docs: networking: timestamping: update for DSA switches

Update timestamping doc for DSA switches to describe current
implementation accurately. On TX, the skb cloning is no longer
in DSA generic code.

Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Yangbo Lu 2021-04-27 12:22:01 +08:00 committed by David S. Miller
parent c4b364ce12
commit d150946ed8

View file

@ -630,30 +630,45 @@ hardware timestamping on it. This is because the SO_TIMESTAMPING API does not
allow the delivery of multiple hardware timestamps for the same packet, so
anybody else except for the DSA switch port must be prevented from doing so.
In code, DSA provides for most of the infrastructure for timestamping already,
in generic code: a BPF classifier (``ptp_classify_raw``) is used to identify
PTP event messages (any other packets, including PTP general messages, are not
timestamped), and provides two hooks to drivers:
In the generic layer, DSA provides the following infrastructure for PTP
timestamping:
- ``.port_txtstamp()``: The driver is passed a clone of the timestampable skb
to be transmitted, before actually transmitting it. Typically, a switch will
have a PTP TX timestamp register (or sometimes a FIFO) where the timestamp
becomes available. There may be an IRQ that is raised upon this timestamp's
availability, or the driver might have to poll after invoking
``dev_queue_xmit()`` towards the host interface. Either way, in the
``.port_txtstamp()`` method, the driver only needs to save the clone for
later use (when the timestamp becomes available). Each skb is annotated with
a pointer to its clone, in ``DSA_SKB_CB(skb)->clone``, to ease the driver's
job of keeping track of which clone belongs to which skb.
- ``.port_txtstamp()``: a hook called prior to the transmission of
packets with a hardware TX timestamping request from user space.
This is required for two-step timestamping, since the hardware
timestamp becomes available after the actual MAC transmission, so the
driver must be prepared to correlate the timestamp with the original
packet so that it can re-enqueue the packet back into the socket's
error queue. To save the packet for when the timestamp becomes
available, the driver can call ``skb_clone_sk`` , save the clone pointer
in skb->cb and enqueue a tx skb queue. Typically, a switch will have a
PTP TX timestamp register (or sometimes a FIFO) where the timestamp
becomes available. In case of a FIFO, the hardware might store
key-value pairs of PTP sequence ID/message type/domain number and the
actual timestamp. To perform the correlation correctly between the
packets in a queue waiting for timestamping and the actual timestamps,
drivers can use a BPF classifier (``ptp_classify_raw``) to identify
the PTP transport type, and ``ptp_parse_header`` to interpret the PTP
header fields. There may be an IRQ that is raised upon this
timestamp's availability, or the driver might have to poll after
invoking ``dev_queue_xmit()`` towards the host interface.
One-step TX timestamping do not require packet cloning, since there is
no follow-up message required by the PTP protocol (because the
TX timestamp is embedded into the packet by the MAC), and therefore
user space does not expect the packet annotated with the TX timestamp
to be re-enqueued into its socket's error queue.
- ``.port_rxtstamp()``: The original (and only) timestampable skb is provided
to the driver, for it to annotate it with a timestamp, if that is immediately
available, or defer to later. On reception, timestamps might either be
available in-band (through metadata in the DSA header, or attached in other
ways to the packet), or out-of-band (through another RX timestamping FIFO).
Deferral on RX is typically necessary when retrieving the timestamp needs a
sleepable context. In that case, it is the responsibility of the DSA driver
to call ``netif_rx_ni()`` on the freshly timestamped skb.
- ``.port_rxtstamp()``: On RX, the BPF classifier is run by DSA to
identify PTP event messages (any other packets, including PTP general
messages, are not timestamped). The original (and only) timestampable
skb is provided to the driver, for it to annotate it with a timestamp,
if that is immediately available, or defer to later. On reception,
timestamps might either be available in-band (through metadata in the
DSA header, or attached in other ways to the packet), or out-of-band
(through another RX timestamping FIFO). Deferral on RX is typically
necessary when retrieving the timestamp needs a sleepable context. In
that case, it is the responsibility of the DSA driver to call
``netif_rx_ni()`` on the freshly timestamped skb.
3.2.2 Ethernet PHYs
^^^^^^^^^^^^^^^^^^^