posix-cpu-timers: Move state tracking to struct posix_cputimers

Put it where it belongs and clean up the ifdeffery in fork completely.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190821192922.743229404@linutronix.de
This commit is contained in:
Thomas Gleixner 2019-08-21 21:09:24 +02:00
parent 8991afe264
commit 244d49e306
6 changed files with 54 additions and 50 deletions

View file

@ -77,15 +77,23 @@ struct posix_cputimer_base {
/** /**
* posix_cputimers - Container for posix CPU timer related data * posix_cputimers - Container for posix CPU timer related data
* @bases: Base container for posix CPU clocks * @bases: Base container for posix CPU clocks
* @timers_active: Timers are queued.
* @expiry_active: Timer expiry is active. Used for
* process wide timers to avoid multiple
* task trying to handle expiry concurrently
* *
* Used in task_struct and signal_struct * Used in task_struct and signal_struct
*/ */
struct posix_cputimers { struct posix_cputimers {
struct posix_cputimer_base bases[CPUCLOCK_MAX]; struct posix_cputimer_base bases[CPUCLOCK_MAX];
unsigned int timers_active;
unsigned int expiry_active;
}; };
static inline void posix_cputimers_init(struct posix_cputimers *pct) static inline void posix_cputimers_init(struct posix_cputimers *pct)
{ {
pct->timers_active = 0;
pct->expiry_active = 0;
pct->bases[0].nextevt = U64_MAX; pct->bases[0].nextevt = U64_MAX;
pct->bases[1].nextevt = U64_MAX; pct->bases[1].nextevt = U64_MAX;
pct->bases[2].nextevt = U64_MAX; pct->bases[2].nextevt = U64_MAX;

View file

@ -70,7 +70,7 @@ void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples);
*/ */
/** /**
* get_running_cputimer - return &tsk->signal->cputimer if cputimer is running * get_running_cputimer - return &tsk->signal->cputimer if cputimers are active
* *
* @tsk: Pointer to target task. * @tsk: Pointer to target task.
*/ */
@ -80,8 +80,11 @@ struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk)
{ {
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
/* Check if cputimer isn't running. This is accessed without locking. */ /*
if (!READ_ONCE(cputimer->running)) * Check whether posix CPU timers are active. If not the thread
* group accounting is not active either. Lockless check.
*/
if (!READ_ONCE(tsk->signal->posix_cputimers.timers_active))
return NULL; return NULL;
/* /*

View file

@ -57,18 +57,12 @@ struct task_cputime_atomic {
/** /**
* struct thread_group_cputimer - thread group interval timer counts * struct thread_group_cputimer - thread group interval timer counts
* @cputime_atomic: atomic thread group interval timers. * @cputime_atomic: atomic thread group interval timers.
* @running: true when there are timers running and
* @cputime_atomic receives updates.
* @checking_timer: true when a thread in the group is in the
* process of checking for thread group timers.
* *
* This structure contains the version of task_cputime, above, that is * This structure contains the version of task_cputime, above, that is
* used for thread group CPU timer calculations. * used for thread group CPU timer calculations.
*/ */
struct thread_group_cputimer { struct thread_group_cputimer {
struct task_cputime_atomic cputime_atomic; struct task_cputime_atomic cputime_atomic;
bool running;
bool checking_timer;
}; };
struct multiprocess_signals { struct multiprocess_signals {

View file

@ -30,8 +30,6 @@ static struct signal_struct init_signals = {
.posix_timers = LIST_HEAD_INIT(init_signals.posix_timers), .posix_timers = LIST_HEAD_INIT(init_signals.posix_timers),
.cputimer = { .cputimer = {
.cputime_atomic = INIT_CPUTIME_ATOMIC, .cputime_atomic = INIT_CPUTIME_ATOMIC,
.running = false,
.checking_timer = false,
}, },
#endif #endif
INIT_CPU_TIMERS(init_signals) INIT_CPU_TIMERS(init_signals)

View file

@ -1517,7 +1517,6 @@ void __cleanup_sighand(struct sighand_struct *sighand)
} }
} }
#ifdef CONFIG_POSIX_TIMERS
/* /*
* Initialize POSIX timer handling for a thread group. * Initialize POSIX timer handling for a thread group.
*/ */
@ -1528,12 +1527,7 @@ static void posix_cpu_timers_init_group(struct signal_struct *sig)
cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
posix_cputimers_group_init(pct, cpu_limit); posix_cputimers_group_init(pct, cpu_limit);
if (cpu_limit != RLIM_INFINITY)
sig->cputimer.running = true;
} }
#else
static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
#endif
static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
{ {

View file

@ -23,8 +23,10 @@ static void posix_cpu_timer_rearm(struct k_itimer *timer);
void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
{ {
posix_cputimers_init(pct); posix_cputimers_init(pct);
if (cpu_limit != RLIM_INFINITY) if (cpu_limit != RLIM_INFINITY) {
pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC; pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
pct->timers_active = true;
}
} }
/* /*
@ -248,8 +250,9 @@ static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples) void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
{ {
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
WARN_ON_ONCE(!cputimer->running); WARN_ON_ONCE(!pct->timers_active);
proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
} }
@ -269,9 +272,10 @@ void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples) static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
{ {
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
/* Check if cputimer isn't running. This is accessed without locking. */ /* Check if cputimer isn't running. This is accessed without locking. */
if (!READ_ONCE(cputimer->running)) { if (!READ_ONCE(pct->timers_active)) {
struct task_cputime sum; struct task_cputime sum;
/* /*
@ -283,13 +287,13 @@ static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
update_gt_cputime(&cputimer->cputime_atomic, &sum); update_gt_cputime(&cputimer->cputime_atomic, &sum);
/* /*
* We're setting cputimer->running without a lock. Ensure * We're setting timers_active without a lock. Ensure this
* this only gets written to in one operation. We set * only gets written to in one operation. We set it after
* running after update_gt_cputime() as a small optimization, * update_gt_cputime() as a small optimization, but
* but barriers are not required because update_gt_cputime() * barriers are not required because update_gt_cputime()
* can handle concurrent updates. * can handle concurrent updates.
*/ */
WRITE_ONCE(cputimer->running, true); WRITE_ONCE(pct->timers_active, true);
} }
proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
} }
@ -313,9 +317,10 @@ static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
bool start) bool start)
{ {
struct thread_group_cputimer *cputimer = &p->signal->cputimer; struct thread_group_cputimer *cputimer = &p->signal->cputimer;
struct posix_cputimers *pct = &p->signal->posix_cputimers;
u64 samples[CPUCLOCK_MAX]; u64 samples[CPUCLOCK_MAX];
if (!READ_ONCE(cputimer->running)) { if (!READ_ONCE(pct->timers_active)) {
if (start) if (start)
thread_group_start_cputime(p, samples); thread_group_start_cputime(p, samples);
else else
@ -834,10 +839,10 @@ static void check_thread_timers(struct task_struct *tsk,
static inline void stop_process_timers(struct signal_struct *sig) static inline void stop_process_timers(struct signal_struct *sig)
{ {
struct thread_group_cputimer *cputimer = &sig->cputimer; struct posix_cputimers *pct = &sig->posix_cputimers;
/* Turn off cputimer->running. This is done without locking. */ /* Turn off the active flag. This is done without locking. */
WRITE_ONCE(cputimer->running, false); WRITE_ONCE(pct->timers_active, false);
tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
} }
@ -877,17 +882,17 @@ static void check_process_timers(struct task_struct *tsk,
unsigned long soft; unsigned long soft;
/* /*
* If cputimer is not running, then there are no active * If there are no active process wide timers (POSIX 1.b, itimers,
* process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). * RLIMIT_CPU) nothing to check.
*/ */
if (!READ_ONCE(sig->cputimer.running)) if (!READ_ONCE(pct->timers_active))
return; return;
/* /*
* Signify that a thread is checking for process timers. * Signify that a thread is checking for process timers.
* Write access to this field is protected by the sighand lock. * Write access to this field is protected by the sighand lock.
*/ */
sig->cputimer.checking_timer = true; pct->timers_active = true;
/* /*
* Collect the current process totals. Group accounting is active * Collect the current process totals. Group accounting is active
@ -933,7 +938,7 @@ static void check_process_timers(struct task_struct *tsk,
if (expiry_cache_is_inactive(pct)) if (expiry_cache_is_inactive(pct))
stop_process_timers(sig); stop_process_timers(sig);
sig->cputimer.checking_timer = false; pct->expiry_active = false;
} }
/* /*
@ -1027,39 +1032,41 @@ task_cputimers_expired(const u64 *sample, struct posix_cputimers *pct)
*/ */
static inline bool fastpath_timer_check(struct task_struct *tsk) static inline bool fastpath_timer_check(struct task_struct *tsk)
{ {
struct posix_cputimers *pct = &tsk->posix_cputimers;
struct signal_struct *sig; struct signal_struct *sig;
if (!expiry_cache_is_inactive(&tsk->posix_cputimers)) { if (!expiry_cache_is_inactive(pct)) {
u64 samples[CPUCLOCK_MAX]; u64 samples[CPUCLOCK_MAX];
task_sample_cputime(tsk, samples); task_sample_cputime(tsk, samples);
if (task_cputimers_expired(samples, &tsk->posix_cputimers)) if (task_cputimers_expired(samples, pct))
return true; return true;
} }
sig = tsk->signal; sig = tsk->signal;
pct = &sig->posix_cputimers;
/* /*
* Check if thread group timers expired when the cputimer is * Check if thread group timers expired when timers are active and
* running and no other thread in the group is already checking * no other thread in the group is already handling expiry for
* for thread group cputimers. These fields are read without the * thread group cputimers. These fields are read without the
* sighand lock. However, this is fine because this is meant to * sighand lock. However, this is fine because this is meant to be
* be a fastpath heuristic to determine whether we should try to * a fastpath heuristic to determine whether we should try to
* acquire the sighand lock to check/handle timers. * acquire the sighand lock to handle timer expiry.
* *
* In the worst case scenario, if 'running' or 'checking_timer' gets * In the worst case scenario, if concurrently timers_active is set
* set but the current thread doesn't see the change yet, we'll wait * or expiry_active is cleared, but the current thread doesn't see
* until the next thread in the group gets a scheduler interrupt to * the change yet, the timer checks are delayed until the next
* handle the timer. This isn't an issue in practice because these * thread in the group gets a scheduler interrupt to handle the
* types of delays with signals actually getting sent are expected. * timer. This isn't an issue in practice because these types of
* delays with signals actually getting sent are expected.
*/ */
if (READ_ONCE(sig->cputimer.running) && if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
!READ_ONCE(sig->cputimer.checking_timer)) {
u64 samples[CPUCLOCK_MAX]; u64 samples[CPUCLOCK_MAX];
proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
samples); samples);
if (task_cputimers_expired(samples, &sig->posix_cputimers)) if (task_cputimers_expired(samples, pct))
return true; return true;
} }