mirror of
https://github.com/torvalds/linux
synced 2024-11-05 18:23:50 +00:00
x86/mm: Flush more aggressively in lazy TLB mode
Since commit:94b1b03b51
("x86/mm: Rework lazy TLB mode and TLB freshness tracking") x86's lazy TLB mode has been all the way lazy: when running a kernel thread (including the idle thread), the kernel keeps using the last user mm's page tables without attempting to maintain user TLB coherence at all. From a pure semantic perspective, this is fine -- kernel threads won't attempt to access user pages, so having stale TLB entries doesn't matter. Unfortunately, I forgot about a subtlety. By skipping TLB flushes, we also allow any paging-structure caches that may exist on the CPU to become incoherent. This means that we can have a paging-structure cache entry that references a freed page table, and the CPU is within its rights to do a speculative page walk starting at the freed page table. I can imagine this causing two different problems: - A speculative page walk starting from a bogus page table could read IO addresses. I haven't seen any reports of this causing problems. - A speculative page walk that involves a bogus page table can install garbage in the TLB. Such garbage would always be at a user VA, but some AMD CPUs have logic that triggers a machine check when it notices these bogus entries. I've seen a couple reports of this. Boris further explains the failure mode: > It is actually more of an optimization which assumes that paging-structure > entries are in WB DRAM: > > "TlbCacheDis: cacheable memory disable. Read-write. 0=Enables > performance optimization that assumes PML4, PDP, PDE, and PTE entries > are in cacheable WB-DRAM; memory type checks may be bypassed, and > addresses outside of WB-DRAM may result in undefined behavior or NB > protocol errors. 1=Disables performance optimization and allows PML4, > PDP, PDE and PTE entries to be in any memory type. Operating systems > that maintain page tables in memory types other than WB- DRAM must set > TlbCacheDis to insure proper operation." > > The MCE generated is an NB protocol error to signal that > > "Link: A specific coherent-only packet from a CPU was issued to an > IO link. This may be caused by software which addresses page table > structures in a memory type other than cacheable WB-DRAM without > properly configuring MSRC001_0015[TlbCacheDis]. This may occur, for > example, when page table structure addresses are above top of memory. In > such cases, the NB will generate an MCE if it sees a mismatch between > the memory operation generated by the core and the link type." > > I'm assuming coherent-only packets don't go out on IO links, thus the > error. To fix this, reinstate TLB coherence in lazy mode. With this patch applied, we do it in one of two ways: - If we have PCID, we simply switch back to init_mm's page tables when we enter a kernel thread -- this seems to be quite cheap except for the cost of serializing the CPU. - If we don't have PCID, then we set a flag and switch to init_mm the first time we would otherwise need to flush the TLB. The /sys/kernel/debug/x86/tlb_use_lazy_mode debug switch can be changed to override the default mode for benchmarking. In theory, we could optimize this better by only flushing the TLB in lazy CPUs when a page table is freed. Doing that would require auditing the mm code to make sure that all page table freeing goes through tlb_remove_page() as well as reworking some data structures to implement the improved flush logic. Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de> Reported-by: Adam Borowski <kilobyte@angband.pl> Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Eric Biggers <ebiggers@google.com> Cc: Johannes Hirte <johannes.hirte@datenkhaos.de> Cc: Kees Cook <keescook@chromium.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Roman Kagan <rkagan@virtuozzo.com> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes:94b1b03b51
("x86/mm: Rework lazy TLB mode and TLB freshness tracking") Link: http://lkml.kernel.org/r/20171009170231.fkpraqokz6e4zeco@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
616dd5872e
commit
b956575bed
3 changed files with 136 additions and 49 deletions
|
@ -126,13 +126,7 @@ static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
|
|||
DEBUG_LOCKS_WARN_ON(preemptible());
|
||||
}
|
||||
|
||||
static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
|
||||
{
|
||||
int cpu = smp_processor_id();
|
||||
|
||||
if (cpumask_test_cpu(cpu, mm_cpumask(mm)))
|
||||
cpumask_clear_cpu(cpu, mm_cpumask(mm));
|
||||
}
|
||||
void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
|
||||
|
||||
static inline int init_new_context(struct task_struct *tsk,
|
||||
struct mm_struct *mm)
|
||||
|
|
|
@ -82,6 +82,13 @@ static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
|
|||
#define __flush_tlb_single(addr) __native_flush_tlb_single(addr)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* If tlb_use_lazy_mode is true, then we try to avoid switching CR3 to point
|
||||
* to init_mm when we switch to a kernel thread (e.g. the idle thread). If
|
||||
* it's false, then we immediately switch CR3 when entering a kernel thread.
|
||||
*/
|
||||
DECLARE_STATIC_KEY_TRUE(tlb_use_lazy_mode);
|
||||
|
||||
/*
|
||||
* 6 because 6 should be plenty and struct tlb_state will fit in
|
||||
* two cache lines.
|
||||
|
@ -104,6 +111,23 @@ struct tlb_state {
|
|||
u16 loaded_mm_asid;
|
||||
u16 next_asid;
|
||||
|
||||
/*
|
||||
* We can be in one of several states:
|
||||
*
|
||||
* - Actively using an mm. Our CPU's bit will be set in
|
||||
* mm_cpumask(loaded_mm) and is_lazy == false;
|
||||
*
|
||||
* - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
|
||||
* will not be set in mm_cpumask(&init_mm) and is_lazy == false.
|
||||
*
|
||||
* - Lazily using a real mm. loaded_mm != &init_mm, our bit
|
||||
* is set in mm_cpumask(loaded_mm), but is_lazy == true.
|
||||
* We're heuristically guessing that the CR3 load we
|
||||
* skipped more than makes up for the overhead added by
|
||||
* lazy mode.
|
||||
*/
|
||||
bool is_lazy;
|
||||
|
||||
/*
|
||||
* Access to this CR4 shadow and to H/W CR4 is protected by
|
||||
* disabling interrupts when modifying either one.
|
||||
|
|
|
@ -30,6 +30,8 @@
|
|||
|
||||
atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
|
||||
|
||||
DEFINE_STATIC_KEY_TRUE(tlb_use_lazy_mode);
|
||||
|
||||
static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
|
||||
u16 *new_asid, bool *need_flush)
|
||||
{
|
||||
|
@ -80,7 +82,7 @@ void leave_mm(int cpu)
|
|||
return;
|
||||
|
||||
/* Warn if we're not lazy. */
|
||||
WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm)));
|
||||
WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
|
||||
|
||||
switch_mm(NULL, &init_mm, NULL);
|
||||
}
|
||||
|
@ -142,45 +144,24 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
|
|||
__flush_tlb_all();
|
||||
}
|
||||
#endif
|
||||
this_cpu_write(cpu_tlbstate.is_lazy, false);
|
||||
|
||||
if (real_prev == next) {
|
||||
VM_BUG_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
|
||||
next->context.ctx_id);
|
||||
|
||||
if (cpumask_test_cpu(cpu, mm_cpumask(next))) {
|
||||
/*
|
||||
* There's nothing to do: we weren't lazy, and we
|
||||
* aren't changing our mm. We don't need to flush
|
||||
* anything, nor do we need to update CR3, CR4, or
|
||||
* LDTR.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
/* Resume remote flushes and then read tlb_gen. */
|
||||
cpumask_set_cpu(cpu, mm_cpumask(next));
|
||||
next_tlb_gen = atomic64_read(&next->context.tlb_gen);
|
||||
|
||||
if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) <
|
||||
next_tlb_gen) {
|
||||
/*
|
||||
* Ideally, we'd have a flush_tlb() variant that
|
||||
* takes the known CR3 value as input. This would
|
||||
* be faster on Xen PV and on hypothetical CPUs
|
||||
* on which INVPCID is fast.
|
||||
*/
|
||||
this_cpu_write(cpu_tlbstate.ctxs[prev_asid].tlb_gen,
|
||||
next_tlb_gen);
|
||||
write_cr3(build_cr3(next, prev_asid));
|
||||
trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
|
||||
TLB_FLUSH_ALL);
|
||||
}
|
||||
|
||||
/*
|
||||
* We just exited lazy mode, which means that CR4 and/or LDTR
|
||||
* may be stale. (Changes to the required CR4 and LDTR states
|
||||
* are not reflected in tlb_gen.)
|
||||
* We don't currently support having a real mm loaded without
|
||||
* our cpu set in mm_cpumask(). We have all the bookkeeping
|
||||
* in place to figure out whether we would need to flush
|
||||
* if our cpu were cleared in mm_cpumask(), but we don't
|
||||
* currently use it.
|
||||
*/
|
||||
if (WARN_ON_ONCE(real_prev != &init_mm &&
|
||||
!cpumask_test_cpu(cpu, mm_cpumask(next))))
|
||||
cpumask_set_cpu(cpu, mm_cpumask(next));
|
||||
|
||||
return;
|
||||
} else {
|
||||
u16 new_asid;
|
||||
bool need_flush;
|
||||
|
@ -199,10 +180,9 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
|
|||
}
|
||||
|
||||
/* Stop remote flushes for the previous mm */
|
||||
if (cpumask_test_cpu(cpu, mm_cpumask(real_prev)))
|
||||
cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
|
||||
|
||||
VM_WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
|
||||
VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
|
||||
real_prev != &init_mm);
|
||||
cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
|
||||
|
||||
/*
|
||||
* Start remote flushes and then read tlb_gen.
|
||||
|
@ -232,6 +212,37 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
|
|||
switch_ldt(real_prev, next);
|
||||
}
|
||||
|
||||
/*
|
||||
* enter_lazy_tlb() is a hint from the scheduler that we are entering a
|
||||
* kernel thread or other context without an mm. Acceptable implementations
|
||||
* include doing nothing whatsoever, switching to init_mm, or various clever
|
||||
* lazy tricks to try to minimize TLB flushes.
|
||||
*
|
||||
* The scheduler reserves the right to call enter_lazy_tlb() several times
|
||||
* in a row. It will notify us that we're going back to a real mm by
|
||||
* calling switch_mm_irqs_off().
|
||||
*/
|
||||
void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
|
||||
{
|
||||
if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
|
||||
return;
|
||||
|
||||
if (static_branch_unlikely(&tlb_use_lazy_mode)) {
|
||||
/*
|
||||
* There's a significant optimization that may be possible
|
||||
* here. We have accurate enough TLB flush tracking that we
|
||||
* don't need to maintain coherence of TLB per se when we're
|
||||
* lazy. We do, however, need to maintain coherence of
|
||||
* paging-structure caches. We could, in principle, leave our
|
||||
* old mm loaded and only switch to init_mm when
|
||||
* tlb_remove_page() happens.
|
||||
*/
|
||||
this_cpu_write(cpu_tlbstate.is_lazy, true);
|
||||
} else {
|
||||
switch_mm(NULL, &init_mm, NULL);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Call this when reinitializing a CPU. It fixes the following potential
|
||||
* problems:
|
||||
|
@ -303,16 +314,20 @@ static void flush_tlb_func_common(const struct flush_tlb_info *f,
|
|||
/* This code cannot presently handle being reentered. */
|
||||
VM_WARN_ON(!irqs_disabled());
|
||||
|
||||
if (unlikely(loaded_mm == &init_mm))
|
||||
return;
|
||||
|
||||
VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
|
||||
loaded_mm->context.ctx_id);
|
||||
|
||||
if (!cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm))) {
|
||||
if (this_cpu_read(cpu_tlbstate.is_lazy)) {
|
||||
/*
|
||||
* We're in lazy mode -- don't flush. We can get here on
|
||||
* remote flushes due to races and on local flushes if a
|
||||
* kernel thread coincidentally flushes the mm it's lazily
|
||||
* still using.
|
||||
* We're in lazy mode. We need to at least flush our
|
||||
* paging-structure cache to avoid speculatively reading
|
||||
* garbage into our TLB. Since switching to init_mm is barely
|
||||
* slower than a minimal flush, just switch to init_mm.
|
||||
*/
|
||||
switch_mm_irqs_off(NULL, &init_mm, NULL);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -611,3 +626,57 @@ static int __init create_tlb_single_page_flush_ceiling(void)
|
|||
return 0;
|
||||
}
|
||||
late_initcall(create_tlb_single_page_flush_ceiling);
|
||||
|
||||
static ssize_t tlblazy_read_file(struct file *file, char __user *user_buf,
|
||||
size_t count, loff_t *ppos)
|
||||
{
|
||||
char buf[2];
|
||||
|
||||
buf[0] = static_branch_likely(&tlb_use_lazy_mode) ? '1' : '0';
|
||||
buf[1] = '\n';
|
||||
|
||||
return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
|
||||
}
|
||||
|
||||
static ssize_t tlblazy_write_file(struct file *file,
|
||||
const char __user *user_buf, size_t count, loff_t *ppos)
|
||||
{
|
||||
bool val;
|
||||
|
||||
if (kstrtobool_from_user(user_buf, count, &val))
|
||||
return -EINVAL;
|
||||
|
||||
if (val)
|
||||
static_branch_enable(&tlb_use_lazy_mode);
|
||||
else
|
||||
static_branch_disable(&tlb_use_lazy_mode);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static const struct file_operations fops_tlblazy = {
|
||||
.read = tlblazy_read_file,
|
||||
.write = tlblazy_write_file,
|
||||
.llseek = default_llseek,
|
||||
};
|
||||
|
||||
static int __init init_tlb_use_lazy_mode(void)
|
||||
{
|
||||
if (boot_cpu_has(X86_FEATURE_PCID)) {
|
||||
/*
|
||||
* Heuristic: with PCID on, switching to and from
|
||||
* init_mm is reasonably fast, but remote flush IPIs
|
||||
* as expensive as ever, so turn off lazy TLB mode.
|
||||
*
|
||||
* We can't do this in setup_pcid() because static keys
|
||||
* haven't been initialized yet, and it would blow up
|
||||
* badly.
|
||||
*/
|
||||
static_branch_disable(&tlb_use_lazy_mode);
|
||||
}
|
||||
|
||||
debugfs_create_file("tlb_use_lazy_mode", S_IRUSR | S_IWUSR,
|
||||
arch_debugfs_dir, NULL, &fops_tlblazy);
|
||||
return 0;
|
||||
}
|
||||
late_initcall(init_tlb_use_lazy_mode);
|
||||
|
|
Loading…
Reference in a new issue