Commit graph

4008 commits

Author SHA1 Message Date
Ingo Molnar 391b7a5335 sched/balancing: Rename update_blocked_averages() => sched_balance_update_blocked_averages()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-10-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar 82cf921432 sched/balancing: Rename find_busiest_group() => sched_balance_find_src_group()
Make two naming changes:

1)
   Standardize scheduler load-balancing function names on the
   sched_balance_() prefix.

2)

   Similar to find_busiest_queue(), the find_busiest_group() naming
   has become a bit of a misnomer: the 'busiest' qualifier to this
   function was historically correct but in the current code
   in quite a few cases we will not pick the 'busiest' group - but the best
   (possible) group we can balance from based on a complex set of
   constraints.

So name it a bit more neutrally, similar to the 'src/dst' nomenclature
we are already using when moving tasks between runqueues, and also
use the sched_balance_ prefix: sched_balance_find_src_group().

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-9-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar f1cd2e2e79 sched/balancing: Rename find_busiest_queue() => sched_balance_find_src_rq()
The find_busiest_queue() naming has two small quirks:

 - Scheduler functions that deal with runqueues usually have a rq_ prefix
   or _rq postfix, but this function has neither.

 - Plus the 'busiest' qualifier to this function was historically
   correct, but has become somewhat of a misnomer: in quite a few
   cases we will not pick the busiest runqueue - but the best
   (possible) runqueue we can balance tasks from. So name it a
   bit more neutrally, similar to the 'src/dst' nomenclature
   we are already using when moving tasks between runqueues.

To fix both quirks, and to standardize scheduler load-balancing
function names on the sched_balance_() prefix, rename the
function to sched_balance_find_src_rq().

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-7-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar 4c3e509ea9 sched/balancing: Rename load_balance() => sched_balance_rq()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Also load_balance() has become somewhat of a misnomer: historically
it was the first and primary load-balancing function that was called,
but with the introduction of sched domains, it's become a lower
layer function that balances runqueues.

Rename it to sched_balance_rq() accordingly.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-6-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar 14ff4dbd34 sched/balancing: Rename rebalance_domains() => sched_balance_domains()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-5-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Ingo Molnar 983be0628c sched/balancing: Rename trigger_load_balance() => sched_balance_trigger()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-4-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Ingo Molnar 86dd6c04ef sched/balancing: Rename scheduler_tick() => sched_tick()
- Standardize on prefixing scheduler-internal functions defined
  in <linux/sched.h> with sched_*() prefix. scheduler_tick() was
  the only function using the scheduler_ prefix. Harmonize it.

- The other reason to rename it is the NOHZ scheduler tick
  handling functions are already named sched_tick_*().
  Make the 'git grep sched_tick' more meaningful.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-3-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Ingo Molnar 70a27d6d1b sched/balancing: Rename run_rebalance_domains() => sched_balance_softirq()
run_rebalance_domains() is a misnomer, as it doesn't only
run rebalance_domains(), but since the introduction of the
NOHZ code it also runs nohz_idle_balance().

Rename it to sched_balance_softirq(), reflecting its more
generic purpose and that it's a softirq handler.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-2-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Ingo Molnar 33928ed8bd sched/balancing: Update comments in 'struct sg_lb_stats' and 'struct sd_lb_stats'
- Align for readability
- Capitalize consistently

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-11-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Ingo Molnar e492e1b0e0 sched/balancing: Vertically align the comments of 'struct sg_lb_stats' and 'struct sd_lb_stats'
Make them easier to read.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-10-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Ingo Molnar 3dc6f6c8ef sched/balancing: Update run_rebalance_domains() comments
The first sentence of the comment explaining run_rebalance_domains()
is historic and not true anymore:

    * run_rebalance_domains is triggered when needed from the scheduler tick.

... contradicted/modified by the second sentence:

    * Also triggered for NOHZ idle balancing (with NOHZ_BALANCE_KICK set).

Avoid that kind of confusion straight away and explain from what
places sched_balance_softirq() is triggered.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-9-mingo@kernel.org
2024-03-12 11:59:43 +01:00
Ingo Molnar 3a5fe93057 sched/balancing: Fix comments (trying to) refer to NOHZ_BALANCE_KICK
Fix two typos:

 - There's no such thing as 'nohz_balancing_kick', the
   flag is named 'BALANCE' and is capitalized:  NOHZ_BALANCE_KICK.

 - Likewise there's no such thing as a 'pending nohz_balance_kick'
   either, the NOHZ_BALANCE_KICK flag is all upper-case.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-8-mingo@kernel.org
2024-03-12 11:03:42 +01:00
Ingo Molnar be8858dba9 sched/balancing: Change comment formatting to not overlap Git conflict marker lines
So the scheduler has two such comment blocks, with '=' used as a double underline:

        /*
         * VRUNTIME
         * ========
         *

'========' also happens to be a Git conflict marker, throwing off a simple
search in an editor for this pattern.

Change them to '-------' type of underline instead - it looks just as good.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-7-mingo@kernel.org
2024-03-12 11:03:41 +01:00
Ingo Molnar 11b0bfa5d4 sched/debug: Increase SCHEDSTAT_VERSION to 16
We changed the order of definitions within 'enum cpu_idle_type',
which changed the order of [CPU_MAX_IDLE_TYPES] columns in
show_schedstat().

Suggested-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "Gautham R. Shenoy" <gautham.shenoy@amd.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-5-mingo@kernel.org
2024-03-12 11:03:40 +01:00
Ingo Molnar 38d707c54d sched/balancing: Change 'enum cpu_idle_type' to have more natural definitions
The cpu_idle_type enum has the confusingly inverted property
that 'not idle' is 1, and 'idle' is '0'.

This resulted in a number of unnecessary complications in the code.

Reverse the order, remove the CPU_NOT_IDLE type, and convert
all code to a natural boolean form.

It's much more readable:

  -       enum cpu_idle_type idle = this_rq->idle_balance ?
  -                                               CPU_IDLE : CPU_NOT_IDLE;
  -
  +       enum cpu_idle_type idle = this_rq->idle_balance;

  --------------------------------

  -       if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
  +       if (!env->idle || !busiest->sum_nr_running)

  --------------------------------

And gets rid of the double negation in these usages:

  -               if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
  +               if (env->idle && env->src_rq->nr_running <= 1)

Furthermore, this makes code much more obvious where there's
differentiation between CPU_IDLE and CPU_NEWLY_IDLE.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: "Gautham R. Shenoy" <gautham.shenoy@amd.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-4-mingo@kernel.org
2024-03-12 11:03:40 +01:00
Shrikanth Hegde 02a61f325a sched/balancing: Remove reliance on 'enum cpu_idle_type' ordering when iterating [CPU_MAX_IDLE_TYPES] arrays in show_schedstat()
show_schedstat() output breaks and doesn't print all entries
if the ordering of the definitions in 'enum cpu_idle_type' is changed,
because show_schedstat() assumes that 'CPU_IDLE' is 0.

Fix it before we change the definition order & values.

[ mingo: Added changelog. ]

Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-3-mingo@kernel.org
2024-03-12 11:03:40 +01:00
Ingo Molnar 214c1b7f13 sched/balancing: Switch the 'DEFINE_SPINLOCK(balancing)' spinlock into an 'atomic_t sched_balance_running' flag
The 'balancing' spinlock added in:

  08c183f31b ("[PATCH] sched: add option to serialize load balancing")

... is taken when the SD_SERIALIZE flag is set in a domain, but in reality it
is a glorified global atomic flag serializing the load-balancing of
those domains.

It doesn't have any explicit locking semantics per se: we just
spin_trylock() it.

Turn it into a ... global atomic flag. This makes it more
clear what is going on here, and reduces overhead and code
size a bit:

  # kernel/sched/fair.o: [x86-64 defconfig]

     text	   data	    bss	    dec	    hex	filename
    60730	   2721	    104	  63555	   f843	fair.o.before
    60718	   2721	    104	  63543	   f837	fair.o.after

Also document the flag a bit.

No change in functionality intended.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Cc: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-2-mingo@kernel.org
2024-03-12 11:03:39 +01:00
Linus Torvalds 685d982112 Core x86 changes for v6.9:
- The biggest change is the rework of the percpu code,
   to support the 'Named Address Spaces' GCC feature,
   by Uros Bizjak:
 
    - This allows C code to access GS and FS segment relative
      memory via variables declared with such attributes,
      which allows the compiler to better optimize those accesses
      than the previous inline assembly code.
 
    - The series also includes a number of micro-optimizations
      for various percpu access methods, plus a number of
      cleanups of %gs accesses in assembly code.
 
    - These changes have been exposed to linux-next testing for
      the last ~5 months, with no known regressions in this area.
 
 - Fix/clean up __switch_to()'s broken but accidentally
   working handling of FPU switching - which also generates
   better code.
 
 - Propagate more RIP-relative addressing in assembly code,
   to generate slightly better code.
 
 - Rework the CPU mitigations Kconfig space to be less idiosyncratic,
   to make it easier for distros to follow & maintain these options.
 
 - Rework the x86 idle code to cure RCU violations and
   to clean up the logic.
 
 - Clean up the vDSO Makefile logic.
 
 - Misc cleanups and fixes.
 
 [ Please note that there's a higher number of merge commits in
   this branch (three) than is usual in x86 topic trees. This happened
   due to the long testing lifecycle of the percpu changes that
   involved 3 merge windows, which generated a longer history
   and various interactions with other core x86 changes that we
   felt better about to carry in a single branch. ]
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmXvB0gRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1jUqRAAqnEQPiabF5acQlHrwviX+cjSobDlqtH5
 9q2AQy9qaEHapzD0XMOxvFye6XIvehGOGxSPvk6CoviSxBND8rb56lvnsEZuLeBV
 Bo5QSIL2x42Zrvo11iPHwgXZfTIusU90sBuKDRFkYBAxY3HK2naMDZe8MAsYCUE9
 nwgHF8DDc/NYiSOXV8kosWoWpNIkoK/STyH5bvTQZMqZcwyZ49AIeP1jGZb/prbC
 e/rbnlrq5Eu6brpM7xo9kELO0Vhd34urV14KrrIpdkmUKytW2KIsyvW8D6fqgDBj
 NSaQLLcz0pCXbhF+8Nqvdh/1coR4L7Ymt08P1rfEjCsQgb/2WnSAGUQuC5JoGzaj
 ngkbFcZllIbD9gNzMQ1n4Aw5TiO+l9zxCqPC/r58Uuvstr+K9QKlwnp2+B3Q73Ft
 rojIJ04NJL6lCHdDgwAjTTks+TD2PT/eBWsDfJ/1pnUWttmv9IjMpnXD5sbHxoiU
 2RGGKnYbxXczYdq/ALYDWM6JXpfnJZcXL3jJi0IDcCSsb92xRvTANYFHnTfyzGfw
 EHkhbF4e4Vy9f6QOkSP3CvW5H26BmZS9DKG0J9Il5R3u2lKdfbb5vmtUmVTqHmAD
 Ulo5cWZjEznlWCAYSI/aIidmBsp9OAEvYd+X7Z5SBIgTfSqV7VWHGt0BfA1heiVv
 F/mednG0gGc=
 =3v4F
 -----END PGP SIGNATURE-----

Merge tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull core x86 updates from Ingo Molnar:

 - The biggest change is the rework of the percpu code, to support the
   'Named Address Spaces' GCC feature, by Uros Bizjak:

      - This allows C code to access GS and FS segment relative memory
        via variables declared with such attributes, which allows the
        compiler to better optimize those accesses than the previous
        inline assembly code.

      - The series also includes a number of micro-optimizations for
        various percpu access methods, plus a number of cleanups of %gs
        accesses in assembly code.

      - These changes have been exposed to linux-next testing for the
        last ~5 months, with no known regressions in this area.

 - Fix/clean up __switch_to()'s broken but accidentally working handling
   of FPU switching - which also generates better code

 - Propagate more RIP-relative addressing in assembly code, to generate
   slightly better code

 - Rework the CPU mitigations Kconfig space to be less idiosyncratic, to
   make it easier for distros to follow & maintain these options

 - Rework the x86 idle code to cure RCU violations and to clean up the
   logic

 - Clean up the vDSO Makefile logic

 - Misc cleanups and fixes

* tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
  x86/idle: Select idle routine only once
  x86/idle: Let prefer_mwait_c1_over_halt() return bool
  x86/idle: Cleanup idle_setup()
  x86/idle: Clean up idle selection
  x86/idle: Sanitize X86_BUG_AMD_E400 handling
  sched/idle: Conditionally handle tick broadcast in default_idle_call()
  x86: Increase brk randomness entropy for 64-bit systems
  x86/vdso: Move vDSO to mmap region
  x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together
  x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o
  x86/retpoline: Ensure default return thunk isn't used at runtime
  x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32
  x86/vdso: Use $(addprefix ) instead of $(foreach )
  x86/vdso: Simplify obj-y addition
  x86/vdso: Consolidate targets and clean-files
  x86/bugs: Rename CONFIG_RETHUNK              => CONFIG_MITIGATION_RETHUNK
  x86/bugs: Rename CONFIG_CPU_SRSO             => CONFIG_MITIGATION_SRSO
  x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY       => CONFIG_MITIGATION_IBRS_ENTRY
  x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY      => CONFIG_MITIGATION_UNRET_ENTRY
  x86/bugs: Rename CONFIG_SLS                  => CONFIG_MITIGATION_SLS
  ...
2024-03-11 19:53:15 -07:00
Linus Torvalds 89c572e2f3 Scheduler changes for v6.9:
- Fix inconsistency in misfit task load-balancing
 
  - Fix CPU isolation bugs in the task-wakeup logic
 
  - Rework & unify the sched_use_asym_prio() and sched_asym_prefer() logic
 
  - Clean up & simplify ->avg_* accesses
 
  - Misc cleanups & fixes
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmXu9V0RHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gqWBAAvqPlJx/jwNTePiXtxsObmtTnTStnVSM8
 8SRxb2uznSFjYj73RdMDUzeYOfweE48elJoUAN7IGX2fgCFjxeDgpPnAyvnU0jFE
 X/gJXEO2xCCYsvDnMg1huNSxEJ1ZQl6YJgdd6eLGjBK6l75pkgLJLOSmeFfTShgw
 gMk4yIaUrxd/yc/bBvK39gMW1JDXiFIwmHuzfEl0/5k+abzVOU0ZfqFir2OH/GT9
 YH8ZNsKKn88i01mp2qzo9LouF7mmOH4dZYd9k0SueH+rW8Z+goSuVF8O3igodL0T
 TM5sqqG7qd1WC8SN0zng+OGODmJ+PrN7soKbTZC5NsC+LvipjVZ1Y92dLyS1xhgn
 Bpm+NjVNrz9ZWhZiC5LiIF+zDZHu51RDejcOgt1Va6qBIY229GFKLgxFSis/TzzD
 7xFpi7ApGCS/Rp9VeIDC69V8ZVfsCPJ7D1oxo5wmLzGe17nThxMeE1AmoWOXOUp8
 M9ISbvete8i/8uS8jJQQMylrFceQkzumTVK7p+LqEdlaH0fF/fNKyeH81ZLZMwpM
 0pfc7OVFpxd3Rt4wq+db00ilStdfV4yKkVAJiOLfVPyh+tZusvxkKjqXIMrm3RI/
 DkZu6/3KYompfVcfkVXbW57Zu+kfgi6kQVt+6yEGrnLcIPkaPR08inEB7vtf6T+R
 EBncKVtt1Rs=
 =3CZV
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - Fix inconsistency in misfit task load-balancing

 - Fix CPU isolation bugs in the task-wakeup logic

 - Rework and unify the sched_use_asym_prio() and sched_asym_prefer()
   logic

 - Clean up and simplify ->avg_* accesses

 - Misc cleanups and fixes

* tag 'sched-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/topology: Rename SD_SHARE_PKG_RESOURCES to SD_SHARE_LLC
  sched/fair: Check the SD_ASYM_PACKING flag in sched_use_asym_prio()
  sched/fair: Rework sched_use_asym_prio() and sched_asym_prefer()
  sched/fair: Remove unused parameter from sched_asym()
  sched/topology: Remove duplicate descriptions from TOPOLOGY_SD_FLAGS
  sched/fair: Simplify the update_sd_pick_busiest() logic
  sched/fair: Do strict inequality check for busiest misfit task group
  sched/fair: Remove unnecessary goto in update_sd_lb_stats()
  sched/fair: Take the scheduling domain into account in select_idle_core()
  sched/fair: Take the scheduling domain into account in select_idle_smt()
  sched/fair: Add READ_ONCE() and use existing helper function to access ->avg_irq
  sched/fair: Use existing helper functions to access ->avg_rt and ->avg_dl
  sched/core: Simplify code by removing duplicate #ifdefs
2024-03-11 18:45:16 -07:00
Linus Torvalds d08c407f71 A large set of updates and features for timers and timekeeping:
- The hierarchical timer pull model
 
     When timer wheel timers are armed they are placed into the timer wheel
     of a CPU which is likely to be busy at the time of expiry. This is done
     to avoid wakeups on potentially idle CPUs.
 
     This is wrong in several aspects:
 
      1) The heuristics to select the target CPU are wrong by
         definition as the chance to get the prediction right is close
         to zero.
 
      2) Due to #1 it is possible that timers are accumulated on a
         single target CPU
 
      3) The required computation in the enqueue path is just overhead for
      	dubious value especially under the consideration that the vast
      	majority of timer wheel timers are either canceled or rearmed
      	before they expire.
 
     The timer pull model avoids the above by removing the target
     computation on enqueue and queueing timers always on the CPU on which
     they get armed.
 
     This is achieved by having separate wheels for CPU pinned timers and
     global timers which do not care about where they expire.
 
     As long as a CPU is busy it handles both the pinned and the global
     timers which are queued on the CPU local timer wheels.
 
     When a CPU goes idle it evaluates its own timer wheels:
 
       - If the first expiring timer is a pinned timer, then the global
       	timers can be ignored as the CPU will wake up before they expire.
 
       - If the first expiring timer is a global timer, then the expiry time
         is propagated into the timer pull hierarchy and the CPU makes sure
         to wake up for the first pinned timer.
 
     The timer pull hierarchy organizes CPUs in groups of eight at the
     lowest level and at the next levels groups of eight groups up to the
     point where no further aggregation of groups is required, i.e. the
     number of levels is log8(NR_CPUS). The magic number of eight has been
     established by experimention, but can be adjusted if needed.
 
     In each group one busy CPU acts as the migrator. It's only one CPU to
     avoid lock contention on remote timer wheels.
 
     The migrator CPU checks in its own timer wheel handling whether there
     are other CPUs in the group which have gone idle and have global timers
     to expire. If there are global timers to expire, the migrator locks the
     remote CPU timer wheel and handles the expiry.
 
     Depending on the group level in the hierarchy this handling can require
     to walk the hierarchy downwards to the CPU level.
 
     Special care is taken when the last CPU goes idle. At this point the
     CPU is the systemwide migrator at the top of the hierarchy and it
     therefore cannot delegate to the hierarchy. It needs to arm its own
     timer device to expire either at the first expiring timer in the
     hierarchy or at the first CPU local timer, which ever expires first.
 
     This completely removes the overhead from the enqueue path, which is
     e.g. for networking a true hotpath and trades it for a slightly more
     complex idle path.
 
     This has been in development for a couple of years and the final series
     has been extensively tested by various teams from silicon vendors and
     ran through extensive CI.
 
     There have been slight performance improvements observed on network
     centric workloads and an Intel team confirmed that this allows them to
     power down a die completely on a mult-die socket for the first time in
     a mostly idle scenario.
 
     There is only one outstanding ~1.5% regression on a specific overloaded
     netperf test which is currently investigated, but the rest is either
     positive or neutral performance wise and positive on the power
     management side.
 
   - Fixes for the timekeeping interpolation code for cross-timestamps:
 
     cross-timestamps are used for PTP to get snapshots from hardware timers
     and interpolated them back to clock MONOTONIC. The changes address a
     few corner cases in the interpolation code which got the math and logic
     wrong.
 
   - Simplifcation of the clocksource watchdog retry logic to automatically
     adjust to handle larger systems correctly instead of having more
     incomprehensible command line parameters.
 
   - Treewide consolidation of the VDSO data structures.
 
   - The usual small improvements and cleanups all over the place.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuAN0THHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoVKXEADIR45rjR1Xtz32js7B53Y65O4WNoOQ
 6/ycWcswuGzg/h4QUpPSJ6gOGVmKSWwZi4n0P/VadCiXGSPPm0aUKsoRUt9DZsPY
 mtj2wjCSXKXiyhTl9OtrZME86ZAIGO1dQXa/sOHsiP5PCjgQkD0b5CYi1+B6eHDt
 1/Uo2Tb9g8VAPppq20V5Uo93GrPf642oyi3FCFrR1M112Uuak5DmqHJYiDpreNcG
 D5SgI+ykSiaUaVyHifvqijoJk0rYXkqEC6evl02477lJ/X0vVo2/M8XPS95BxHST
 s5Iruo4rP+qeAy8QvhZpoPX59fO0m/AgA7cf77XXAtOpVdLH+bs4ILsEbouAIOtv
 lsmRkcYt+TpvrZFHPAxks+6g3afuROiDtxD5sXXpVWxvofi8FwWqubdlqdsbw9MP
 ZCTNyzNyKL47QeDwBfSynYUL1RSyqsphtIwk4oeQklH9rwMAnW21hi30z15hQ0pQ
 FOVkmcwi79JNvl/G+jRkDzw7r8/zcHshWdSjyUM04CDjjnCDjQOFWSIjEPwbQjjz
 S4HXpJKJW963dBgs9Z84/Ctw1GwoBk1qedDWDJE1257Qvmo/Wpe/7GddWcazOGnN
 RRFMzGPbOqBDbjtErOKGU+iCisgNEvz2XK+TI16uRjWde7DxZpiTVYgNDrZ+/Pyh
 rQ23UBms6ZRR+A==
 =iQlu
 -----END PGP SIGNATURE-----

Merge tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull timer updates from Thomas Gleixner:
 "A large set of updates and features for timers and timekeeping:

   - The hierarchical timer pull model

     When timer wheel timers are armed they are placed into the timer
     wheel of a CPU which is likely to be busy at the time of expiry.
     This is done to avoid wakeups on potentially idle CPUs.

     This is wrong in several aspects:

       1) The heuristics to select the target CPU are wrong by
          definition as the chance to get the prediction right is
          close to zero.

       2) Due to #1 it is possible that timers are accumulated on
          a single target CPU

       3) The required computation in the enqueue path is just overhead
          for dubious value especially under the consideration that the
          vast majority of timer wheel timers are either canceled or
          rearmed before they expire.

     The timer pull model avoids the above by removing the target
     computation on enqueue and queueing timers always on the CPU on
     which they get armed.

     This is achieved by having separate wheels for CPU pinned timers
     and global timers which do not care about where they expire.

     As long as a CPU is busy it handles both the pinned and the global
     timers which are queued on the CPU local timer wheels.

     When a CPU goes idle it evaluates its own timer wheels:

       - If the first expiring timer is a pinned timer, then the global
         timers can be ignored as the CPU will wake up before they
         expire.

       - If the first expiring timer is a global timer, then the expiry
         time is propagated into the timer pull hierarchy and the CPU
         makes sure to wake up for the first pinned timer.

     The timer pull hierarchy organizes CPUs in groups of eight at the
     lowest level and at the next levels groups of eight groups up to
     the point where no further aggregation of groups is required, i.e.
     the number of levels is log8(NR_CPUS). The magic number of eight
     has been established by experimention, but can be adjusted if
     needed.

     In each group one busy CPU acts as the migrator. It's only one CPU
     to avoid lock contention on remote timer wheels.

     The migrator CPU checks in its own timer wheel handling whether
     there are other CPUs in the group which have gone idle and have
     global timers to expire. If there are global timers to expire, the
     migrator locks the remote CPU timer wheel and handles the expiry.

     Depending on the group level in the hierarchy this handling can
     require to walk the hierarchy downwards to the CPU level.

     Special care is taken when the last CPU goes idle. At this point
     the CPU is the systemwide migrator at the top of the hierarchy and
     it therefore cannot delegate to the hierarchy. It needs to arm its
     own timer device to expire either at the first expiring timer in
     the hierarchy or at the first CPU local timer, which ever expires
     first.

     This completely removes the overhead from the enqueue path, which
     is e.g. for networking a true hotpath and trades it for a slightly
     more complex idle path.

     This has been in development for a couple of years and the final
     series has been extensively tested by various teams from silicon
     vendors and ran through extensive CI.

     There have been slight performance improvements observed on network
     centric workloads and an Intel team confirmed that this allows them
     to power down a die completely on a mult-die socket for the first
     time in a mostly idle scenario.

     There is only one outstanding ~1.5% regression on a specific
     overloaded netperf test which is currently investigated, but the
     rest is either positive or neutral performance wise and positive on
     the power management side.

   - Fixes for the timekeeping interpolation code for cross-timestamps:

     cross-timestamps are used for PTP to get snapshots from hardware
     timers and interpolated them back to clock MONOTONIC. The changes
     address a few corner cases in the interpolation code which got the
     math and logic wrong.

   - Simplifcation of the clocksource watchdog retry logic to
     automatically adjust to handle larger systems correctly instead of
     having more incomprehensible command line parameters.

   - Treewide consolidation of the VDSO data structures.

   - The usual small improvements and cleanups all over the place"

* tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
  timer/migration: Fix quick check reporting late expiry
  tick/sched: Fix build failure for CONFIG_NO_HZ_COMMON=n
  vdso/datapage: Quick fix - use asm/page-def.h for ARM64
  timers: Assert no next dyntick timer look-up while CPU is offline
  tick: Assume timekeeping is correctly handed over upon last offline idle call
  tick: Shut down low-res tick from dying CPU
  tick: Split nohz and highres features from nohz_mode
  tick: Move individual bit features to debuggable mask accesses
  tick: Move got_idle_tick away from common flags
  tick: Assume the tick can't be stopped in NOHZ_MODE_INACTIVE mode
  tick: Move broadcast cancellation up to CPUHP_AP_TICK_DYING
  tick: Move tick cancellation up to CPUHP_AP_TICK_DYING
  tick: Start centralizing tick related CPU hotplug operations
  tick/sched: Don't clear ts::next_tick again in can_stop_idle_tick()
  tick/sched: Rename tick_nohz_stop_sched_tick() to tick_nohz_full_stop_tick()
  tick: Use IS_ENABLED() whenever possible
  tick/sched: Remove useless oneshot ifdeffery
  tick/nohz: Remove duplicate between lowres and highres handlers
  tick/nohz: Remove duplicate between tick_nohz_switch_to_nohz() and tick_setup_sched_timer()
  hrtimer: Select housekeeping CPU during migration
  ...
2024-03-11 14:38:26 -07:00
Linus Torvalds 1ddeeb2a05 for-6.9/block-20240310
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmXuFO4QHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpq33D/9hyNyBce2A9iyo026eK8EqLDoed6BPzuvB
 kLKj5tsGvX4YlfuswvP86M5dgibTASXclnfUK394TijW/JPOfJ3mNhi9gMnHzRoK
 ZaR1di0Lum56dY1FkpMmWiGmE4fB79PAtXYKtajOkuoIcNzylncEAAACUY4/Ouhg
 Cm+LMg2prcc+m9g8rKDNQ51pUFg4U21KAUTl35XLMUAaQk1ahW3EDEVYhweC/zwE
 V/5hJsv8UY72+oQGY2Dc/YgQk/Zj4ZDh7C+oHR9XeB/ro99kr3/Vopagu0gBMLZi
 Rq6qqz6PVMhVcuz8uN2rsTQKXmXhsBn9/adsl4AKtdxcW5D5moWb5BLq1P0WQylc
 nzMxa1d6cVcTKZpaUQQv3Rj6ZMrLuDwP277UYHfn5x1oPWYRZCG7FtHuOo1gNcpG
 DrSNwVG6BSDcbABqI+MIS2oD1JoUMyevjwT7e2hOXukZhc6GLO5F3ODWE5j3KnCR
 S/aGSAmcdR4fTcgavULqWdQVt7SYl4f1IxT8KrUirJGVhc2LgahaWj69ooklVHoU
 fPDFRiruwJ5YkH4RWCSDm9mi4kAz6eUf+f4yE06wZOFOb2fT8/1ZK2Snpz2KeXuZ
 INO0RejtFzT8L0OUlu7dBmF20y6rgAYt87lR8mIt71yuuATIrVhzlX1VdsvhdrAo
 VLHGV1Ncgw==
 =WlVL
 -----END PGP SIGNATURE-----

Merge tag 'for-6.9/block-20240310' of git://git.kernel.dk/linux

Pull block updates from Jens Axboe:

 - MD pull requests via Song:
      - Cleanup redundant checks (Yu Kuai)
      - Remove deprecated headers (Marc Zyngier, Song Liu)
      - Concurrency fixes (Li Lingfeng)
      - Memory leak fix (Li Nan)
      - Refactor raid1 read_balance (Yu Kuai, Paul Luse)
      - Clean up and fix for md_ioctl (Li Nan)
      - Other small fixes (Gui-Dong Han, Heming Zhao)
      - MD atomic limits (Christoph)

 - NVMe pull request via Keith:
      - RDMA target enhancements (Max)
      - Fabrics fixes (Max, Guixin, Hannes)
      - Atomic queue_limits usage (Christoph)
      - Const use for class_register (Ricardo)
      - Identification error handling fixes (Shin'ichiro, Keith)

 - Improvement and cleanup for cached request handling (Christoph)

 - Moving towards atomic queue limits. Core changes and driver bits so
   far (Christoph)

 - Fix UAF issues in aoeblk (Chun-Yi)

 - Zoned fix and cleanups (Damien)

 - s390 dasd cleanups and fixes (Jan, Miroslav)

 - Block issue timestamp caching (me)

 - noio scope guarding for zoned IO (Johannes)

 - block/nvme PI improvements (Kanchan)

 - Ability to terminate long running discard loop (Keith)

 - bdev revalidation fix (Li)

 - Get rid of old nr_queues hack for kdump kernels (Ming)

 - Support for async deletion of ublk (Ming)

 - Improve IRQ bio recycling (Pavel)

 - Factor in CPU capacity for remote vs local completion (Qais)

 - Add shared_tags configfs entry for null_blk (Shin'ichiro

 - Fix for a regression in page refcounts introduced by the folio
   unification (Tony)

 - Misc fixes and cleanups (Arnd, Colin, John, Kunwu, Li, Navid,
   Ricardo, Roman, Tang, Uwe)

* tag 'for-6.9/block-20240310' of git://git.kernel.dk/linux: (221 commits)
  block: partitions: only define function mac_fix_string for CONFIG_PPC_PMAC
  block/swim: Convert to platform remove callback returning void
  cdrom: gdrom: Convert to platform remove callback returning void
  block: remove disk_stack_limits
  md: remove mddev->queue
  md: don't initialize queue limits
  md/raid10: use the atomic queue limit update APIs
  md/raid5: use the atomic queue limit update APIs
  md/raid1: use the atomic queue limit update APIs
  md/raid0: use the atomic queue limit update APIs
  md: add queue limit helpers
  md: add a mddev_is_dm helper
  md: add a mddev_add_trace_msg helper
  md: add a mddev_trace_remap helper
  bcache: move calculation of stripe_size and io_opt into bcache_device_init
  virtio_blk: Do not use disk_set_max_open/active_zones()
  aoe: fix the potential use-after-free problem in aoecmd_cfg_pkts
  block: move capacity validation to blkpg_do_ioctl()
  block: prevent division by zero in blk_rq_stat_sum()
  drbd: atomically update queue limits in drbd_reconsider_queue_parameters
  ...
2024-03-11 11:43:44 -07:00
Thomas Gleixner 2be2a197ff sched/idle: Conditionally handle tick broadcast in default_idle_call()
The x86 architecture has an idle routine for AMD CPUs which are affected
by erratum 400. On the affected CPUs the local APIC timer stops in the
C1E halt state.

It therefore requires tick broadcasting. The invocation of
tick_broadcast_enter()/exit() from this function violates the RCU
constraints because it can end up in lockdep or tracing, which
rightfully triggers a warning.

tick_broadcast_enter()/exit() must be invoked before ct_cpuidle_enter()
and after ct_cpuidle_exit() in default_idle_call().

Add a static branch conditional invocation of tick_broadcast_enter()/exit()
into this function to allow X86 to replace the AMD specific idle code. It's
guarded by a config switch which will be selected by x86. Otherwise it's
a NOOP.

Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240229142248.266708822@linutronix.de
2024-03-01 21:04:27 +01:00
Alex Shi 54de442747 sched/topology: Rename SD_SHARE_PKG_RESOURCES to SD_SHARE_LLC
SD_SHARE_PKG_RESOURCES is a bit of a misnomer: its naming suggests that
it's sharing all 'package resources' - while in reality it's specifically
for sharing the LLC only.

Rename it to SD_SHARE_LLC to reduce confusion.

[ mingo: Rewrote the confusing changelog as well. ]

Suggested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-5-alexs@kernel.org
2024-02-28 15:43:17 +01:00
Alex Shi fbc449864e sched/fair: Check the SD_ASYM_PACKING flag in sched_use_asym_prio()
sched_use_asym_prio() checks whether CPU priorities should be used. It
makes sense to check for the SD_ASYM_PACKING() inside the function.
Since both sched_asym() and sched_group_asym() use sched_use_asym_prio(),
remove the now superfluous checks for the flag in various places.

Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-4-alexs@kernel.org
2024-02-28 15:43:17 +01:00
Alex Shi 45de206234 sched/fair: Rework sched_use_asym_prio() and sched_asym_prefer()
sched_use_asym_prio() and sched_asym_prefer() are used together in various
places. Consolidate them into a single function sched_asym().

The existing sched_asym() function is only used when collecting statistics
of a scheduling group. Rename it as sched_group_asym(), and remove the
obsolete function description.

This makes the code easier to read. No functional changes.

Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-3-alexs@kernel.org
2024-02-28 15:43:17 +01:00
Alex Shi 5a64983731 sched/fair: Remove unused parameter from sched_asym()
The 'sds' argument is not used in the sched_asym() function anymore, remove it.

Fixes: c9ca07886a ("sched/fair: Do not even the number of busy CPUs via asym_packing")
Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-2-alexs@kernel.org
2024-02-28 15:43:08 +01:00
Alex Shi d654c8ddde sched/topology: Remove duplicate descriptions from TOPOLOGY_SD_FLAGS
These flags are already documented in include/linux/sched/sd_flags.h.

Also, add missing SD_CLUSTER and keep the comment on SD_ASYM_PACKING
as it is a special case.

Suggested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-1-alexs@kernel.org
2024-02-28 15:29:21 +01:00
David Vernet 7e9f7d17fe sched/fair: Simplify the update_sd_pick_busiest() logic
When comparing the current struct sched_group with the yet-busiest
domain in update_sd_pick_busiest(), if the two groups have the same
group type, we're currently doing a bit of unnecessary work for any
group >= group_misfit_task. We're comparing the two groups, and then
returning only if false (the group in question is not the busiest).

Otherwise, we break out, do an extra unnecessary conditional check that's
vacuously false for any group type > group_fully_busy, and then always
return true.

Let's just return directly in the switch statement instead. This doesn't
change the size of vmlinux with llvm 17 (not surprising given that all
of this is inlined in load_balance()), but it does shrink load_balance()
by 88 bytes on x86. Given that it also improves readability, this seems
worth doing.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240206043921.850302-4-void@manifault.com
2024-02-28 15:19:26 +01:00
David Vernet 7f1a722971 sched/fair: Do strict inequality check for busiest misfit task group
In update_sd_pick_busiest(), when comparing two sched groups that are
both of type group_misfit_task, we currently consider the new group as
busier than the current busiest group even if the new group has the
same misfit task load as the current busiest group. We can avoid some
unnecessary writes if we instead only consider the newest group to be
the busiest if it has a higher load than the current busiest. This
matches the behavior of other group types where we compare load, such as
two groups that are both overloaded.

Let's update the group_misfit_task type comparison to also only update
the busiest group in the event of strict inequality.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240206043921.850302-3-void@manifault.com
2024-02-28 15:19:24 +01:00
David Vernet 9dfbc26d27 sched/fair: Remove unnecessary goto in update_sd_lb_stats()
In update_sd_lb_stats(), when we're iterating over the sched groups that
comprise a sched domain, we're skipping the call to
update_sd_pick_busiest() for the sched group that contains the local /
destination CPU. We use a goto to skip the call, but we could just as
easily check !local_group, as there's no other logic that we need to
skip with the goto. Let's remove the goto, and check for !local_group in
the if statement instead.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240206043921.850302-2-void@manifault.com
2024-02-28 15:19:23 +01:00
Keisuke Nishimura 23d04d8c6b sched/fair: Take the scheduling domain into account in select_idle_core()
When picking a CPU on task wakeup, select_idle_core() has to take
into account the scheduling domain where the function looks for the CPU.

This is because the "isolcpus" kernel command line option can remove CPUs
from the domain to isolate them from other SMT siblings.

This change replaces the set of CPUs allowed to run the task from
p->cpus_ptr by the intersection of p->cpus_ptr and sched_domain_span(sd)
which is stored in the 'cpus' argument provided by select_idle_cpu().

Fixes: 9fe1f127b9 ("sched/fair: Merge select_idle_core/cpu()")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Julia Lawall <julia.lawall@inria.fr>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240110131707.437301-2-keisuke.nishimura@inria.fr
2024-02-28 15:15:49 +01:00
Keisuke Nishimura 8aeaffef8c sched/fair: Take the scheduling domain into account in select_idle_smt()
When picking a CPU on task wakeup, select_idle_smt() has to take
into account the scheduling domain of @target. This is because the
"isolcpus" kernel command line option can remove CPUs from the domain to
isolate them from other SMT siblings.

This fix checks if the candidate CPU is in the target scheduling domain.

Commit:

  df3cb4ea1f ("sched/fair: Fix wrong cpu selecting from isolated domain")

... originally introduced this fix by adding the check of the scheduling
domain in the loop.

However, commit:

  3e6efe87cd ("sched/fair: Remove redundant check in select_idle_smt()")

... accidentally removed the check. Bring it back.

Fixes: 3e6efe87cd ("sched/fair: Remove redundant check in select_idle_smt()")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Julia Lawall <julia.lawall@inria.fr>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240110131707.437301-1-keisuke.nishimura@inria.fr
2024-02-28 15:15:48 +01:00
Shrikanth Hegde a6965b3188 sched/fair: Add READ_ONCE() and use existing helper function to access ->avg_irq
Use existing helper function cpu_util_irq() instead of open-coding
access to ->avg_irq.

During review it was noted that ->avg_irq could be updated by a
different CPU than the one which is trying to access it.

->avg_irq is updated with WRITE_ONCE(), use READ_ONCE to access it
in order to avoid any compiler optimizations.

Signed-off-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240101154624.100981-3-sshegde@linux.vnet.ibm.com
2024-02-28 15:11:15 +01:00
Shrikanth Hegde 8b936fc1d8 sched/fair: Use existing helper functions to access ->avg_rt and ->avg_dl
There are helper functions called cpu_util_dl() and cpu_util_rt() which give
the average utilization of DL and RT respectively. But there are a few
places in code where access to these variables is open-coded.

Instead use the helper function so that code becomes simpler and easier to
maintain later on.

No functional changes intended.

Signed-off-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240101154624.100981-2-sshegde@linux.vnet.ibm.com
2024-02-28 15:11:14 +01:00
Frederic Weisbecker 500f8f9bce tick: Assume timekeeping is correctly handed over upon last offline idle call
The timekeeping duty is handed over from the outgoing CPU on stop
machine, then the oneshot tick is stopped right after.  Therefore it's
guaranteed that the current CPU isn't the timekeeper upon its last call
to idle.

Besides, calling tick_nohz_idle_stop_tick() while the dying CPU goes
into idle suggests that the tick is going to be stopped while it is
actually stopped already from the appropriate CPU hotplug state.

Remove the confusing call and the obsolete case handling and convert it
to a sanity check that verifies the above assumption.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240225225508.11587-16-frederic@kernel.org
2024-02-26 11:37:32 +01:00
Qais Yousef b361c9027b sched: Add a new function to compare if two cpus have the same capacity
The new helper function is needed to help blk-mq check if it needs to
dispatch the softirq on another CPU to match the performance level the
IO requester is running at. This is important on HMP systems where not
all CPUs have the same compute capacity.

Signed-off-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20240223155749.2958009-2-qyousef@layalina.io
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-02-24 12:48:01 -07:00
Linus Torvalds 944d5fe50f sched/membarrier: reduce the ability to hammer on sys_membarrier
On some systems, sys_membarrier can be very expensive, causing overall
slowdowns for everything.  So put a lock on the path in order to
serialize the accesses to prevent the ability for this to be called at
too high of a frequency and saturate the machine.

Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-and-tested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Fixes: 22e4ebb975 ("membarrier: Provide expedited private command")
Fixes: c5f58bd58f ("membarrier: Provide GLOBAL_EXPEDITED command")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-02-20 09:38:05 -08:00
Shrikanth Hegde 8cec3dd9e5 sched/core: Simplify code by removing duplicate #ifdefs
There's a few cases of nested #ifdefs in the scheduler code
that can be simplified:

  #ifdef DEFINE_A
  ...code block...
    #ifdef DEFINE_A       <-- This is a duplicate.
    ...code block...
    #endif
  #else
    #ifndef DEFINE_A     <-- This is also duplicate.
    ...code block...
    #endif
  #endif

More details about the script and methods used to find these code
patterns can be found at:

  https://lore.kernel.org/all/20240118080326.13137-1-sshegde@linux.ibm.com/

No change in functionality intended.

[ mingo: Clarified the changelog. ]

Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240216061433.535522-1-sshegde@linux.ibm.com
2024-02-16 09:37:15 +01:00
Jens Axboe 06b23f92af block: update cached timestamp post schedule/preemption
Mark the task as having a cached timestamp when set assign it, so we
can efficiently check if it needs updating post being scheduled back in.
This covers both the actual schedule out case, which would've flushed
the plug, and the preemption case which doesn't touch the plugged
requests (for many reasons, one of them being then we'd need to have
preemption disabled around plug state manipulation).

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-02-05 10:07:34 -07:00
Linus Torvalds b0d326da46 Fix a cpufreq related performance regression on certain systems,
where the CPU would remain at the lowest frequency, degrading
 performance substantially.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmWpM0sRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1giEg/+Mn9hdLqgE7xPPvCa8UWoJzFGTIYgTT3O
 gma5Ras/kqB6cJTb1zn/HocAIj1Y2gZAsRU/U3IpOfPzklwIKQLBID1PE+d0izAc
 NC9N0LuPau+XbMY5U+G0YNQZzDW+Zioe/9I6uDRKRTtLTdZAk8Plk9yh+tRtpSG8
 aEswyoDOJfvkLbl7kJGymHgxDiDtmXEcz6j2pNlFtcEdHFjiSHo2Jq09DMia9sHr
 W563FSvO7DVBMOosKH8sq7sSPdCBi0zshaWDiyz2M7Ry2uBsqJvx+9qxDnloafTp
 Yqp5rkSVzOxtQwxjtYD+WWy+AgwQqo+O5FHsm0JmoiGVkmpB95bdhQxk2gtshSCo
 IwUt2Gqsndd0JM4v5gOn4G/qCPxFUA/Tx1OMWM89nQUVp3OmIwm8z99f5gFxoSYa
 DFn2P2Ku/A/fiKfWcNDOCyMgYcJNmqRKSjWEh+mfFeexiuWR3jPrQ4GKbSl9Gusw
 vLmBM9pMSyGvivptu+ALXERDDm95wEVVkULgxlcUgpuT8jjpmovbtFj2xYcnzvc4
 EKOgJ0FmXCM/B6QFnnbzgMzu2IThoQpL8Ud3JlMeGDRLGDvZip9AA+0RsnirURwX
 +EuE7fHcDzfAA+Fv9sGosaFmxD1dUh1EJL41XrFZSYfMsZzzzlj+k9PWf9ABCE4R
 6gEHuRza+rU=
 =c7Ib
 -----END PGP SIGNATURE-----

Merge tag 'sched-urgent-2024-01-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler fix from Ingo Molnar:
 "Fix a cpufreq related performance regression on certain systems, where
  the CPU would remain at the lowest frequency, degrading performance
  substantially"

* tag 'sched-urgent-2024-01-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/fair: Fix frequency selection for non-invariant case
2024-01-18 11:57:33 -08:00
Vincent Guittot e37617c8e5 sched/fair: Fix frequency selection for non-invariant case
Linus reported a ~50% performance regression on single-threaded
workloads on his AMD Ryzen system, and bisected it to:

  9c0b4bb7f6 ("sched/cpufreq: Rework schedutil governor performance estimation")

When frequency invariance is not enabled, get_capacity_ref_freq(policy)
is supposed to return the current frequency and the performance margin
applied by map_util_perf(), enabling the utilization to go above the
maximum compute capacity and to select a higher frequency than the current one.

After the changes in 9c0b4bb7f6, the performance margin was applied
earlier in the path to take into account utilization clampings and
we couldn't get a utilization higher than the maximum compute capacity,
and the CPU remained 'stuck' at lower frequencies.

To fix this, we must use a frequency above the current frequency to
get a chance to select a higher OPP when the current one becomes fully used.
Apply the same margin and return a frequency 25% higher than the current
one in order to switch to the next OPP before we fully use the CPU
at the current one.

[ mingo: Clarified the changelog. ]

Fixes: 9c0b4bb7f6 ("sched/cpufreq: Rework schedutil governor performance estimation")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Bisected-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Wyes Karny <wkarny@gmail.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Wyes Karny <wkarny@gmail.com>
Link: https://lore.kernel.org/r/20240114183600.135316-1-vincent.guittot@linaro.org
2024-01-16 10:41:25 +01:00
Linus Torvalds 78273df7f6 header cleanups for 6.8
The goal is to get sched.h down to a type only header, so the main thing
 happening in this patchset is splitting out various _types.h headers and
 dependency fixups, as well as moving some things out of sched.h to
 better locations.
 
 This is prep work for the memory allocation profiling patchset which
 adds new sched.h interdepencencies.
 
 Testing - it's been in -next, and fixes from pretty much all
 architectures have percolated in - nothing major.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmWfBwwACgkQE6szbY3K
 bnZPwBAAmuRojXaeWxi01IPIOehSGDe68vw44PR9glEMZvxdnZuPOdvE4/+245/L
 bRKU2WBCjBUokUbV9msIShwRkFTZAmEMPNfPAAsFMA+VXeDYHKB+ZRdwTggNAQ+I
 SG6fZgh5m0HsewCDxU8oqVHkjVq4fXn0cy+aL6xLEd9gu67GoBzX2pDieS2Kvy6j
 jnyoKTxFwb+LTQgph0P4EIpq5I2umAsdLwdSR8EJ+8e9NiNvMo1pI00Lx/ntAnFZ
 JftWUJcMy3TQ5u1GkyfQN9y/yThX1bZK5GvmHS9SJ2Dkacaus5d+xaKCHtRuFS1I
 7C6b8PsNgRczUMumBXus44HdlNfNs1yU3lvVxFvBIPE1qC9pYRHrkWIXXIocXLLC
 oxTEJ6B2G3BQZVQgLIA4fOaxMVhmvKffi/aEZLi9vN9VVosd1a6XNKI6KbyRnXFp
 GSs9qDqszhn5I3GYNlDNQTc/8UsRlhPFgS6nS0By6QnvxtGi9QkU2tBRBsXvqwCy
 cLoCYIhc2tvugHvld70dz26umiJ4rnmxGlobStNoigDvIKAIUt1UmIdr1so8P8eH
 xehnL9ZcOX6xnANDL0AqMFFHV6I58CJynhFdUoXfVQf/DWLGX48mpi9LVNsYBzsI
 CAwVOAQ0UjGrpdWmJ9ueY/ABYqg9vRjzaDEXQ+MhAYO55CLaVsg=
 =3tyT
 -----END PGP SIGNATURE-----

Merge tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs

Pull header cleanups from Kent Overstreet:
 "The goal is to get sched.h down to a type only header, so the main
  thing happening in this patchset is splitting out various _types.h
  headers and dependency fixups, as well as moving some things out of
  sched.h to better locations.

  This is prep work for the memory allocation profiling patchset which
  adds new sched.h interdepencencies"

* tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs: (51 commits)
  Kill sched.h dependency on rcupdate.h
  kill unnecessary thread_info.h include
  Kill unnecessary kernel.h include
  preempt.h: Kill dependency on list.h
  rseq: Split out rseq.h from sched.h
  LoongArch: signal.c: add header file to fix build error
  restart_block: Trim includes
  lockdep: move held_lock to lockdep_types.h
  sem: Split out sem_types.h
  uidgid: Split out uidgid_types.h
  seccomp: Split out seccomp_types.h
  refcount: Split out refcount_types.h
  uapi/linux/resource.h: fix include
  x86/signal: kill dependency on time.h
  syscall_user_dispatch.h: split out *_types.h
  mm_types_task.h: Trim dependencies
  Split out irqflags_types.h
  ipc: Kill bogus dependency on spinlock.h
  shm: Slim down dependencies
  workqueue: Split out workqueue_types.h
  ...
2024-01-10 16:43:55 -08:00
Linus Torvalds 9f2a635235 Quite a lot of kexec work this time around. Many singleton patches in
many places.  The notable patch series are:
 
 - nilfs2 folio conversion from Matthew Wilcox in "nilfs2: Folio
   conversions for file paths".
 
 - Additional nilfs2 folio conversion from Ryusuke Konishi in "nilfs2:
   Folio conversions for directory paths".
 
 - IA64 remnant removal in Heiko Carstens's "Remove unused code after
   IA-64 removal".
 
 - Arnd Bergmann has enabled the -Wmissing-prototypes warning everywhere
   in "Treewide: enable -Wmissing-prototypes".  This had some followup
   fixes:
 
   - Nathan Chancellor has cleaned up the hexagon build in the series
     "hexagon: Fix up instances of -Wmissing-prototypes".
 
   - Nathan also addressed some s390 warnings in "s390: A couple of
     fixes for -Wmissing-prototypes".
 
   - Arnd Bergmann addresses the same warnings for MIPS in his series
     "mips: address -Wmissing-prototypes warnings".
 
 - Baoquan He has made kexec_file operate in a top-down-fitting manner
   similar to kexec_load in the series "kexec_file: Load kernel at top of
   system RAM if required"
 
 - Baoquan He has also added the self-explanatory "kexec_file: print out
   debugging message if required".
 
 - Some checkstack maintenance work from Tiezhu Yang in the series
   "Modify some code about checkstack".
 
 - Douglas Anderson has disentangled the watchdog code's logging when
   multiple reports are occurring simultaneously.  The series is "watchdog:
   Better handling of concurrent lockups".
 
 - Yuntao Wang has contributed some maintenance work on the crash code in
   "crash: Some cleanups and fixes".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZ2R6AAKCRDdBJ7gKXxA
 juCVAP4t76qUISDOSKugB/Dn5E4Nt9wvPY9PcufnmD+xoPsgkQD+JVl4+jd9+gAV
 vl6wkJDiJO5JZ3FVtBtC3DFA/xHtVgk=
 =kQw+
 -----END PGP SIGNATURE-----

Merge tag 'mm-nonmm-stable-2024-01-09-10-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull non-MM updates from Andrew Morton:
 "Quite a lot of kexec work this time around. Many singleton patches in
  many places. The notable patch series are:

   - nilfs2 folio conversion from Matthew Wilcox in 'nilfs2: Folio
     conversions for file paths'.

   - Additional nilfs2 folio conversion from Ryusuke Konishi in 'nilfs2:
     Folio conversions for directory paths'.

   - IA64 remnant removal in Heiko Carstens's 'Remove unused code after
     IA-64 removal'.

   - Arnd Bergmann has enabled the -Wmissing-prototypes warning
     everywhere in 'Treewide: enable -Wmissing-prototypes'. This had
     some followup fixes:

      - Nathan Chancellor has cleaned up the hexagon build in the series
        'hexagon: Fix up instances of -Wmissing-prototypes'.

      - Nathan also addressed some s390 warnings in 's390: A couple of
        fixes for -Wmissing-prototypes'.

      - Arnd Bergmann addresses the same warnings for MIPS in his series
        'mips: address -Wmissing-prototypes warnings'.

   - Baoquan He has made kexec_file operate in a top-down-fitting manner
     similar to kexec_load in the series 'kexec_file: Load kernel at top
     of system RAM if required'

   - Baoquan He has also added the self-explanatory 'kexec_file: print
     out debugging message if required'.

   - Some checkstack maintenance work from Tiezhu Yang in the series
     'Modify some code about checkstack'.

   - Douglas Anderson has disentangled the watchdog code's logging when
     multiple reports are occurring simultaneously. The series is
     'watchdog: Better handling of concurrent lockups'.

   - Yuntao Wang has contributed some maintenance work on the crash code
     in 'crash: Some cleanups and fixes'"

* tag 'mm-nonmm-stable-2024-01-09-10-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (157 commits)
  crash_core: fix and simplify the logic of crash_exclude_mem_range()
  x86/crash: use SZ_1M macro instead of hardcoded value
  x86/crash: remove the unused image parameter from prepare_elf_headers()
  kdump: remove redundant DEFAULT_CRASH_KERNEL_LOW_SIZE
  scripts/decode_stacktrace.sh: strip unexpected CR from lines
  watchdog: if panicking and we dumped everything, don't re-enable dumping
  watchdog/hardlockup: use printk_cpu_sync_get_irqsave() to serialize reporting
  watchdog/softlockup: use printk_cpu_sync_get_irqsave() to serialize reporting
  watchdog/hardlockup: adopt softlockup logic avoiding double-dumps
  kexec_core: fix the assignment to kimage->control_page
  x86/kexec: fix incorrect end address passed to kernel_ident_mapping_init()
  lib/trace_readwrite.c:: replace asm-generic/io with linux/io
  nilfs2: cpfile: fix some kernel-doc warnings
  stacktrace: fix kernel-doc typo
  scripts/checkstack.pl: fix no space expression between sp and offset
  x86/kexec: fix incorrect argument passed to kexec_dprintk()
  x86/kexec: use pr_err() instead of kexec_dprintk() when an error occurs
  nilfs2: add missing set_freezable() for freezable kthread
  kernel: relay: remove relay_file_splice_read dead code, doesn't work
  docs: submit-checklist: remove all of "make namespacecheck"
  ...
2024-01-09 11:46:20 -08:00
Ingo Molnar cdb3033e19 Merge branch 'sched/urgent' into sched/core, to pick up pending v6.7 fixes for the v6.8 merge window
This fix didn't make it upstream in time, pick it up
for the v6.8 merge window.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-01-08 12:57:28 +01:00
Vincent Guittot f60a631ab9 sched/fair: Fix tg->load when offlining a CPU
When a CPU is taken offline, the contribution of its cfs_rqs to task_groups'
load may remain and will negatively impact the calculation of the share of
the online CPUs.

To fix this bug, clear the contribution of an offlining CPU to task groups'
load and skip its contribution while it is inactive.

Here's the reproducer of the anomaly, by Imran Khan:

	"So far I have encountered only one rather lengthy way of reproducing this issue,
	which is as follows:

	1. Take a KVM guest (booted with 4 CPUs and can be scaled up to 124 CPUs) and
	   create 2 custom cgroups: /sys/fs/cgroup/cpu/test_group_1 and /sys/fs/cgroup/
	   cpu/test_group_2

	2. Assign a CPU intensive workload to each of these cgroups and start the
	   workload.

	For my tests I am using following app:

	int main(int argc, char *argv[])
	{
		unsigned long count, i, val;
		if (argc != 2) {
		      printf("usage: ./a.out <number of random nums to generate> \n");
		      return 0;
		}

		count = strtoul(argv[1], NULL, 10);

		printf("Generating %lu random numbers \n", count);
		for (i = 0; i < count; i++) {
			val = rand();
			val = val % 2;
			//usleep(1);
		}
		printf("Generated %lu random numbers \n", count);
		return 0;
	}

	Also since the system is booted with 4 CPUs, in order to completely load the
	system I am also launching 4 instances of same test app under:

	   /sys/fs/cgroup/cpu/

	3. We can see that both of the cgroups get similar CPU time:

        # systemd-cgtop --depth 1
	Path                                 Tasks    %CPU  Memory  Input/s    Output/s
	/                                      659      -     5.5G        -        -
	/system.slice                            -      -     5.7G        -        -
	/test_group_1                            4      -        -        -        -
	/test_group_2                            3      -        -        -        -
	/user.slice                             31      -    56.5M        -        -

	Path                                 Tasks   %CPU   Memory  Input/s    Output/s
	/                                      659  394.6     5.5G        -        -
	/test_group_2                            3   65.7        -        -        -
	/user.slice                             29   55.1    48.0M        -        -
	/test_group_1                            4   47.3        -        -        -
	/system.slice                            -    2.2     5.7G        -        -

	Path                                 Tasks  %CPU    Memory  Input/s    Output/s
	/                                      659  394.8     5.5G        -        -
	/test_group_1                            4   62.9        -        -        -
	/user.slice                             28   44.9    54.2M        -        -
	/test_group_2                            3   44.7        -        -        -
	/system.slice                            -    0.9     5.7G        -        -

	Path                                 Tasks  %CPU    Memory  Input/s     Output/s
	/                                      659  394.4     5.5G        -        -
	/test_group_2                            3   58.8        -        -        -
	/test_group_1                            4   51.9        -        -        -
	/user.slice                              30   39.3    59.6M        -        -
	/system.slice                            -    1.9     5.7G        -        -

	Path                                 Tasks  %CPU     Memory  Input/s    Output/s
	/                                      659  394.7     5.5G        -        -
	/test_group_1                            4   60.9        -        -        -
	/test_group_2                            3   57.9        -        -        -
	/user.slice                             28   43.5    36.9M        -        -
	/system.slice                            -    3.0     5.7G        -        -

	Path                                 Tasks  %CPU     Memory  Input/s     Output/s
	/                                      659  395.0     5.5G        -        -
	/test_group_1                            4   66.8        -        -        -
	/test_group_2                            3   56.3        -        -        -
	/user.slice                             29   43.1    51.8M        -        -
	/system.slice                            -    0.7     5.7G        -        -

	4. Now move systemd-udevd to one of these test groups, say test_group_1, and
	   perform scale up to 124 CPUs followed by scale down back to 4 CPUs from the
	   host side.

	5. Run the same workload i.e 4 instances of CPU hogger under /sys/fs/cgroup/cpu
	   and one instance of  CPU hogger each in /sys/fs/cgroup/cpu/test_group_1 and
	   /sys/fs/cgroup/test_group_2.

	It can be seen that test_group_1 (the one where systemd-udevd was moved) is getting
	much less CPU time than the test_group_2, even though at this point of time both of
	these groups have only CPU hogger running:

        # systemd-cgtop --depth 1
	Path                                   Tasks   %CPU   Memory  Input/s   Output/s
	/                                      1219     -     5.4G        -        -
	/system.slice                           -       -     5.6G        -        -
	/test_group_1                           4       -        -        -        -
	/test_group_2                           3       -        -        -        -
	/user.slice                            26       -    91.3M        -        -

	Path                                   Tasks  %CPU     Memory  Input/s   Output/s
	/                                      1221  394.3     5.4G        -        -
	/test_group_2                             3   82.7        -        -        -
	/test_group_1                             4   14.3        -        -        -
	/system.slice                             -    0.8     5.6G        -        -
	/user.slice                              26    0.4    91.2M        -        -

	Path                                   Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  394.6     5.4G        -        -
	/test_group_2                             3   67.4        -        -        -
	/system.slice                             -   24.6     5.6G        -        -
	/test_group_1                             4   12.5        -        -        -
	/user.slice                              26    0.4    91.2M        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                     1221  395.2     5.4G        -        -
	/test_group_2                            3   60.9        -        -        -
	/system.slice                            -   27.9     5.6G        -        -
	/test_group_1                            4   12.2        -        -        -
	/user.slice                             26    0.4    91.2M        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                     1221  395.2     5.4G        -        -
	/test_group_2                            3   69.4        -        -        -
	/test_group_1                            4   13.9        -        -        -
	/user.slice                             28    1.6    92.0M        -        -
	/system.slice                            -    1.0     5.6G        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  395.6     5.4G        -        -
	/test_group_2                             3   59.3        -        -        -
	/test_group_1                             4   14.1        -        -        -
	/user.slice                              28    1.3    92.2M        -        -
	/system.slice                             -    0.7     5.6G        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  395.5     5.4G        -        -
	/test_group_2                            3   67.2        -        -        -
	/test_group_1                            4   11.5        -        -        -
	/user.slice                             28    1.3    92.5M        -        -
	/system.slice                            -    0.6     5.6G        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  395.1     5.4G        -        -
	/test_group_2                             3   76.8        -        -        -
	/test_group_1                             4   12.9        -        -        -
	/user.slice                              28    1.3    92.8M        -        -
	/system.slice                             -    1.2     5.6G        -        -

	From sched_debug data it can be seen that in bad case the load.weight of per-CPU
	sched entities corresponding to test_group_1 has reduced significantly and
	also load_avg of test_group_1 remains much higher than that of test_group_2,
	even though systemd-udevd stopped running long time back and at this point of
	time both cgroups just have the CPU hogger app as running entity."

[ mingo: Added details from the original discussion, plus minor edits to the patch. ]

Reported-by: Imran Khan <imran.f.khan@oracle.com>
Tested-by: Imran Khan <imran.f.khan@oracle.com>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Imran Khan <imran.f.khan@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lore.kernel.org/r/20231223111545.62135-1-vincent.guittot@linaro.org
2023-12-29 13:22:03 +01:00
Kent Overstreet 932562a604 rseq: Split out rseq.h from sched.h
We're trying to get sched.h down to more or less just types only, not
code - rseq can live in its own header.

This helps us kill the dependency on preempt.h in sched.h.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-12-27 11:49:56 -05:00
Wang Jinchao fbb66ce0b1 sched/fair: Remove unused 'next_buddy_marked' local variable in check_preempt_wakeup_fair()
This variable became unused in:

    5e963f2bd4 ("sched/fair: Commit to EEVDF")

Signed-off-by: Wang Jinchao <wangjinchao@xfusion.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/202312141319+0800-wangjinchao@xfusion.com
2023-12-23 16:12:21 +01:00
Pierre Gondois 3af7524b14 sched/fair: Use all little CPUs for CPU-bound workloads
Running N CPU-bound tasks on an N CPUs platform:

- with asymmetric CPU capacity

- not being a DynamIq system (i.e. having a PKG level sched domain
  without the SD_SHARE_PKG_RESOURCES flag set)

.. might result in a task placement where two tasks run on a big CPU
and none on a little CPU. This placement could be more optimal by
using all CPUs.

Testing platform:

  Juno-r2:
    - 2 big CPUs (1-2), maximum capacity of 1024
    - 4 little CPUs (0,3-5), maximum capacity of 383

Testing workload ([1]):

  Spawn 6 CPU-bound tasks. During the first 100ms (step 1), each tasks
  is affine to a CPU, except for:

    - one little CPU which is left idle.
    - one big CPU which has 2 tasks affine.

  After the 100ms (step 2), remove the cpumask affinity.

Behavior before the patch:

  During step 2, the load balancer running from the idle CPU tags sched
  domains as:

  - little CPUs: 'group_has_spare'. Cf. group_has_capacity() and
    group_is_overloaded(), 3 CPU-bound tasks run on a 4 CPUs
    sched-domain, and the idle CPU provides enough spare capacity
    regarding the imbalance_pct

  - big CPUs: 'group_overloaded'. Indeed, 3 tasks run on a 2 CPUs
    sched-domain, so the following path is used:

      group_is_overloaded()
      \-if (sgs->sum_nr_running <= sgs->group_weight) return true;

    The following path which would change the migration type to
    'migrate_task' is not taken:

      calculate_imbalance()
      \-if (env->idle != CPU_NOT_IDLE && env->imbalance == 0)

    as the local group has some spare capacity, so the imbalance
    is not 0.

  The migration type requested is 'migrate_util' and the busiest
  runqueue is the big CPU's runqueue having 2 tasks (each having a
  utilization of 512). The idle little CPU cannot pull one of these
  task as its capacity is too small for the task. The following path
  is used:

   detach_tasks()
   \-case migrate_util:
     \-if (util > env->imbalance) goto next;

After the patch:

As the number of failed balancing attempts grows (with
'nr_balance_failed'), progressively make it easier to migrate
a big task to the idling little CPU. A similar mechanism is
used for the 'migrate_load' migration type.

Improvement:

Running the testing workload [1] with the step 2 representing
a ~10s load for a big CPU:

  Before patch: ~19.3s
  After patch:  ~18s (-6.7%)

Similar issue reported at:

  https://lore.kernel.org/lkml/20230716014125.139577-1-qyousef@layalina.io/

Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Qais Yousef <qyousef@layalina.io>
Link: https://lore.kernel.org/r/20231206090043.634697-1-pierre.gondois@arm.com
2023-12-23 16:06:36 +01:00
Vincent Guittot 11137d3849 sched/fair: Simplify util_est
With UTIL_EST_FASTUP now being permanent, we can take advantage of the
fact that the ewma jumps directly to a higher utilization at dequeue to
simplify util_est and remove the enqueued field.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Alex Shi <alexs@kernel.org>
Link: https://lore.kernel.org/r/20231201161652.1241695-3-vincent.guittot@linaro.org
2023-12-23 15:59:58 +01:00
Vincent Guittot 7736ae5572 sched/fair: Remove SCHED_FEAT(UTIL_EST_FASTUP, true)
sched_feat(UTIL_EST_FASTUP) has been added to easily disable the feature
in order to check for possibly related regressions. After 3 years, it has
never been used and no regression has been reported. Let's remove it
and make fast increase a permanent behavior.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Tang Yizhou <yizhou.tang@shopee.com>
Reviewed-by: Yanteng Si <siyanteng@loongson.cn> [for the Chinese translation]
Reviewed-by: Alex Shi <alexs@kernel.org>
Link: https://lore.kernel.org/r/20231201161652.1241695-2-vincent.guittot@linaro.org
2023-12-23 15:59:56 +01:00