fib_trie: Rename tnode to key_vector

Rename the tnode to key_vector.  The key_vector will be the eventual
container for all of the information needed by either a leaf or a tnode.
The final result should be much smaller than the 40 bytes currently needed
for either one.

This also updates the trie struct so that it contains an array of size 1 of
tnode pointers.  This is to bring the structure more inline with how an
actual tnode itself is configured.

Signed-off-by: Alexander Duyck <alexander.h.duyck@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Alexander Duyck 2015-03-06 09:54:08 -08:00 committed by David S. Miller
parent 8d8e810ca8
commit 35c6edac19

View file

@ -94,12 +94,12 @@ typedef unsigned int t_key;
#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
struct tnode {
struct key_vector {
struct rcu_head rcu;
t_key empty_children; /* KEYLENGTH bits needed */
t_key full_children; /* KEYLENGTH bits needed */
struct tnode __rcu *parent;
struct key_vector __rcu *parent;
t_key key;
unsigned char pos; /* 2log(KEYLENGTH) bits needed */
@ -109,11 +109,11 @@ struct tnode {
/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
struct hlist_head leaf;
/* This array is valid if (pos | bits) > 0 (TNODE) */
struct tnode __rcu *tnode[0];
struct key_vector __rcu *tnode[0];
};
};
#define TNODE_SIZE(n) offsetof(struct tnode, tnode[n])
#define TNODE_SIZE(n) offsetof(struct key_vector, tnode[n])
#define LEAF_SIZE TNODE_SIZE(1)
#ifdef CONFIG_IP_FIB_TRIE_STATS
@ -138,13 +138,13 @@ struct trie_stat {
};
struct trie {
struct tnode __rcu *trie;
struct key_vector __rcu *tnode[1];
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats __percpu *stats;
#endif
};
static struct tnode **resize(struct trie *t, struct tnode *tn);
static struct key_vector **resize(struct trie *t, struct key_vector *tn);
static size_t tnode_free_size;
/*
@ -164,7 +164,7 @@ static struct kmem_cache *trie_leaf_kmem __read_mostly;
#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
/* wrapper for rcu_assign_pointer */
static inline void node_set_parent(struct tnode *n, struct tnode *tp)
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
{
if (n)
rcu_assign_pointer(n->parent, tp);
@ -175,21 +175,21 @@ static inline void node_set_parent(struct tnode *n, struct tnode *tp)
/* This provides us with the number of children in this node, in the case of a
* leaf this will return 0 meaning none of the children are accessible.
*/
static inline unsigned long tnode_child_length(const struct tnode *tn)
static inline unsigned long tnode_child_length(const struct key_vector *tn)
{
return (1ul << tn->bits) & ~(1ul);
}
/* caller must hold RTNL */
static inline struct tnode *tnode_get_child(const struct tnode *tn,
unsigned long i)
static inline struct key_vector *tnode_get_child(struct key_vector *tn,
unsigned long i)
{
return rtnl_dereference(tn->tnode[i]);
}
/* caller must hold RCU read lock or RTNL */
static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
unsigned long i)
static inline struct key_vector *tnode_get_child_rcu(struct key_vector *tn,
unsigned long i)
{
return rcu_dereference_rtnl(tn->tnode[i]);
}
@ -277,13 +277,13 @@ static inline void alias_free_mem_rcu(struct fib_alias *fa)
}
#define TNODE_KMALLOC_MAX \
ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct tnode *))
ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
#define TNODE_VMALLOC_MAX \
ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct tnode *))
ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
static void __node_free_rcu(struct rcu_head *head)
{
struct tnode *n = container_of(head, struct tnode, rcu);
struct key_vector *n = container_of(head, struct key_vector, rcu);
if (IS_LEAF(n))
kmem_cache_free(trie_leaf_kmem, n);
@ -295,7 +295,7 @@ static void __node_free_rcu(struct rcu_head *head)
#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
static struct tnode *tnode_alloc(int bits)
static struct key_vector *tnode_alloc(int bits)
{
size_t size;
@ -312,19 +312,19 @@ static struct tnode *tnode_alloc(int bits)
return vzalloc(size);
}
static inline void empty_child_inc(struct tnode *n)
static inline void empty_child_inc(struct key_vector *n)
{
++n->empty_children ? : ++n->full_children;
}
static inline void empty_child_dec(struct tnode *n)
static inline void empty_child_dec(struct key_vector *n)
{
n->empty_children-- ? : n->full_children--;
}
static struct tnode *leaf_new(t_key key, struct fib_alias *fa)
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
{
struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
struct key_vector *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
if (l) {
l->parent = NULL;
/* set key and pos to reflect full key value
@ -344,9 +344,9 @@ static struct tnode *leaf_new(t_key key, struct fib_alias *fa)
return l;
}
static struct tnode *tnode_new(t_key key, int pos, int bits)
static struct key_vector *tnode_new(t_key key, int pos, int bits)
{
struct tnode *tn = tnode_alloc(bits);
struct key_vector *tn = tnode_alloc(bits);
unsigned int shift = pos + bits;
/* verify bits and pos their msb bits clear and values are valid */
@ -365,14 +365,14 @@ static struct tnode *tnode_new(t_key key, int pos, int bits)
}
pr_debug("AT %p s=%zu %zu\n", tn, TNODE_SIZE(0),
sizeof(struct tnode *) << bits);
sizeof(struct key_vector *) << bits);
return tn;
}
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
* and no bits are skipped. See discussion in dyntree paper p. 6
*/
static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
{
return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
}
@ -380,9 +380,10 @@ static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
/* Add a child at position i overwriting the old value.
* Update the value of full_children and empty_children.
*/
static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
static void put_child(struct key_vector *tn, unsigned long i,
struct key_vector *n)
{
struct tnode *chi = tnode_get_child(tn, i);
struct key_vector *chi = tnode_get_child(tn, i);
int isfull, wasfull;
BUG_ON(i >= tnode_child_length(tn));
@ -408,13 +409,13 @@ static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
rcu_assign_pointer(tn->tnode[i], n);
}
static void update_children(struct tnode *tn)
static void update_children(struct key_vector *tn)
{
unsigned long i;
/* update all of the child parent pointers */
for (i = tnode_child_length(tn); i;) {
struct tnode *inode = tnode_get_child(tn, --i);
struct key_vector *inode = tnode_get_child(tn, --i);
if (!inode)
continue;
@ -430,27 +431,28 @@ static void update_children(struct tnode *tn)
}
}
static inline void put_child_root(struct tnode *tp, struct trie *t,
t_key key, struct tnode *n)
static inline void put_child_root(struct key_vector *tp, struct trie *t,
t_key key, struct key_vector *n)
{
if (tp)
put_child(tp, get_index(key, tp), n);
else
rcu_assign_pointer(t->trie, n);
rcu_assign_pointer(t->tnode[0], n);
}
static inline void tnode_free_init(struct tnode *tn)
static inline void tnode_free_init(struct key_vector *tn)
{
tn->rcu.next = NULL;
}
static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
static inline void tnode_free_append(struct key_vector *tn,
struct key_vector *n)
{
n->rcu.next = tn->rcu.next;
tn->rcu.next = &n->rcu;
}
static void tnode_free(struct tnode *tn)
static void tnode_free(struct key_vector *tn)
{
struct callback_head *head = &tn->rcu;
@ -459,7 +461,7 @@ static void tnode_free(struct tnode *tn)
tnode_free_size += TNODE_SIZE(1ul << tn->bits);
node_free(tn);
tn = container_of(head, struct tnode, rcu);
tn = container_of(head, struct key_vector, rcu);
}
if (tnode_free_size >= PAGE_SIZE * sync_pages) {
@ -468,11 +470,12 @@ static void tnode_free(struct tnode *tn)
}
}
static struct tnode __rcu **replace(struct trie *t, struct tnode *oldtnode,
struct tnode *tn)
static struct key_vector __rcu **replace(struct trie *t,
struct key_vector *oldtnode,
struct key_vector *tn)
{
struct tnode *tp = node_parent(oldtnode);
struct tnode **cptr;
struct key_vector *tp = node_parent(oldtnode);
struct key_vector **cptr;
unsigned long i;
/* setup the parent pointer out of and back into this node */
@ -486,11 +489,11 @@ static struct tnode __rcu **replace(struct trie *t, struct tnode *oldtnode,
tnode_free(oldtnode);
/* record the pointer that is pointing to this node */
cptr = tp ? tp->tnode : &t->trie;
cptr = tp ? tp->tnode : t->tnode;
/* resize children now that oldtnode is freed */
for (i = tnode_child_length(tn); i;) {
struct tnode *inode = tnode_get_child(tn, --i);
struct key_vector *inode = tnode_get_child(tn, --i);
/* resize child node */
if (tnode_full(tn, inode))
@ -500,9 +503,10 @@ static struct tnode __rcu **replace(struct trie *t, struct tnode *oldtnode,
return cptr;
}
static struct tnode __rcu **inflate(struct trie *t, struct tnode *oldtnode)
static struct key_vector __rcu **inflate(struct trie *t,
struct key_vector *oldtnode)
{
struct tnode *tn;
struct key_vector *tn;
unsigned long i;
t_key m;
@ -521,8 +525,8 @@ static struct tnode __rcu **inflate(struct trie *t, struct tnode *oldtnode)
* nodes.
*/
for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
struct tnode *inode = tnode_get_child(oldtnode, --i);
struct tnode *node0, *node1;
struct key_vector *inode = tnode_get_child(oldtnode, --i);
struct key_vector *node0, *node1;
unsigned long j, k;
/* An empty child */
@ -595,9 +599,10 @@ static struct tnode __rcu **inflate(struct trie *t, struct tnode *oldtnode)
return NULL;
}
static struct tnode __rcu **halve(struct trie *t, struct tnode *oldtnode)
static struct key_vector __rcu **halve(struct trie *t,
struct key_vector *oldtnode)
{
struct tnode *tn;
struct key_vector *tn;
unsigned long i;
pr_debug("In halve\n");
@ -615,9 +620,9 @@ static struct tnode __rcu **halve(struct trie *t, struct tnode *oldtnode)
* nodes.
*/
for (i = tnode_child_length(oldtnode); i;) {
struct tnode *node1 = tnode_get_child(oldtnode, --i);
struct tnode *node0 = tnode_get_child(oldtnode, --i);
struct tnode *inode;
struct key_vector *node1 = tnode_get_child(oldtnode, --i);
struct key_vector *node0 = tnode_get_child(oldtnode, --i);
struct key_vector *inode;
/* At least one of the children is empty */
if (!node1 || !node0) {
@ -649,9 +654,9 @@ static struct tnode __rcu **halve(struct trie *t, struct tnode *oldtnode)
return NULL;
}
static void collapse(struct trie *t, struct tnode *oldtnode)
static void collapse(struct trie *t, struct key_vector *oldtnode)
{
struct tnode *n, *tp;
struct key_vector *n, *tp;
unsigned long i;
/* scan the tnode looking for that one child that might still exist */
@ -667,7 +672,7 @@ static void collapse(struct trie *t, struct tnode *oldtnode)
node_free(oldtnode);
}
static unsigned char update_suffix(struct tnode *tn)
static unsigned char update_suffix(struct key_vector *tn)
{
unsigned char slen = tn->pos;
unsigned long stride, i;
@ -678,7 +683,7 @@ static unsigned char update_suffix(struct tnode *tn)
* represent the nodes with suffix length equal to tn->pos
*/
for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
struct tnode *n = tnode_get_child(tn, i);
struct key_vector *n = tnode_get_child(tn, i);
if (!n || (n->slen <= slen))
continue;
@ -759,7 +764,7 @@ static unsigned char update_suffix(struct tnode *tn)
* tnode_child_length(tn)
*
*/
static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
{
unsigned long used = tnode_child_length(tn);
unsigned long threshold = used;
@ -774,7 +779,7 @@ static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
return (used > 1) && tn->pos && ((50 * used) >= threshold);
}
static bool should_halve(const struct tnode *tp, const struct tnode *tn)
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
{
unsigned long used = tnode_child_length(tn);
unsigned long threshold = used;
@ -788,7 +793,7 @@ static bool should_halve(const struct tnode *tp, const struct tnode *tn)
return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}
static bool should_collapse(const struct tnode *tn)
static inline bool should_collapse(struct key_vector *tn)
{
unsigned long used = tnode_child_length(tn);
@ -803,14 +808,15 @@ static bool should_collapse(const struct tnode *tn)
}
#define MAX_WORK 10
static struct tnode __rcu **resize(struct trie *t, struct tnode *tn)
static struct key_vector __rcu **resize(struct trie *t,
struct key_vector *tn)
{
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats __percpu *stats = t->stats;
#endif
struct tnode *tp = node_parent(tn);
struct key_vector *tp = node_parent(tn);
unsigned long cindex = tp ? get_index(tn->key, tp) : 0;
struct tnode __rcu **cptr = tp ? tp->tnode : &t->trie;
struct key_vector __rcu **cptr = tp ? tp->tnode : t->tnode;
int max_work = MAX_WORK;
pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
@ -826,7 +832,7 @@ static struct tnode __rcu **resize(struct trie *t, struct tnode *tn)
* nonempty nodes that are above the threshold.
*/
while (should_inflate(tp, tn) && max_work) {
struct tnode __rcu **tcptr = inflate(t, tn);
struct key_vector __rcu **tcptr = inflate(t, tn);
if (!tcptr) {
#ifdef CONFIG_IP_FIB_TRIE_STATS
@ -848,7 +854,7 @@ static struct tnode __rcu **resize(struct trie *t, struct tnode *tn)
* node is above threshold.
*/
while (should_halve(tp, tn) && max_work) {
struct tnode __rcu **tcptr = halve(t, tn);
struct key_vector __rcu **tcptr = halve(t, tn);
if (!tcptr) {
#ifdef CONFIG_IP_FIB_TRIE_STATS
@ -883,7 +889,7 @@ static struct tnode __rcu **resize(struct trie *t, struct tnode *tn)
return cptr;
}
static void leaf_pull_suffix(struct tnode *tp, struct tnode *l)
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
{
while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
if (update_suffix(tp) > l->slen)
@ -892,7 +898,7 @@ static void leaf_pull_suffix(struct tnode *tp, struct tnode *l)
}
}
static void leaf_push_suffix(struct tnode *tn, struct tnode *l)
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
{
/* if this is a new leaf then tn will be NULL and we can sort
* out parent suffix lengths as a part of trie_rebalance
@ -904,9 +910,10 @@ static void leaf_push_suffix(struct tnode *tn, struct tnode *l)
}
/* rcu_read_lock needs to be hold by caller from readside */
static struct tnode *fib_find_node(struct trie *t, struct tnode **tn, u32 key)
static struct key_vector *fib_find_node(struct trie *t,
struct key_vector **tp, u32 key)
{
struct tnode *pn = NULL, *n = rcu_dereference_rtnl(t->trie);
struct key_vector *pn = NULL, *n = rcu_dereference_rtnl(t->tnode[0]);
while (n) {
unsigned long index = get_index(key, n);
@ -938,7 +945,7 @@ static struct tnode *fib_find_node(struct trie *t, struct tnode **tn, u32 key)
n = tnode_get_child_rcu(n, index);
}
*tn = pn;
*tp = pn;
return n;
}
@ -968,24 +975,24 @@ static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
return NULL;
}
static void trie_rebalance(struct trie *t, struct tnode *tn)
static void trie_rebalance(struct trie *t, struct key_vector *tn)
{
struct tnode __rcu **cptr = &t->trie;
struct key_vector __rcu **cptr = t->tnode;
while (tn) {
struct tnode *tp = node_parent(tn);
struct key_vector *tp = node_parent(tn);
cptr = resize(t, tn);
if (!tp)
break;
tn = container_of(cptr, struct tnode, tnode[0]);
tn = container_of(cptr, struct key_vector, tnode[0]);
}
}
static int fib_insert_node(struct trie *t, struct tnode *tp,
static int fib_insert_node(struct trie *t, struct key_vector *tp,
struct fib_alias *new, t_key key)
{
struct tnode *n, *l;
struct key_vector *n, *l;
l = leaf_new(key, new);
if (!l)
@ -995,7 +1002,7 @@ static int fib_insert_node(struct trie *t, struct tnode *tp,
if (tp)
n = tnode_get_child(tp, get_index(key, tp));
else
n = rcu_dereference_rtnl(t->trie);
n = rcu_dereference_rtnl(t->tnode[0]);
/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
*
@ -1004,7 +1011,7 @@ static int fib_insert_node(struct trie *t, struct tnode *tp,
* leaves us in position for handling as case 3
*/
if (n) {
struct tnode *tn;
struct key_vector *tn;
tn = tnode_new(key, __fls(key ^ n->key), 1);
if (!tn)
@ -1034,8 +1041,8 @@ static int fib_insert_node(struct trie *t, struct tnode *tp,
return -ENOMEM;
}
static int fib_insert_alias(struct trie *t, struct tnode *tp,
struct tnode *l, struct fib_alias *new,
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
struct key_vector *l, struct fib_alias *new,
struct fib_alias *fa, t_key key)
{
if (!l)
@ -1072,7 +1079,7 @@ int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
{
struct trie *t = (struct trie *)tb->tb_data;
struct fib_alias *fa, *new_fa;
struct tnode *l, *tp;
struct key_vector *l, *tp;
struct fib_info *fi;
u8 plen = cfg->fc_dst_len;
u8 slen = KEYLENGTH - plen;
@ -1237,7 +1244,7 @@ int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
return err;
}
static inline t_key prefix_mismatch(t_key key, struct tnode *n)
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
{
t_key prefix = n->key;
@ -1253,12 +1260,12 @@ int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
struct trie_use_stats __percpu *stats = t->stats;
#endif
const t_key key = ntohl(flp->daddr);
struct tnode *n, *pn;
struct key_vector *n, *pn;
struct fib_alias *fa;
unsigned long index;
t_key cindex;
n = rcu_dereference(t->trie);
n = rcu_dereference(t->tnode[0]);
if (!n)
return -EAGAIN;
@ -1310,7 +1317,7 @@ int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
/* Step 2: Sort out leaves and begin backtracing for longest prefix */
for (;;) {
/* record the pointer where our next node pointer is stored */
struct tnode __rcu **cptr = n->tnode;
struct key_vector __rcu **cptr = n->tnode;
/* This test verifies that none of the bits that differ
* between the key and the prefix exist in the region of
@ -1419,8 +1426,8 @@ int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
}
EXPORT_SYMBOL_GPL(fib_table_lookup);
static void fib_remove_alias(struct trie *t, struct tnode *tp,
struct tnode *l, struct fib_alias *old)
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
struct key_vector *l, struct fib_alias *old)
{
/* record the location of the previous list_info entry */
struct hlist_node **pprev = old->fa_list.pprev;
@ -1453,7 +1460,7 @@ int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
{
struct trie *t = (struct trie *) tb->tb_data;
struct fib_alias *fa, *fa_to_delete;
struct tnode *l, *tp;
struct key_vector *l, *tp;
u8 plen = cfg->fc_dst_len;
u8 slen = KEYLENGTH - plen;
u8 tos = cfg->fc_tos;
@ -1520,9 +1527,9 @@ int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
}
/* Scan for the next leaf starting at the provided key value */
static struct tnode *leaf_walk_rcu(struct tnode **tn, t_key key)
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
{
struct tnode *pn, *n = *tn;
struct key_vector *pn, *n = *tn;
unsigned long cindex;
/* record parent node for backtracing */
@ -1588,10 +1595,10 @@ void fib_table_flush_external(struct fib_table *tb)
{
struct trie *t = (struct trie *)tb->tb_data;
struct fib_alias *fa;
struct tnode *n, *pn;
struct key_vector *n, *pn;
unsigned long cindex;
n = rcu_dereference(t->trie);
n = rcu_dereference(t->tnode[0]);
if (!n)
return;
@ -1642,14 +1649,14 @@ void fib_table_flush_external(struct fib_table *tb)
int fib_table_flush(struct fib_table *tb)
{
struct trie *t = (struct trie *)tb->tb_data;
struct key_vector *n, *pn;
struct hlist_node *tmp;
struct fib_alias *fa;
struct tnode *n, *pn;
unsigned long cindex;
unsigned char slen;
int found = 0;
n = rcu_dereference(t->trie);
n = rcu_dereference(t->tnode[0]);
if (!n)
goto flush_complete;
@ -1664,7 +1671,7 @@ int fib_table_flush(struct fib_table *tb)
/* walk trie in reverse order */
do {
while (!(cindex--)) {
struct tnode __rcu **cptr;
struct key_vector __rcu **cptr;
t_key pkey = pn->key;
n = pn;
@ -1677,7 +1684,8 @@ int fib_table_flush(struct fib_table *tb)
if (!pn)
goto flush_complete;
pn = container_of(cptr, struct tnode, tnode[0]);
pn = container_of(cptr, struct key_vector,
tnode[0]);
cindex = get_index(pkey, pn);
}
@ -1742,7 +1750,7 @@ void fib_free_table(struct fib_table *tb)
call_rcu(&tb->rcu, __trie_free_rcu);
}
static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
struct sk_buff *skb, struct netlink_callback *cb)
{
__be32 xkey = htonl(l->key);
@ -1783,14 +1791,14 @@ int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
struct netlink_callback *cb)
{
struct trie *t = (struct trie *)tb->tb_data;
struct tnode *l, *tp;
struct key_vector *l, *tp;
/* Dump starting at last key.
* Note: 0.0.0.0/0 (ie default) is first key.
*/
int count = cb->args[2];
t_key key = cb->args[3];
tp = rcu_dereference_rtnl(t->trie);
tp = rcu_dereference_rtnl(t->tnode[0]);
while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
@ -1843,7 +1851,7 @@ struct fib_table *fib_trie_table(u32 id)
tb->tb_num_default = 0;
t = (struct trie *) tb->tb_data;
RCU_INIT_POINTER(t->trie, NULL);
RCU_INIT_POINTER(t->tnode[0], NULL);
#ifdef CONFIG_IP_FIB_TRIE_STATS
t->stats = alloc_percpu(struct trie_use_stats);
if (!t->stats) {
@ -1860,16 +1868,16 @@ struct fib_table *fib_trie_table(u32 id)
struct fib_trie_iter {
struct seq_net_private p;
struct fib_table *tb;
struct tnode *tnode;
struct key_vector *tnode;
unsigned int index;
unsigned int depth;
};
static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
{
unsigned long cindex = iter->index;
struct tnode *tn = iter->tnode;
struct tnode *p;
struct key_vector *tn = iter->tnode;
struct key_vector *p;
/* A single entry routing table */
if (!tn)
@ -1879,7 +1887,7 @@ static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
iter->tnode, iter->index, iter->depth);
rescan:
while (cindex < tnode_child_length(tn)) {
struct tnode *n = tnode_get_child_rcu(tn, cindex);
struct key_vector *n = tnode_get_child_rcu(tn, cindex);
if (n) {
if (IS_LEAF(n)) {
@ -1910,15 +1918,15 @@ static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
return NULL;
}
static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
struct trie *t)
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
struct trie *t)
{
struct tnode *n;
struct key_vector *n;
if (!t)
return NULL;
n = rcu_dereference(t->trie);
n = rcu_dereference(t->tnode[0]);
if (!n)
return NULL;
@ -1937,7 +1945,7 @@ static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
struct tnode *n;
struct key_vector *n;
struct fib_trie_iter iter;
memset(s, 0, sizeof(*s));
@ -2002,7 +2010,7 @@ static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
seq_putc(seq, '\n');
seq_printf(seq, "\tPointers: %u\n", pointers);
bytes += sizeof(struct tnode *) * pointers;
bytes += sizeof(struct key_vector *) * pointers;
seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
}
@ -2095,7 +2103,7 @@ static const struct file_operations fib_triestat_fops = {
.release = single_release_net,
};
static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
{
struct fib_trie_iter *iter = seq->private;
struct net *net = seq_file_net(seq);
@ -2107,7 +2115,7 @@ static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
struct fib_table *tb;
hlist_for_each_entry_rcu(tb, head, tb_hlist) {
struct tnode *n;
struct key_vector *n;
for (n = fib_trie_get_first(iter,
(struct trie *) tb->tb_data);
@ -2136,7 +2144,7 @@ static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
struct fib_table *tb = iter->tb;
struct hlist_node *tb_node;
unsigned int h;
struct tnode *n;
struct key_vector *n;
++*pos;
/* next node in same table */
@ -2222,7 +2230,7 @@ static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
static int fib_trie_seq_show(struct seq_file *seq, void *v)
{
const struct fib_trie_iter *iter = seq->private;
struct tnode *n = v;
struct key_vector *n = v;
if (!node_parent_rcu(n))
fib_table_print(seq, iter->tb);
@ -2284,15 +2292,16 @@ static const struct file_operations fib_trie_fops = {
struct fib_route_iter {
struct seq_net_private p;
struct fib_table *main_tb;
struct tnode *tnode;
struct key_vector *tnode;
loff_t pos;
t_key key;
};
static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
loff_t pos)
{
struct fib_table *tb = iter->main_tb;
struct tnode *l, **tp = &iter->tnode;
struct key_vector *l, **tp = &iter->tnode;
struct trie *t;
t_key key;
@ -2302,7 +2311,7 @@ static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
key = iter->key;
} else {
t = (struct trie *)tb->tb_data;
iter->tnode = rcu_dereference_rtnl(t->trie);
iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
iter->pos = 0;
key = 0;
}
@ -2348,7 +2357,7 @@ static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
return fib_route_get_idx(iter, *pos);
t = (struct trie *)tb->tb_data;
iter->tnode = rcu_dereference_rtnl(t->trie);
iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
iter->pos = 0;
iter->key = 0;
@ -2358,7 +2367,7 @@ static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct fib_route_iter *iter = seq->private;
struct tnode *l = NULL;
struct key_vector *l = NULL;
t_key key = iter->key;
++*pos;
@ -2406,7 +2415,7 @@ static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info
static int fib_route_seq_show(struct seq_file *seq, void *v)
{
struct fib_alias *fa;
struct tnode *l = v;
struct key_vector *l = v;
__be32 prefix;
if (v == SEQ_START_TOKEN) {