staging: brcm80211: removed 32 bit DMA functions

Code cleanup. Removed unused functions.

Signed-off-by: Roland Vossen <rvossen@broadcom.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
Roland Vossen 2011-02-01 10:32:30 +01:00 committed by Greg Kroah-Hartman
parent 36e319bd39
commit 6b4ba667b7

View file

@ -213,28 +213,6 @@ static void *dma_ringalloc(struct osl_info *osh, u32 boundary, uint size,
u16 *alignbits, uint *alloced,
dmaaddr_t *descpa, osldma_t **dmah);
/* Prototypes for 32-bit routines */
static bool dma32_alloc(dma_info_t *di, uint direction);
static bool dma32_txreset(dma_info_t *di);
static bool dma32_rxreset(dma_info_t *di);
static bool dma32_txsuspendedidle(dma_info_t *di);
static int dma32_txfast(dma_info_t *di, struct sk_buff *p0, bool commit);
static void *dma32_getnexttxp(dma_info_t *di, txd_range_t range);
static void *dma32_getnextrxp(dma_info_t *di, bool forceall);
static void dma32_txrotate(dma_info_t *di);
static bool dma32_rxidle(dma_info_t *di);
static void dma32_txinit(dma_info_t *di);
static bool dma32_txenabled(dma_info_t *di);
static void dma32_txsuspend(dma_info_t *di);
static void dma32_txresume(dma_info_t *di);
static bool dma32_txsuspended(dma_info_t *di);
static void dma32_txreclaim(dma_info_t *di, txd_range_t range);
static bool dma32_txstopped(dma_info_t *di);
static bool dma32_rxstopped(dma_info_t *di);
static bool dma32_rxenabled(dma_info_t *di);
static bool _dma32_addrext(struct osl_info *osh, dma32regs_t *dma32regs);
/* Prototypes for 64-bit routines */
static bool dma64_alloc(dma_info_t *di, uint direction);
static bool dma64_txreset(dma_info_t *di);
@ -308,53 +286,6 @@ const di_fcn_t dma64proc = {
39
};
static const di_fcn_t dma32proc = {
(di_detach_t) _dma_detach,
(di_txinit_t) dma32_txinit,
(di_txreset_t) dma32_txreset,
(di_txenabled_t) dma32_txenabled,
(di_txsuspend_t) dma32_txsuspend,
(di_txresume_t) dma32_txresume,
(di_txsuspended_t) dma32_txsuspended,
(di_txsuspendedidle_t) dma32_txsuspendedidle,
(di_txfast_t) dma32_txfast,
NULL,
NULL,
(di_txstopped_t) dma32_txstopped,
(di_txreclaim_t) dma32_txreclaim,
(di_getnexttxp_t) dma32_getnexttxp,
(di_peeknexttxp_t) _dma_peeknexttxp,
(di_txblock_t) _dma_txblock,
(di_txunblock_t) _dma_txunblock,
(di_txactive_t) _dma_txactive,
(di_txrotate_t) dma32_txrotate,
(di_rxinit_t) _dma_rxinit,
(di_rxreset_t) dma32_rxreset,
(di_rxidle_t) dma32_rxidle,
(di_rxstopped_t) dma32_rxstopped,
(di_rxenable_t) _dma_rxenable,
(di_rxenabled_t) dma32_rxenabled,
(di_rx_t) _dma_rx,
(di_rxfill_t) _dma_rxfill,
(di_rxreclaim_t) _dma_rxreclaim,
(di_getnextrxp_t) _dma_getnextrxp,
(di_peeknextrxp_t) _dma_peeknextrxp,
(di_rxparam_get_t) _dma_rx_param_get,
(di_fifoloopbackenable_t) _dma_fifoloopbackenable,
(di_getvar_t) _dma_getvar,
(di_counterreset_t) _dma_counterreset,
(di_ctrlflags_t) _dma_ctrlflags,
NULL,
NULL,
NULL,
(di_rxactive_t) _dma_rxactive,
(di_txpending_t) _dma_txpending,
(di_txcommitted_t) _dma_txcommitted,
39
};
struct hnddma_pub *dma_attach(struct osl_info *osh, char *name, si_t *sih,
void *dmaregstx, void *dmaregsrx, uint ntxd,
uint nrxd, uint rxbufsize, int rxextheadroom,
@ -543,32 +474,6 @@ struct hnddma_pub *dma_attach(struct osl_info *osh, char *name, si_t *sih,
return NULL;
}
/* init the tx or rx descriptor */
static inline void
dma32_dd_upd(dma_info_t *di, dma32dd_t *ddring, dmaaddr_t pa, uint outidx,
u32 *flags, u32 bufcount)
{
/* dma32 uses 32-bit control to fit both flags and bufcounter */
*flags = *flags | (bufcount & CTRL_BC_MASK);
if ((di->dataoffsetlow == 0) || !(PHYSADDRLO(pa) & PCI32ADDR_HIGH)) {
W_SM(&ddring[outidx].addr,
BUS_SWAP32(PHYSADDRLO(pa) + di->dataoffsetlow));
W_SM(&ddring[outidx].ctrl, BUS_SWAP32(*flags));
} else {
/* address extension */
u32 ae;
ASSERT(di->addrext);
ae = (PHYSADDRLO(pa) & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
PHYSADDRLO(pa) &= ~PCI32ADDR_HIGH;
*flags |= (ae << CTRL_AE_SHIFT);
W_SM(&ddring[outidx].addr,
BUS_SWAP32(PHYSADDRLO(pa) + di->dataoffsetlow));
W_SM(&ddring[outidx].ctrl, BUS_SWAP32(*flags));
}
}
/* Check for odd number of 1's */
static inline u32 parity32(u32 data)
{
@ -629,16 +534,6 @@ dma64_dd_upd(dma_info_t *di, dma64dd_t *ddring, dmaaddr_t pa, uint outidx,
}
}
static bool _dma32_addrext(struct osl_info *osh, dma32regs_t *dma32regs)
{
u32 w;
OR_REG(osh, &dma32regs->control, XC_AE);
w = R_REG(osh, &dma32regs->control);
AND_REG(osh, &dma32regs->control, ~XC_AE);
return (w & XC_AE) == XC_AE;
}
static bool _dma_alloc(dma_info_t *di, uint direction)
{
return dma64_alloc(di, direction);
@ -1171,11 +1066,6 @@ static unsigned long _dma_getvar(dma_info_t *di, const char *name)
return 0;
}
void dma_txpioloopback(struct osl_info *osh, dma32regs_t *regs)
{
OR_REG(osh, &regs->control, XC_LE);
}
static
u8 dma_align_sizetobits(uint size)
{
@ -1218,562 +1108,6 @@ static void *dma_ringalloc(struct osl_info *osh, u32 boundary, uint size,
return va;
}
/* 32-bit DMA functions */
static void dma32_txinit(dma_info_t *di)
{
u32 control = XC_XE;
DMA_TRACE(("%s: dma_txinit\n", di->name));
if (di->ntxd == 0)
return;
di->txin = di->txout = 0;
di->hnddma.txavail = di->ntxd - 1;
/* clear tx descriptor ring */
memset((void *)di->txd32, '\0', (di->ntxd * sizeof(dma32dd_t)));
if ((di->hnddma.dmactrlflags & DMA_CTRL_PEN) == 0)
control |= XC_PD;
W_REG(di->osh, &di->d32txregs->control, control);
_dma_ddtable_init(di, DMA_TX, di->txdpa);
}
static bool dma32_txenabled(dma_info_t *di)
{
u32 xc;
/* If the chip is dead, it is not enabled :-) */
xc = R_REG(di->osh, &di->d32txregs->control);
return (xc != 0xffffffff) && (xc & XC_XE);
}
static void dma32_txsuspend(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txsuspend\n", di->name));
if (di->ntxd == 0)
return;
OR_REG(di->osh, &di->d32txregs->control, XC_SE);
}
static void dma32_txresume(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txresume\n", di->name));
if (di->ntxd == 0)
return;
AND_REG(di->osh, &di->d32txregs->control, ~XC_SE);
}
static bool dma32_txsuspended(dma_info_t *di)
{
return (di->ntxd == 0)
|| ((R_REG(di->osh, &di->d32txregs->control) & XC_SE) == XC_SE);
}
static void dma32_txreclaim(dma_info_t *di, txd_range_t range)
{
void *p;
DMA_TRACE(("%s: dma_txreclaim %s\n", di->name,
(range == HNDDMA_RANGE_ALL) ? "all" :
((range ==
HNDDMA_RANGE_TRANSMITTED) ? "transmitted" :
"transfered")));
if (di->txin == di->txout)
return;
while ((p = dma32_getnexttxp(di, range)))
pkt_buf_free_skb(di->osh, p, true);
}
static bool dma32_txstopped(dma_info_t *di)
{
return ((R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK) ==
XS_XS_STOPPED);
}
static bool dma32_rxstopped(dma_info_t *di)
{
return ((R_REG(di->osh, &di->d32rxregs->status) & RS_RS_MASK) ==
RS_RS_STOPPED);
}
static bool dma32_alloc(dma_info_t *di, uint direction)
{
uint size;
uint ddlen;
void *va;
uint alloced;
u16 align;
u16 align_bits;
ddlen = sizeof(dma32dd_t);
size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
alloced = 0;
align_bits = di->dmadesc_align;
align = (1 << align_bits);
if (direction == DMA_TX) {
va = dma_ringalloc(di->osh, D32RINGALIGN, size, &align_bits,
&alloced, &di->txdpaorig, &di->tx_dmah);
if (va == NULL) {
DMA_ERROR(("%s: dma_alloc: DMA_ALLOC_CONSISTENT(ntxd) failed\n", di->name));
return false;
}
PHYSADDRHISET(di->txdpa, 0);
ASSERT(PHYSADDRHI(di->txdpaorig) == 0);
di->txd32 = (dma32dd_t *) roundup((unsigned long)va, align);
di->txdalign =
(uint) ((s8 *)di->txd32 - (s8 *) va);
PHYSADDRLOSET(di->txdpa,
PHYSADDRLO(di->txdpaorig) + di->txdalign);
/* Make sure that alignment didn't overflow */
ASSERT(PHYSADDRLO(di->txdpa) >= PHYSADDRLO(di->txdpaorig));
di->txdalloc = alloced;
ASSERT(IS_ALIGNED((unsigned long)di->txd32, align));
} else {
va = dma_ringalloc(di->osh, D32RINGALIGN, size, &align_bits,
&alloced, &di->rxdpaorig, &di->rx_dmah);
if (va == NULL) {
DMA_ERROR(("%s: dma_alloc: DMA_ALLOC_CONSISTENT(nrxd) failed\n", di->name));
return false;
}
PHYSADDRHISET(di->rxdpa, 0);
ASSERT(PHYSADDRHI(di->rxdpaorig) == 0);
di->rxd32 = (dma32dd_t *) roundup((unsigned long)va, align);
di->rxdalign =
(uint) ((s8 *)di->rxd32 - (s8 *) va);
PHYSADDRLOSET(di->rxdpa,
PHYSADDRLO(di->rxdpaorig) + di->rxdalign);
/* Make sure that alignment didn't overflow */
ASSERT(PHYSADDRLO(di->rxdpa) >= PHYSADDRLO(di->rxdpaorig));
di->rxdalloc = alloced;
ASSERT(IS_ALIGNED((unsigned long)di->rxd32, align));
}
return true;
}
static bool dma32_txreset(dma_info_t *di)
{
u32 status;
if (di->ntxd == 0)
return true;
/* suspend tx DMA first */
W_REG(di->osh, &di->d32txregs->control, XC_SE);
SPINWAIT(((status =
(R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK))
!= XS_XS_DISABLED) && (status != XS_XS_IDLE)
&& (status != XS_XS_STOPPED), (10000));
W_REG(di->osh, &di->d32txregs->control, 0);
SPINWAIT(((status = (R_REG(di->osh,
&di->d32txregs->status) & XS_XS_MASK)) !=
XS_XS_DISABLED), 10000);
/* wait for the last transaction to complete */
udelay(300);
return status == XS_XS_DISABLED;
}
static bool dma32_rxidle(dma_info_t *di)
{
DMA_TRACE(("%s: dma_rxidle\n", di->name));
if (di->nrxd == 0)
return true;
return ((R_REG(di->osh, &di->d32rxregs->status) & RS_CD_MASK) ==
R_REG(di->osh, &di->d32rxregs->ptr));
}
static bool dma32_rxreset(dma_info_t *di)
{
u32 status;
if (di->nrxd == 0)
return true;
W_REG(di->osh, &di->d32rxregs->control, 0);
SPINWAIT(((status = (R_REG(di->osh,
&di->d32rxregs->status) & RS_RS_MASK)) !=
RS_RS_DISABLED), 10000);
return status == RS_RS_DISABLED;
}
static bool dma32_rxenabled(dma_info_t *di)
{
u32 rc;
rc = R_REG(di->osh, &di->d32rxregs->control);
return (rc != 0xffffffff) && (rc & RC_RE);
}
static bool dma32_txsuspendedidle(dma_info_t *di)
{
if (di->ntxd == 0)
return true;
if (!(R_REG(di->osh, &di->d32txregs->control) & XC_SE))
return 0;
if ((R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK) != XS_XS_IDLE)
return 0;
udelay(2);
return ((R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK) ==
XS_XS_IDLE);
}
/* !! tx entry routine
* supports full 32bit dma engine buffer addressing so
* dma buffers can cross 4 Kbyte page boundaries.
*
* WARNING: call must check the return value for error.
* the error(toss frames) could be fatal and cause many subsequent hard to debug problems
*/
static int dma32_txfast(dma_info_t *di, struct sk_buff *p0, bool commit)
{
struct sk_buff *p, *next;
unsigned char *data;
uint len;
u16 txout;
u32 flags = 0;
dmaaddr_t pa;
DMA_TRACE(("%s: dma_txfast\n", di->name));
txout = di->txout;
/*
* Walk the chain of packet buffers
* allocating and initializing transmit descriptor entries.
*/
for (p = p0; p; p = next) {
uint nsegs, j;
hnddma_seg_map_t *map;
data = p->data;
len = p->len;
#ifdef BCM_DMAPAD
len += PKTDMAPAD(di->osh, p);
#endif
next = p->next;
/* return nonzero if out of tx descriptors */
if (NEXTTXD(txout) == di->txin)
goto outoftxd;
if (len == 0)
continue;
if (DMASGLIST_ENAB)
memset(&di->txp_dmah[txout], 0,
sizeof(hnddma_seg_map_t));
/* get physical address of buffer start */
pa = DMA_MAP(di->osh, data, len, DMA_TX, p,
&di->txp_dmah[txout]);
if (DMASGLIST_ENAB) {
map = &di->txp_dmah[txout];
/* See if all the segments can be accounted for */
if (map->nsegs >
(uint) (di->ntxd - NTXDACTIVE(di->txin, di->txout) -
1))
goto outoftxd;
nsegs = map->nsegs;
} else
nsegs = 1;
for (j = 1; j <= nsegs; j++) {
flags = 0;
if (p == p0 && j == 1)
flags |= CTRL_SOF;
/* With a DMA segment list, Descriptor table is filled
* using the segment list instead of looping over
* buffers in multi-chain DMA. Therefore, EOF for SGLIST is when
* end of segment list is reached.
*/
if ((!DMASGLIST_ENAB && next == NULL) ||
(DMASGLIST_ENAB && j == nsegs))
flags |= (CTRL_IOC | CTRL_EOF);
if (txout == (di->ntxd - 1))
flags |= CTRL_EOT;
if (DMASGLIST_ENAB) {
len = map->segs[j - 1].length;
pa = map->segs[j - 1].addr;
}
ASSERT(PHYSADDRHI(pa) == 0);
dma32_dd_upd(di, di->txd32, pa, txout, &flags, len);
ASSERT(di->txp[txout] == NULL);
txout = NEXTTXD(txout);
}
/* See above. No need to loop over individual buffers */
if (DMASGLIST_ENAB)
break;
}
/* if last txd eof not set, fix it */
if (!(flags & CTRL_EOF))
W_SM(&di->txd32[PREVTXD(txout)].ctrl,
BUS_SWAP32(flags | CTRL_IOC | CTRL_EOF));
/* save the packet */
di->txp[PREVTXD(txout)] = p0;
/* bump the tx descriptor index */
di->txout = txout;
/* kick the chip */
if (commit)
W_REG(di->osh, &di->d32txregs->ptr, I2B(txout, dma32dd_t));
/* tx flow control */
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
return 0;
outoftxd:
DMA_ERROR(("%s: dma_txfast: out of txds\n", di->name));
pkt_buf_free_skb(di->osh, p0, true);
di->hnddma.txavail = 0;
di->hnddma.txnobuf++;
return -1;
}
/*
* Reclaim next completed txd (txds if using chained buffers) in the range
* specified and return associated packet.
* If range is HNDDMA_RANGE_TRANSMITTED, reclaim descriptors that have be
* transmitted as noted by the hardware "CurrDescr" pointer.
* If range is HNDDMA_RANGE_TRANSFERED, reclaim descriptors that have be
* transfered by the DMA as noted by the hardware "ActiveDescr" pointer.
* If range is HNDDMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
* return associated packet regardless of the value of hardware pointers.
*/
static void *dma32_getnexttxp(dma_info_t *di, txd_range_t range)
{
u16 start, end, i;
u16 active_desc;
void *txp;
DMA_TRACE(("%s: dma_getnexttxp %s\n", di->name,
(range == HNDDMA_RANGE_ALL) ? "all" :
((range ==
HNDDMA_RANGE_TRANSMITTED) ? "transmitted" :
"transfered")));
if (di->ntxd == 0)
return NULL;
txp = NULL;
start = di->txin;
if (range == HNDDMA_RANGE_ALL)
end = di->txout;
else {
dma32regs_t *dregs = di->d32txregs;
end =
(u16) B2I(R_REG(di->osh, &dregs->status) & XS_CD_MASK,
dma32dd_t);
if (range == HNDDMA_RANGE_TRANSFERED) {
active_desc =
(u16) ((R_REG(di->osh, &dregs->status) &
XS_AD_MASK) >> XS_AD_SHIFT);
active_desc = (u16) B2I(active_desc, dma32dd_t);
if (end != active_desc)
end = PREVTXD(active_desc);
}
}
if ((start == 0) && (end > di->txout))
goto bogus;
for (i = start; i != end && !txp; i = NEXTTXD(i)) {
dmaaddr_t pa;
hnddma_seg_map_t *map = NULL;
uint size, j, nsegs;
PHYSADDRLOSET(pa,
(BUS_SWAP32(R_SM(&di->txd32[i].addr)) -
di->dataoffsetlow));
PHYSADDRHISET(pa, 0);
if (DMASGLIST_ENAB) {
map = &di->txp_dmah[i];
size = map->origsize;
nsegs = map->nsegs;
} else {
size =
(BUS_SWAP32(R_SM(&di->txd32[i].ctrl)) &
CTRL_BC_MASK);
nsegs = 1;
}
for (j = nsegs; j > 0; j--) {
W_SM(&di->txd32[i].addr, 0xdeadbeef);
txp = di->txp[i];
di->txp[i] = NULL;
if (j > 1)
i = NEXTTXD(i);
}
DMA_UNMAP(di->osh, pa, size, DMA_TX, txp, map);
}
di->txin = i;
/* tx flow control */
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
return txp;
bogus:
DMA_NONE(("dma_getnexttxp: bogus curr: start %d end %d txout %d force %d\n", start, end, di->txout, forceall));
return NULL;
}
static void *dma32_getnextrxp(dma_info_t *di, bool forceall)
{
uint i, curr;
void *rxp;
dmaaddr_t pa;
/* if forcing, dma engine must be disabled */
ASSERT(!forceall || !dma32_rxenabled(di));
i = di->rxin;
/* return if no packets posted */
if (i == di->rxout)
return NULL;
curr =
B2I(R_REG(di->osh, &di->d32rxregs->status) & RS_CD_MASK, dma32dd_t);
/* ignore curr if forceall */
if (!forceall && (i == curr))
return NULL;
/* get the packet pointer that corresponds to the rx descriptor */
rxp = di->rxp[i];
ASSERT(rxp);
di->rxp[i] = NULL;
PHYSADDRLOSET(pa,
(BUS_SWAP32(R_SM(&di->rxd32[i].addr)) -
di->dataoffsetlow));
PHYSADDRHISET(pa, 0);
/* clear this packet from the descriptor ring */
DMA_UNMAP(di->osh, pa, di->rxbufsize, DMA_RX, rxp, &di->rxp_dmah[i]);
W_SM(&di->rxd32[i].addr, 0xdeadbeef);
di->rxin = NEXTRXD(i);
return rxp;
}
/*
* Rotate all active tx dma ring entries "forward" by (ActiveDescriptor - txin).
*/
static void dma32_txrotate(dma_info_t *di)
{
u16 ad;
uint nactive;
uint rot;
u16 old, new;
u32 w;
u16 first, last;
ASSERT(dma32_txsuspendedidle(di));
nactive = _dma_txactive(di);
ad = (u16) (B2I
(((R_REG(di->osh, &di->d32txregs->status) & XS_AD_MASK)
>> XS_AD_SHIFT), dma32dd_t));
rot = TXD(ad - di->txin);
ASSERT(rot < di->ntxd);
/* full-ring case is a lot harder - don't worry about this */
if (rot >= (di->ntxd - nactive)) {
DMA_ERROR(("%s: dma_txrotate: ring full - punt\n", di->name));
return;
}
first = di->txin;
last = PREVTXD(di->txout);
/* move entries starting at last and moving backwards to first */
for (old = last; old != PREVTXD(first); old = PREVTXD(old)) {
new = TXD(old + rot);
/*
* Move the tx dma descriptor.
* EOT is set only in the last entry in the ring.
*/
w = BUS_SWAP32(R_SM(&di->txd32[old].ctrl)) & ~CTRL_EOT;
if (new == (di->ntxd - 1))
w |= CTRL_EOT;
W_SM(&di->txd32[new].ctrl, BUS_SWAP32(w));
W_SM(&di->txd32[new].addr, R_SM(&di->txd32[old].addr));
/* zap the old tx dma descriptor address field */
W_SM(&di->txd32[old].addr, BUS_SWAP32(0xdeadbeef));
/* move the corresponding txp[] entry */
ASSERT(di->txp[new] == NULL);
di->txp[new] = di->txp[old];
/* Move the segment map as well */
if (DMASGLIST_ENAB) {
bcopy(&di->txp_dmah[old], &di->txp_dmah[new],
sizeof(hnddma_seg_map_t));
memset(&di->txp_dmah[old], 0, sizeof(hnddma_seg_map_t));
}
di->txp[old] = NULL;
}
/* update txin and txout */
di->txin = ad;
di->txout = TXD(di->txout + rot);
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
/* kick the chip */
W_REG(di->osh, &di->d32txregs->ptr, I2B(di->txout, dma32dd_t));
}
/* 64-bit DMA functions */
static void dma64_txinit(dma_info_t *di)
@ -2455,7 +1789,6 @@ static void dma64_txrotate(dma_info_t *di)
uint dma_addrwidth(si_t *sih, void *dmaregs)
{
dma32regs_t *dma32regs;
struct osl_info *osh;
osh = si_osh(sih);
@ -2470,24 +1803,8 @@ uint dma_addrwidth(si_t *sih, void *dmaregs)
((sih->bustype == PCI_BUS) &&
(sih->buscoretype == PCIE_CORE_ID)))
return DMADDRWIDTH_64;
/* DMA64 is always 32-bit capable, AE is always true */
ASSERT(_dma64_addrext(osh, (dma64regs_t *) dmaregs));
return DMADDRWIDTH_32;
}
/* Start checking for 32-bit / 30-bit addressing */
dma32regs = (dma32regs_t *) dmaregs;
/* For System Backplane, PCIE bus or addrext feature, 32-bits ok */
if ((sih->bustype == SI_BUS) ||
((sih->bustype == PCI_BUS)
&& sih->buscoretype == PCIE_CORE_ID)
|| (_dma32_addrext(osh, dma32regs)))
return DMADDRWIDTH_32;
/* Fallthru */
return DMADDRWIDTH_30;
ASSERT(0); /* DMA hardware not supported by this driver*/
return DMADDRWIDTH_64;
}