOCtxtS/C5B95iP+LvNla0KWi0pprU
 HsCLULnV2Aw=
 =RTXJ
 -----END PGP SIGNATURE-----

Merge tag 'tpmdd-next-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd

Pull TPM updates from Jarkko Sakkinen:
 "These are the changes for the TPM driver with a single major new
  feature: TPM bus encryption and integrity protection. The key pair on
  TPM side is generated from so called null random seed per power on of
  the machine [1]. This supports the TPM encryption of the hard drive by
  adding layer of protection against bus interposer attacks.

  Other than that, a few minor fixes and documentation for tpm_tis to
  clarify basics of TPM localities for future patch review discussions
  (will be extended and refined over times, just a seed)"

Link: https://lore.kernel.org/linux-integrity/20240429202811.13643-1-James.Bottomley@HansenPartnership.com/ [1]

* tag 'tpmdd-next-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd: (28 commits)
  Documentation: tpm: Add TPM security docs toctree entry
  tpm: disable the TPM if NULL name changes
  Documentation: add tpm-security.rst
  tpm: add the null key name as a sysfs export
  KEYS: trusted: Add session encryption protection to the seal/unseal path
  tpm: add session encryption protection to tpm2_get_random()
  tpm: add hmac checks to tpm2_pcr_extend()
  tpm: Add the rest of the session HMAC API
  tpm: Add HMAC session name/handle append
  tpm: Add HMAC session start and end functions
  tpm: Add TCG mandated Key Derivation Functions (KDFs)
  tpm: Add NULL primary creation
  tpm: export the context save and load commands
  tpm: add buffer function to point to returned parameters
  crypto: lib - implement library version of AES in CFB mode
  KEYS: trusted: tpm2: Use struct tpm_buf for sized buffers
  tpm: Add tpm_buf_read_{u8,u16,u32}
  tpm: TPM2B formatted buffers
  tpm: Store the length of the tpm_buf data separately.
  tpm: Update struct tpm_buf documentation comments
  ...
2024-05-13 10:40:15 -07:00
James Bottomley 52ce7d9731 KEYS: trusted: Add session encryption protection to the seal/unseal path
If some entity is snooping the TPM bus, the can see the data going in
to be sealed and the data coming out as it is unsealed.  Add parameter
and response encryption to these cases to ensure that no secrets are
leaked even if the bus is snooped.

As part of doing this conversion it was discovered that policy
sessions can't work with HMAC protected authority because of missing
pieces (the tpm Nonce).  I've added code to work the same way as
before, which will result in potential authority exposure (while still
adding security for the command and the returned blob), and a fixme to
redo the API to get rid of this security hole.

Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2024-05-09 22:30:51 +03:00
Jarkko Sakkinen 40813f1879 KEYS: trusted: tpm2: Use struct tpm_buf for sized buffers
Take advantage of the new sized buffer (TPM2B) mode of struct tpm_buf in
tpm2_seal_trusted(). This allows to add robustness to the command
construction without requiring to calculate buffer sizes manually.

Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2024-05-09 22:30:51 +03:00
Jarkko Sakkinen e1b72e1b11 tpm: Store the length of the tpm_buf data separately.
TPM2B buffers, or sized buffers, have a two byte header, which contains the
length of the payload as a 16-bit big-endian number, without counting in
the space taken by the header. This differs from encoding in the TPM header
where the length includes also the bytes taken by the header.

Unbound the length of a tpm_buf from the value stored to the TPM command
header. A separate encoding and decoding step so that different buffer
types can be supported, with variant header format and length encoding.

Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2024-05-09 22:30:51 +03:00
Jarkko Sakkinen 4f0feb5463 tpm: Remove tpm_send()
Open code the last remaining call site for tpm_send().

Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2024-05-09 22:30:50 +03:00
David Gstir 28c5f596ae docs: trusted-encrypted: add DCP as new trust source
Update the documentation for trusted and encrypted KEYS with DCP as new
trust source:

- Describe security properties of DCP trust source
- Describe key usage
- Document blob format

Co-developed-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Richard Weinberger <richard@nod.at>
Co-developed-by: David Oberhollenzer <david.oberhollenzer@sigma-star.at>
Signed-off-by: David Oberhollenzer <david.oberhollenzer@sigma-star.at>
Signed-off-by: David Gstir <david@sigma-star.at>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Bagas Sanjaya <bagasdotme@gmail.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2024-05-09 18:29:03 +03:00
David Gstir 2e8a0f40a3 KEYS: trusted: Introduce NXP DCP-backed trusted keys
DCP (Data Co-Processor) is the little brother of NXP's CAAM IP.
Beside of accelerated crypto operations, it also offers support for
hardware-bound keys. Using this feature it is possible to implement a blob
mechanism similar to what CAAM offers. Unlike on CAAM, constructing and
parsing the blob has to happen in software (i.e. the kernel).

The software-based blob format used by DCP trusted keys encrypts
the payload using AES-128-GCM with a freshly generated random key and nonce.
The random key itself is AES-128-ECB encrypted using the DCP unique
or OTP key.

The DCP trusted key blob format is:
/*
 * struct dcp_blob_fmt - DCP BLOB format.
 *
 * @fmt_version: Format version, currently being %1
 * @blob_key: Random AES 128 key which is used to encrypt @payload,
 *            @blob_key itself is encrypted with OTP or UNIQUE device key in
 *            AES-128-ECB mode by DCP.
 * @nonce: Random nonce used for @payload encryption.
 * @payload_len: Length of the plain text @payload.
 * @payload: The payload itself, encrypted using AES-128-GCM and @blob_key,
 *           GCM auth tag of size AES_BLOCK_SIZE is attached at the end of it.
 *
 * The total size of a DCP BLOB is sizeof(struct dcp_blob_fmt) + @payload_len +
 * AES_BLOCK_SIZE.
 */
struct dcp_blob_fmt {
	__u8 fmt_version;
	__u8 blob_key[AES_KEYSIZE_128];
	__u8 nonce[AES_KEYSIZE_128];
	__le32 payload_len;
	__u8 payload[];
} __packed;

By default the unique key is used. It is also possible to use the
OTP key. While the unique key should be unique it is not documented how
this key is derived. Therefore selection the OTP key is supported as
well via the use_otp_key module parameter.

Co-developed-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Richard Weinberger <richard@nod.at>
Co-developed-by: David Oberhollenzer <david.oberhollenzer@sigma-star.at>
Signed-off-by: David Oberhollenzer <david.oberhollenzer@sigma-star.at>
Signed-off-by: David Gstir <david@sigma-star.at>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2024-05-09 18:29:03 +03:00
David Gstir 633cb72fb6 KEYS: trusted: improve scalability of trust source config
Enabling trusted keys requires at least one trust source implementation
(currently TPM, TEE or CAAM) to be enabled. Currently, this is
done by checking each trust source's config option individually.
This does not scale when more trust sources like the one for DCP
are added, because the condition will get long and hard to read.

Add config HAVE_TRUSTED_KEYS which is set to true by each trust source
once its enabled and adapt the check for having at least one active trust
source to use this option. Whenever a new trust source is added, it now
needs to select HAVE_TRUSTED_KEYS.

Signed-off-by: David Gstir <david@sigma-star.at>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org> # for TRUSTED_KEYS_TPM
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2024-05-09 18:29:03 +03:00
Sumit Garg c745cd1718 KEYS: trusted: tee: Refactor register SHM usage
The OP-TEE driver using the old SMC based ABI permits overlapping shared
buffers, but with the new FF-A based ABI each physical page may only
be registered once.

As the key and blob buffer are allocated adjancently, there is no need
for redundant register shared memory invocation. Also, it is incompatibile
with FF-A based ABI limitation. So refactor register shared memory
implementation to use only single invocation to register both key and blob
buffers.

[jarkko: Added cc to stable.]
Cc: stable@vger.kernel.org # v5.16+
Fixes: 4615e5a34b ("optee: add FF-A support")
Reported-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Tested-by: Jens Wiklander <jens.wiklander@linaro.org>
Reviewed-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2023-10-24 03:06:35 +03:00
Jarkko Sakkinen 31de287345 KEYS: trusted: Rollback init_trusted() consistently
Do bind neither static calls nor trusted_key_exit() before a successful
init, in order to maintain a consistent state. In addition, depart the
init_trusted() in the case of a real error (i.e. getting back something
else than -ENODEV).

Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Closes: https://lore.kernel.org/linux-integrity/CAHk-=whOPoLaWM8S8GgoOPT7a2+nMH5h3TLKtn=R_3w4R1_Uvg@mail.gmail.com/
Cc: stable@vger.kernel.org # v5.13+
Fixes: 5d0682be31 ("KEYS: trusted: Add generic trusted keys framework")
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2023-10-24 03:06:06 +03:00
Sumit Garg 01bbafc63b KEYS: trusted: Remove redundant static calls usage
Static calls invocations aren't well supported from module __init and
__exit functions. Especially the static call from cleanup_trusted() led
to a crash on x86 kernel with CONFIG_DEBUG_VIRTUAL=y.

However, the usage of static call invocations for trusted_key_init()
and trusted_key_exit() don't add any value from either a performance or
security perspective. Hence switch to use indirect function calls instead.

Note here that although it will fix the current crash report, ultimately
the static call infrastructure should be fixed to either support its
future usage from module __init and __exit functions or not.

Reported-and-tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Link: https://lore.kernel.org/lkml/ZRhKq6e5nF%2F4ZIV1@fedora/#t
Fixes: 5d0682be31 ("KEYS: trusted: Add generic trusted keys framework")
Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-10-10 11:19:43 -07:00
Jiapeng Chong 2a41527420 security: keys: Modify mismatched function name
No functional modification involved.

security/keys/trusted-keys/trusted_tpm2.c:203: warning: expecting prototype for tpm_buf_append_auth(). Prototype was for tpm2_buf_append_auth() instead.

Fixes: 2e19e10131 ("KEYS: trusted: Move TPM2 trusted keys code")
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=5524
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2023-07-17 19:40:27 +00:00
Sumit Garg 1506fba28b KEYS: trusted: tee: Make registered shm dependency explicit
TEE trusted keys support depends on registered shared memory support
since the key buffers are needed to be registered with OP-TEE. So make
that dependency explicit to not register trusted keys support if
underlying implementation doesn't support registered shared memory.

Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Tested-by: Jerome Forissier <jerome.forissier@linaro.org>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-12-08 16:20:46 +00:00
David Safford dda5384313 KEYS: trusted: tpm2: Fix migratable logic
When creating (sealing) a new trusted key, migratable
trusted keys have the FIXED_TPM and FIXED_PARENT attributes
set, and non-migratable keys don't. This is backwards, and
also causes creation to fail when creating a migratable key
under a migratable parent. (The TPM thinks you are trying to
seal a non-migratable blob under a migratable parent.)

The following simple patch fixes the logic, and has been
tested for all four combinations of migratable and non-migratable
trusted keys and parent storage keys. With this logic, you will
get a proper failure if you try to create a non-migratable
trusted key under a migratable parent storage key, and all other
combinations work correctly.

Cc: stable@vger.kernel.org # v5.13+
Fixes: e5fb5d2c5a ("security: keys: trusted: Make sealed key properly interoperable")
Signed-off-by: David Safford <david.safford@gmail.com>
Reviewed-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-06-08 14:12:13 +03:00
Ahmad Fatoum e9c5048c2d KEYS: trusted: Introduce support for NXP CAAM-based trusted keys
The Cryptographic Acceleration and Assurance Module (CAAM) is an IP core
built into many newer i.MX and QorIQ SoCs by NXP.

The CAAM does crypto acceleration, hardware number generation and
has a blob mechanism for encapsulation/decapsulation of sensitive material.

This blob mechanism depends on a device specific random 256-bit One Time
Programmable Master Key that is fused in each SoC at manufacturing
time. This key is unreadable and can only be used by the CAAM for AES
encryption/decryption of user data.

This makes it a suitable backend (source) for kernel trusted keys.

Previous commits generalized trusted keys to support multiple backends
and added an API to access the CAAM blob mechanism. Based on these,
provide the necessary glue to use the CAAM for trusted keys.

Reviewed-by: David Gstir <david@sigma-star.at>
Reviewed-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Tim Harvey <tharvey@gateworks.com>
Tested-by: Matthias Schiffer <matthias.schiffer@ew.tq-group.com>
Tested-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Tested-by: Michael Walle <michael@walle.cc> # on ls1028a (non-E and E)
Tested-by: John Ernberg <john.ernberg@actia.se> # iMX8QXP
Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-05-23 18:47:50 +03:00
Ahmad Fatoum fcd7c26901 KEYS: trusted: allow use of kernel RNG for key material
The two existing trusted key sources don't make use of the kernel RNG,
but instead let the hardware doing the sealing/unsealing also
generate the random key material. However, both users and future
backends may want to place less trust into the quality of the trust
source's random number generator and instead reuse the kernel entropy
pool, which can be seeded from multiple entropy sources.

Make this possible by adding a new trusted.rng parameter,
that will force use of the kernel RNG. In its absence, it's up
to the trust source to decide, which random numbers to use,
maintaining the existing behavior.

Suggested-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Sumit Garg <sumit.garg@linaro.org>
Acked-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Reviewed-by: David Gstir <david@sigma-star.at>
Reviewed-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Tested-by: Michael Walle <michael@walle.cc> # on ls1028a (non-E and E)
Tested-by: John Ernberg <john.ernberg@actia.se> # iMX8QXP
Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-05-23 18:47:50 +03:00
Ahmad Fatoum be07858fbf KEYS: trusted: allow use of TEE as backend without TCG_TPM support
With recent rework, trusted keys are no longer limited to TPM as trust
source. The Kconfig symbol is unchanged however leading to a few issues:

  - TCG_TPM is required, even if only TEE is to be used
  - Enabling TCG_TPM, but excluding it from available trusted sources
    is not possible
  - TEE=m && TRUSTED_KEYS=y will lead to TEE support being silently
    dropped, which is not the best user experience

Remedy these issues by introducing two new boolean Kconfig symbols:
TRUSTED_KEYS_TPM and TRUSTED_KEYS_TEE with the appropriate
dependencies.

Any new code depending on the TPM trusted key backend in particular
or symbols exported by it will now need to explicitly state that it

  depends on TRUSTED_KEYS && TRUSTED_KEYS_TPM

The latter to ensure the dependency is built and the former to ensure
it's reachable for module builds. There are no such users yet.

Reviewed-by: Sumit Garg <sumit.garg@linaro.org>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Tested-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Tested-by: Andreas Rammhold <andreas@rammhold.de>
Tested-by: Tim Harvey <tharvey@gateworks.com>
Tested-by: Michael Walle <michael@walle.cc> # on ls1028a (non-E and E)
Tested-by: John Ernberg <john.ernberg@actia.se> # iMX8QXP
Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-05-23 18:47:50 +03:00
Linus Torvalds b4bc93bd76 ARM driver updates for 5.18
There are a few separately maintained driver subsystems that we merge through
 the SoC tree, notable changes are:
 
  - Memory controller updates, mainly for Tegra and Mediatek SoCs,
    and clarifications for the memory controller DT bindings
 
  - SCMI firmware interface updates, in particular a new transport based
    on OPTEE and support for atomic operations.
 
  - Cleanups to the TEE subsystem, refactoring its memory management
 
 For SoC specific drivers without a separate subsystem, changes include
 
  - Smaller updates and fixes for TI, AT91/SAMA5, Qualcomm and NXP
    Layerscape SoCs.
 
  - Driver support for Microchip SAMA5D29, Tesla FSD, Renesas RZ/G2L,
    and Qualcomm SM8450.
 
  - Better power management on Mediatek MT81xx, NXP i.MX8MQ
    and older NVIDIA Tegra chips
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmI4nOUACgkQmmx57+YA
 GNlNNhAApPQw+FKQ6yVj2EZYcaAgik8PJAJoNQWYED52iQfm5uXgjt3aQewvrPNW
 nkKx5Mx+fPUfaKx5mkVOFMhME5Bw9tYbXHm2/RpRp+n8jOdUlQpAhzIPOyWPHOJS
 QX6qu4t+agrQzjbOCGouAJXgyxhTJFUMviM2EgVHbQHXPtdF8i2kyanfCP7Rw8cx
 sVtLwpvhbLm849+deYRXuv2Xw9I3M1Np7018s5QciimI2eLLEb+lJ/C5XWz5pMYn
 M1nZ7uwCLKPCewpMETTuhKOv0ioOXyY9C1ghyiGZFhHQfoCYTu94Hrx9t8x5gQmL
 qWDinXWXVk8LBegyrs8Bp4wcjtmvMMLnfWtsGSfT5uq24JOGg22OmtUNhNJbS9+p
 VjEvBgkXYD7UEl5npI9v9/KQWr3/UDir0zvkuV40gJyeBWNEZ/PB8olXAxgL7wZv
 cXRYSaUYYt3DKQf1k5I4GUyQtkP/4RaBy6AqvH5Sx0lCwuY6G6ISK+kCPaaSRKnX
 WR+nFw84dKCu7miehmW9qSzMQ4kiSCKIDqk7ilHcwv0J2oXDrlqVPKGGGTzZjUc8
 +feqM/eSoYvDDEDemuXNSnl3hc1Zlvm7Apd5AN6kdTaNgoACDYdyvGuJ3CvzcA+K
 1gBHUBvGS/ODA25KnYabr7wCMgxYqf7dXfkyKIBwFHwxOnRHtgs=
 =Cfbk
 -----END PGP SIGNATURE-----

Merge tag 'arm-drivers-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc

Pull ARM driver updates from Arnd Bergmann:
 "There are a few separately maintained driver subsystems that we merge
  through the SoC tree, notable changes are:

   - Memory controller updates, mainly for Tegra and Mediatek SoCs, and
     clarifications for the memory controller DT bindings

   - SCMI firmware interface updates, in particular a new transport
     based on OPTEE and support for atomic operations.

   - Cleanups to the TEE subsystem, refactoring its memory management

  For SoC specific drivers without a separate subsystem, changes include

   - Smaller updates and fixes for TI, AT91/SAMA5, Qualcomm and NXP
     Layerscape SoCs.

   - Driver support for Microchip SAMA5D29, Tesla FSD, Renesas RZ/G2L,
     and Qualcomm SM8450.

   - Better power management on Mediatek MT81xx, NXP i.MX8MQ and older
     NVIDIA Tegra chips"

* tag 'arm-drivers-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: (154 commits)
  ARM: spear: fix typos in comments
  soc/microchip: fix invalid free in mpfs_sys_controller_delete
  soc: s4: Add support for power domains controller
  dt-bindings: power: add Amlogic s4 power domains bindings
  ARM: at91: add support in soc driver for new SAMA5D29
  soc: mediatek: mmsys: add sw0_rst_offset in mmsys driver data
  dt-bindings: memory: renesas,rpc-if: Document RZ/V2L SoC
  memory: emif: check the pointer temp in get_device_details()
  memory: emif: Add check for setup_interrupts
  dt-bindings: arm: mediatek: mmsys: add support for MT8186
  dt-bindings: mediatek: add compatible for MT8186 pwrap
  soc: mediatek: pwrap: add pwrap driver for MT8186 SoC
  soc: mediatek: mmsys: add mmsys reset control for MT8186
  soc: mediatek: mtk-infracfg: Disable ACP on MT8192
  soc: ti: k3-socinfo: Add AM62x JTAG ID
  soc: mediatek: add MTK mutex support for MT8186
  soc: mediatek: mmsys: add mt8186 mmsys routing table
  soc: mediatek: pm-domains: Add support for mt8186
  dt-bindings: power: Add MT8186 power domains
  soc: mediatek: pm-domains: Add support for mt8195
  ...
2022-03-23 18:23:13 -07:00
Dave Kleikamp c5d1ed846e KEYS: trusted: Avoid calling null function trusted_key_exit
If one loads and unloads the trusted module, trusted_key_exit can be
NULL. Call it through static_call_cond() to avoid a kernel trap.

Fixes: 5d0682be31 ("KEYS: trusted: Add generic trusted keys framework")
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: linux-integrity@vger.kernel.org
Cc: keyrings@vger.kernel.org
Cc: linux-security-module@vger.kernel.org
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-03-08 13:55:52 +02:00
Andreas Rammhold 969a26446b KEYS: trusted: Fix trusted key backends when building as module
Before this commit the kernel could end up with no trusted key sources
even though both of the currently supported backends (TPM and TEE) were
compiled as modules. This manifested in the trusted key type not being
registered at all.

When checking if a CONFIG_… preprocessor variable is defined we only
test for the builtin (=y) case and not the module (=m) case. By using
the IS_REACHABLE() macro we do test for both cases.

Fixes: 5d0682be31 ("KEYS: trusted: Add generic trusted keys framework")
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Reviewed-by: Sumit Garg <sumit.garg@linaro.org>
Signed-off-by: Andreas Rammhold <andreas@rammhold.de>
Tested-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-03-08 13:55:52 +02:00
Jens Wiklander 231b1fc5da KEYS: trusted: tee: use tee_shm_register_kernel_buf()
Uses the new simplified tee_shm_register_kernel_buf() function instead
of the old tee_shm_alloc() function which required specific
TEE_SHM-flags

Reviewed-by: Sumit Garg <sumit.garg@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2022-02-16 07:49:41 +01:00
Ben Boeckel b3ad7855b7 trusted-keys: match tpm_get_ops on all return paths
The `tpm_get_ops` call at the beginning of the function is not paired
with a `tpm_put_ops` on this return path.

Cc: stable@vger.kernel.org
Fixes: f221974525 ("security: keys: trusted: use ASN.1 TPM2 key format for the blobs")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Ben Boeckel <mathstuf@gmail.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-05-12 22:36:37 +03:00
Colin Ian King 83a775d5f9 KEYS: trusted: Fix memory leak on object td
Two error return paths are neglecting to free allocated object td,
causing a memory leak. Fix this by returning via the error return
path that securely kfree's td.

Fixes clang scan-build warning:
security/keys/trusted-keys/trusted_tpm1.c:496:10: warning: Potential
memory leak [unix.Malloc]

Cc: stable@vger.kernel.org
Fixes: 5df16caada ("KEYS: trusted: Fix incorrect handling of tpm_get_random()")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-05-12 22:36:36 +03:00
Linus Torvalds 87f27e7b18 KEYS: trusted tpmdd-queue on 20210423
Fix a regression in the TPM trusted keys caused by the generic rework
 to add ARM TEE based trusted keys.  Without this fix, the TPM trusted
 key subsystem fails to add or load any keys.
 
 Signed-off-by: James E.J. Bottomley <jejb@linux.ibm.com>
 -----BEGIN PGP SIGNATURE-----
 
 iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCYINO/CYcamFtZXMuYm90
 dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishYvuAP418ooC
 6CeoWs/GLXchG/Do412JBLuPJBg3BOrXqUqMTQD/TmfcbQ8r+WRmuaVsweptQhKx
 7IYnETpAGgP7fGh4Dss=
 =gvsH
 -----END PGP SIGNATURE-----

Merge tag 'queue' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/tpmdd

Pull tpm fixes from James Bottomley:
 "Fix a regression in the TPM trusted keys caused by the generic rework
  to add ARM TEE based trusted keys.

  Without this fix, the TPM trusted key subsystem fails to add or load
  any keys"

* tag 'queue' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/tpmdd:
  KEYS: trusted: fix TPM trusted keys for generic framework
2021-04-26 08:31:03 -07:00
Linus Torvalds 7dd1ce1a52 tpmdd updates for Linux v5.13
-----BEGIN PGP SIGNATURE-----
 
 iIgEABYIADAWIQRE6pSOnaBC00OEHEIaerohdGur0gUCYHbwjxIcamFya2tvQGtl
 cm5lbC5vcmcACgkQGnq6IXRrq9KQvAD/chBQK3FrcaWYLmPEY8y/6mo2ZByPUv5D
 paLXgBkeFU0A/Rti+rATM7n95hgCIlTILK1boXvv0FBJTts0ZHUyZykG
 =03e0
 -----END PGP SIGNATURE-----

Merge tag 'tpmdd-next-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd

Pull tpm updates from Jarkko Sakkinen:
 "New features:

   - ARM TEE backend for kernel trusted keys to complete the existing
     TPM backend

   - ASN.1 format for TPM2 trusted keys to make them interact with the
     user space stack, such as OpenConnect VPN

  Other than that, a bunch of bug fixes"

* tag 'tpmdd-next-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd:
  KEYS: trusted: Fix missing null return from kzalloc call
  char: tpm: fix error return code in tpm_cr50_i2c_tis_recv()
  MAINTAINERS: Add entry for TEE based Trusted Keys
  doc: trusted-encrypted: updates with TEE as a new trust source
  KEYS: trusted: Introduce TEE based Trusted Keys
  KEYS: trusted: Add generic trusted keys framework
  security: keys: trusted: Make sealed key properly interoperable
  security: keys: trusted: use ASN.1 TPM2 key format for the blobs
  security: keys: trusted: fix TPM2 authorizations
  oid_registry: Add TCG defined OIDS for TPM keys
  lib: Add ASN.1 encoder
  tpm: vtpm_proxy: Avoid reading host log when using a virtual device
  tpm: acpi: Check eventlog signature before using it
  tpm: efi: Use local variable for calculating final log size
2021-04-26 08:27:59 -07:00
James Bottomley 60dc5f1bcf KEYS: trusted: fix TPM trusted keys for generic framework
The generic framework patch broke the current TPM trusted keys because
it doesn't correctly remove the values consumed by the generic parser
before passing them on to the implementation specific parser.  Fix
this by having the generic parser return the string minus the consumed
tokens.

Additionally, there may be no tokens left for the implementation
specific parser, so make it handle the NULL case correctly and finally
fix a TPM 1.2 specific check for no keyhandle.

Fixes: 5d0682be31 ("KEYS: trusted: Add generic trusted keys framework")
Tested-by: Sumit Garg <sumit.garg@linaro.org>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2021-04-21 16:30:06 -07:00
James Bottomley 9d5171eab4 KEYS: trusted: Fix TPM reservation for seal/unseal
The original patch 8c657a0590 ("KEYS: trusted: Reserve TPM for seal
and unseal operations") was correct on the mailing list:

https://lore.kernel.org/linux-integrity/20210128235621.127925-4-jarkko@kernel.org/

But somehow got rebased so that the tpm_try_get_ops() in
tpm2_seal_trusted() got lost.  This causes an imbalanced put of the
TPM ops and causes oopses on TIS based hardware.

This fix puts back the lost tpm_try_get_ops()

Fixes: 8c657a0590 ("KEYS: trusted: Reserve TPM for seal and unseal operations")
Reported-by: Mimi Zohar <zohar@linux.ibm.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2021-04-21 16:28:20 -07:00
Colin Ian King aec00aa04b KEYS: trusted: Fix missing null return from kzalloc call
The kzalloc call can return null with the GFP_KERNEL flag so
add a null check and exit via a new error exit label. Use the
same exit error label for another error path too.

Addresses-Coverity: ("Dereference null return value")
Fixes: 830027e2cb55 ("KEYS: trusted: Add generic trusted keys framework")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Sumit Garg <sumit.garg@linaro.org>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-14 16:30:31 +03:00
Sumit Garg 0a95ebc913 KEYS: trusted: Introduce TEE based Trusted Keys
Add support for TEE based trusted keys where TEE provides the functionality
to seal and unseal trusted keys using hardware unique key.

Refer to Documentation/staging/tee.rst for detailed information about TEE.

Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-14 16:30:30 +03:00
Sumit Garg 5d0682be31 KEYS: trusted: Add generic trusted keys framework
Current trusted keys framework is tightly coupled to use TPM device as
an underlying implementation which makes it difficult for implementations
like Trusted Execution Environment (TEE) etc. to provide trusted keys
support in case platform doesn't posses a TPM device.

Add a generic trusted keys framework where underlying implementations
can be easily plugged in. Create struct trusted_key_ops to achieve this,
which contains necessary functions of a backend.

Also, define a module parameter in order to select a particular trust
source in case a platform support multiple trust sources. In case its
not specified then implementation itetrates through trust sources list
starting with TPM and assign the first trust source as a backend which
has initiazed successfully during iteration.

Note that current implementation only supports a single trust source at
runtime which is either selectable at compile time or during boot via
aforementioned module parameter.

Suggested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-14 16:30:30 +03:00
James Bottomley e5fb5d2c5a security: keys: trusted: Make sealed key properly interoperable
The current implementation appends a migratable flag to the end of a
key, meaning the format isn't exactly interoperable because the using
party needs to know to strip this extra byte.  However, all other
consumers of TPM sealed blobs expect the unseal to return exactly the
key.  Since TPM2 keys have a key property flag that corresponds to
migratable, use that flag instead and make the actual key the only
sealed quantity.  This is secure because the key properties are bound
to a hash in the private part, so if they're altered the key won't
load.

Backwards compatibility is implemented by detecting whether we're
loading a new format key or not and correctly setting migratable from
the last byte of old format keys.

Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-14 16:30:30 +03:00
James Bottomley f221974525 security: keys: trusted: use ASN.1 TPM2 key format for the blobs
Modify the TPM2 key format blob output to export and import in the
ASN.1 form for TPM2 sealed object keys.  For compatibility with prior
trusted keys, the importer will also accept two TPM2B quantities
representing the public and private parts of the key.  However, the
export via keyctl pipe will only output the ASN.1 format.

The benefit of the ASN.1 format is that it's a standard and thus the
exported key can be used by userspace tools (openssl_tpm2_engine,
openconnect and tpm2-tss-engine).  The format includes policy
specifications, thus it gets us out of having to construct policy
handles in userspace and the format includes the parent meaning you
don't have to keep passing it in each time.

This patch only implements basic handling for the ASN.1 format, so
keys with passwords but no policy.

Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-14 16:30:30 +03:00
James Bottomley de66514d93 security: keys: trusted: fix TPM2 authorizations
In TPM 1.2 an authorization was a 20 byte number.  The spec actually
recommended you to hash variable length passwords and use the sha1
hash as the authorization.  Because the spec doesn't require this
hashing, the current authorization for trusted keys is a 40 digit hex
number.  For TPM 2.0 the spec allows the passing in of variable length
passwords and passphrases directly, so we should allow that in trusted
keys for ease of use.  Update the 'blobauth' parameter to take this
into account, so we can now use plain text passwords for the keys.

so before

keyctl add trusted kmk "new 32 blobauth=f572d396fae9206628714fb2ce00f72e94f2258fkeyhandle=81000001" @u

after we will accept both the old hex sha1 form as well as a new
directly supplied password:

keyctl add trusted kmk "new 32 blobauth=hello keyhandle=81000001" @u

Since a sha1 hex code must be exactly 40 bytes long and a direct
password must be 20 or less, we use the length as the discriminator
for which form is input.

Note this is both and enhancement and a potential bug fix.  The TPM
2.0 spec requires us to strip leading zeros, meaning empyty
authorization is a zero length HMAC whereas we're currently passing in
20 bytes of zeros.  A lot of TPMs simply accept this as OK, but the
Microsoft TPM emulator rejects it with TPM_RC_BAD_AUTH, so this patch
makes the Microsoft TPM emulator work with trusted keys.

Fixes: 0fe5480303 ("keys, trusted: seal/unseal with TPM 2.0 chips")
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-14 16:30:30 +03:00
Jarkko Sakkinen 8c657a0590 KEYS: trusted: Reserve TPM for seal and unseal operations
When TPM 2.0 trusted keys code was moved to the trusted keys subsystem,
the operations were unwrapped from tpm_try_get_ops() and tpm_put_ops(),
which are used to take temporarily the ownership of the TPM chip. The
ownership is only taken inside tpm_send(), but this is not sufficient,
as in the key load TPM2_CC_LOAD, TPM2_CC_UNSEAL and TPM2_FLUSH_CONTEXT
need to be done as a one single atom.

Take the TPM chip ownership before sending anything with
tpm_try_get_ops() and tpm_put_ops(), and use tpm_transmit_cmd() to send
TPM commands instead of tpm_send(), reverting back to the old behaviour.

Fixes: 2e19e10131 ("KEYS: trusted: Move TPM2 trusted keys code")
Reported-by: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: stable@vger.kernel.org
Cc: David Howells <dhowells@redhat.com>
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: Sumit Garg <sumit.garg@linaro.org>
Acked-by Sumit Garg <sumit.garg@linaro.org>
Tested-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-02-16 10:40:28 +02:00
Jarkko Sakkinen 8da7520c80 KEYS: trusted: Fix migratable=1 failing
Consider the following transcript:

$ keyctl add trusted kmk "new 32 blobauth=helloworld keyhandle=80000000 migratable=1" @u
add_key: Invalid argument

The documentation has the following description:

  migratable=   0|1 indicating permission to reseal to new PCR values,
                default 1 (resealing allowed)

The consequence is that "migratable=1" should succeed. Fix this by
allowing this condition to pass instead of return -EINVAL.

[*] Documentation/security/keys/trusted-encrypted.rst

Cc: stable@vger.kernel.org
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Fixes: d00a1c72f7 ("keys: add new trusted key-type")
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-02-16 10:40:28 +02:00
Jarkko Sakkinen 5df16caada KEYS: trusted: Fix incorrect handling of tpm_get_random()
When tpm_get_random() was introduced, it defined the following API for the
return value:

1. A positive value tells how many bytes of random data was generated.
2. A negative value on error.

However, in the call sites the API was used incorrectly, i.e. as it would
only return negative values and otherwise zero. Returning he positive read
counts to the user space does not make any possible sense.

Fix this by returning -EIO when tpm_get_random() returns a positive value.

Fixes: 41ab999c80 ("tpm: Move tpm_get_random api into the TPM device driver")
Cc: stable@vger.kernel.org
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Kent Yoder <key@linux.vnet.ibm.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
2021-02-16 10:40:28 +02:00
Eric Biggers a24d22b225 crypto: sha - split sha.h into sha1.h and sha2.h
Currently <crypto/sha.h> contains declarations for both SHA-1 and SHA-2,
and <crypto/sha3.h> contains declarations for SHA-3.

This organization is inconsistent, but more importantly SHA-1 is no
longer considered to be cryptographically secure.  So to the extent
possible, SHA-1 shouldn't be grouped together with any of the other SHA
versions, and usage of it should be phased out.

Therefore, split <crypto/sha.h> into two headers <crypto/sha1.h> and
<crypto/sha2.h>, and make everyone explicitly specify whether they want
the declarations for SHA-1, SHA-2, or both.

This avoids making the SHA-1 declarations visible to files that don't
want anything to do with SHA-1.  It also prepares for potentially moving
sha1.h into a new insecure/ or dangerous/ directory.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-11-20 14:45:33 +11:00
Waiman Long 453431a549 mm, treewide: rename kzfree() to kfree_sensitive()
As said by Linus:

  A symmetric naming is only helpful if it implies symmetries in use.
  Otherwise it's actively misleading.

  In "kzalloc()", the z is meaningful and an important part of what the
  caller wants.

  In "kzfree()", the z is actively detrimental, because maybe in the
  future we really _might_ want to use that "memfill(0xdeadbeef)" or
  something. The "zero" part of the interface isn't even _relevant_.

The main reason that kzfree() exists is to clear sensitive information
that should not be leaked to other future users of the same memory
objects.

Rename kzfree() to kfree_sensitive() to follow the example of the recently
added kvfree_sensitive() and make the intention of the API more explicit.
In addition, memzero_explicit() is used to clear the memory to make sure
that it won't get optimized away by the compiler.

The renaming is done by using the command sequence:

  git grep -w --name-only kzfree |\
  xargs sed -i 's/kzfree/kfree_sensitive/'

followed by some editing of the kfree_sensitive() kerneldoc and adding
a kzfree backward compatibility macro in slab.h.

[akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h]
[akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more]

Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:22 -07:00
Waiman Long d3ec10aa95 KEYS: Don't write out to userspace while holding key semaphore
A lockdep circular locking dependency report was seen when running a
keyutils test:

[12537.027242] ======================================================
[12537.059309] WARNING: possible circular locking dependency detected
[12537.088148] 4.18.0-147.7.1.el8_1.x86_64+debug #1 Tainted: G OE    --------- -  -
[12537.125253] ------------------------------------------------------
[12537.153189] keyctl/25598 is trying to acquire lock:
[12537.175087] 000000007c39f96c (&mm->mmap_sem){++++}, at: __might_fault+0xc4/0x1b0
[12537.208365]
[12537.208365] but task is already holding lock:
[12537.234507] 000000003de5b58d (&type->lock_class){++++}, at: keyctl_read_key+0x15a/0x220
[12537.270476]
[12537.270476] which lock already depends on the new lock.
[12537.270476]
[12537.307209]
[12537.307209] the existing dependency chain (in reverse order) is:
[12537.340754]
[12537.340754] -> #3 (&type->lock_class){++++}:
[12537.367434]        down_write+0x4d/0x110
[12537.385202]        __key_link_begin+0x87/0x280
[12537.405232]        request_key_and_link+0x483/0xf70
[12537.427221]        request_key+0x3c/0x80
[12537.444839]        dns_query+0x1db/0x5a5 [dns_resolver]
[12537.468445]        dns_resolve_server_name_to_ip+0x1e1/0x4d0 [cifs]
[12537.496731]        cifs_reconnect+0xe04/0x2500 [cifs]
[12537.519418]        cifs_readv_from_socket+0x461/0x690 [cifs]
[12537.546263]        cifs_read_from_socket+0xa0/0xe0 [cifs]
[12537.573551]        cifs_demultiplex_thread+0x311/0x2db0 [cifs]
[12537.601045]        kthread+0x30c/0x3d0
[12537.617906]        ret_from_fork+0x3a/0x50
[12537.636225]
[12537.636225] -> #2 (root_key_user.cons_lock){+.+.}:
[12537.664525]        __mutex_lock+0x105/0x11f0
[12537.683734]        request_key_and_link+0x35a/0xf70
[12537.705640]        request_key+0x3c/0x80
[12537.723304]        dns_query+0x1db/0x5a5 [dns_resolver]
[12537.746773]        dns_resolve_server_name_to_ip+0x1e1/0x4d0 [cifs]
[12537.775607]        cifs_reconnect+0xe04/0x2500 [cifs]
[12537.798322]        cifs_readv_from_socket+0x461/0x690 [cifs]
[12537.823369]        cifs_read_from_socket+0xa0/0xe0 [cifs]
[12537.847262]        cifs_demultiplex_thread+0x311/0x2db0 [cifs]
[12537.873477]        kthread+0x30c/0x3d0
[12537.890281]        ret_from_fork+0x3a/0x50
[12537.908649]
[12537.908649] -> #1 (&tcp_ses->srv_mutex){+.+.}:
[12537.935225]        __mutex_lock+0x105/0x11f0
[12537.954450]        cifs_call_async+0x102/0x7f0 [cifs]
[12537.977250]        smb2_async_readv+0x6c3/0xc90 [cifs]
[12538.000659]        cifs_readpages+0x120a/0x1e50 [cifs]
[12538.023920]        read_pages+0xf5/0x560
[12538.041583]        __do_page_cache_readahead+0x41d/0x4b0
[12538.067047]        ondemand_readahead+0x44c/0xc10
[12538.092069]        filemap_fault+0xec1/0x1830
[12538.111637]        __do_fault+0x82/0x260
[12538.129216]        do_fault+0x419/0xfb0
[12538.146390]        __handle_mm_fault+0x862/0xdf0
[12538.167408]        handle_mm_fault+0x154/0x550
[12538.187401]        __do_page_fault+0x42f/0xa60
[12538.207395]        do_page_fault+0x38/0x5e0
[12538.225777]        page_fault+0x1e/0x30
[12538.243010]
[12538.243010] -> #0 (&mm->mmap_sem){++++}:
[12538.267875]        lock_acquire+0x14c/0x420
[12538.286848]        __might_fault+0x119/0x1b0
[12538.306006]        keyring_read_iterator+0x7e/0x170
[12538.327936]        assoc_array_subtree_iterate+0x97/0x280
[12538.352154]        keyring_read+0xe9/0x110
[12538.370558]        keyctl_read_key+0x1b9/0x220
[12538.391470]        do_syscall_64+0xa5/0x4b0
[12538.410511]        entry_SYSCALL_64_after_hwframe+0x6a/0xdf
[12538.435535]
[12538.435535] other info that might help us debug this:
[12538.435535]
[12538.472829] Chain exists of:
[12538.472829]   &mm->mmap_sem --> root_key_user.cons_lock --> &type->lock_class
[12538.472829]
[12538.524820]  Possible unsafe locking scenario:
[12538.524820]
[12538.551431]        CPU0                    CPU1
[12538.572654]        ----                    ----
[12538.595865]   lock(&type->lock_class);
[12538.613737]                                lock(root_key_user.cons_lock);
[12538.644234]                                lock(&type->lock_class);
[12538.672410]   lock(&mm->mmap_sem);
[12538.687758]
[12538.687758]  *** DEADLOCK ***
[12538.687758]
[12538.714455] 1 lock held by keyctl/25598:
[12538.732097]  #0: 000000003de5b58d (&type->lock_class){++++}, at: keyctl_read_key+0x15a/0x220
[12538.770573]
[12538.770573] stack backtrace:
[12538.790136] CPU: 2 PID: 25598 Comm: keyctl Kdump: loaded Tainted: G
[12538.844855] Hardware name: HP ProLiant DL360 Gen9/ProLiant DL360 Gen9, BIOS P89 12/27/2015
[12538.881963] Call Trace:
[12538.892897]  dump_stack+0x9a/0xf0
[12538.907908]  print_circular_bug.isra.25.cold.50+0x1bc/0x279
[12538.932891]  ? save_trace+0xd6/0x250
[12538.948979]  check_prev_add.constprop.32+0xc36/0x14f0
[12538.971643]  ? keyring_compare_object+0x104/0x190
[12538.992738]  ? check_usage+0x550/0x550
[12539.009845]  ? sched_clock+0x5/0x10
[12539.025484]  ? sched_clock_cpu+0x18/0x1e0
[12539.043555]  __lock_acquire+0x1f12/0x38d0
[12539.061551]  ? trace_hardirqs_on+0x10/0x10
[12539.080554]  lock_acquire+0x14c/0x420
[12539.100330]  ? __might_fault+0xc4/0x1b0
[12539.119079]  __might_fault+0x119/0x1b0
[12539.135869]  ? __might_fault+0xc4/0x1b0
[12539.153234]  keyring_read_iterator+0x7e/0x170
[12539.172787]  ? keyring_read+0x110/0x110
[12539.190059]  assoc_array_subtree_iterate+0x97/0x280
[12539.211526]  keyring_read+0xe9/0x110
[12539.227561]  ? keyring_gc_check_iterator+0xc0/0xc0
[12539.249076]  keyctl_read_key+0x1b9/0x220
[12539.266660]  do_syscall_64+0xa5/0x4b0
[12539.283091]  entry_SYSCALL_64_after_hwframe+0x6a/0xdf

One way to prevent this deadlock scenario from happening is to not
allow writing to userspace while holding the key semaphore. Instead,
an internal buffer is allocated for getting the keys out from the
read method first before copying them out to userspace without holding
the lock.

That requires taking out the __user modifier from all the relevant
read methods as well as additional changes to not use any userspace
write helpers. That is,

  1) The put_user() call is replaced by a direct copy.
  2) The copy_to_user() call is replaced by memcpy().
  3) All the fault handling code is removed.

Compiling on a x86-64 system, the size of the rxrpc_read() function is
reduced from 3795 bytes to 2384 bytes with this patch.

Fixes: ^1da177e4c3f4 ("Linux-2.6.12-rc2")
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2020-03-29 12:40:41 +01:00
James Bottomley 45477b3fe3 security: keys: trusted: fix lost handle flush
The original code, before it was moved into security/keys/trusted-keys
had a flush after the blob unseal.  Without that flush, the volatile
handles increase in the TPM until it becomes unusable and the system
either has to be rebooted or the TPM volatile area manually flushed.
Fix by adding back the lost flush, which we now have to export because
of the relocation of the trusted key code may cause the consumer to be
modular.

Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Fixes: 2e19e10131 ("KEYS: trusted: Move TPM2 trusted keys code")
Reviewed-by: Jerry Snitselaar <jsnitsel@redhat.com>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2019-12-17 11:46:43 +02:00
zhengbin 0b40dbcbba KEYS: trusted: Remove set but not used variable 'keyhndl'
Fixes gcc '-Wunused-but-set-variable' warning:

security/keys/trusted-keys/trusted_tpm1.c: In function tpm_unseal:
security/keys/trusted-keys/trusted_tpm1.c:588:11: warning: variable keyhndl set but not used [-Wunused-but-set-variable]

Fixes: 00aa975bd031 ("KEYS: trusted: Create trusted keys subsystem")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: zhengbin <zhengbin13@huawei.com>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2019-11-12 21:45:37 +02:00
Sumit Garg 2e19e10131 KEYS: trusted: Move TPM2 trusted keys code
Move TPM2 trusted keys code to trusted keys subsystem. The reason
being it's better to consolidate all the trusted keys code to a single
location so that it can be maintained sanely.

Also, utilize existing tpm_send() exported API which wraps the internal
tpm_transmit_cmd() API.

Suggested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2019-11-12 21:45:37 +02:00
Sumit Garg 47f9c27968 KEYS: trusted: Create trusted keys subsystem
Move existing code to trusted keys subsystem. Also, rename files with
"tpm" as suffix which provides the underlying implementation.

Suggested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2019-11-12 21:45:37 +02:00