mtd: spi-nor: fsl-quadspi: add big-endian support

Add R/W functions for big- or little-endian registers:
The qSPI controller's endian is independent of the CPU core's endian.
So far, the qSPI have two versions for big-endian and little-endian.

Signed-off-by: Yuan Yao <yao.yuan@nxp.com>
Acked-by: Han xu <han.xu@freescale.com>
Acked-by: Han xu <han.xu@nxp.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
This commit is contained in:
Yao Yuan 2016-01-26 15:23:55 +08:00 committed by Brian Norris
parent 4607777c71
commit 2012850be8

View file

@ -275,6 +275,7 @@ struct fsl_qspi {
u32 clk_rate;
unsigned int chip_base_addr; /* We may support two chips. */
bool has_second_chip;
bool big_endian;
struct mutex lock;
struct pm_qos_request pm_qos_req;
};
@ -299,6 +300,28 @@ static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
}
/*
* R/W functions for big- or little-endian registers:
* The qSPI controller's endian is independent of the CPU core's endian.
* So far, although the CPU core is little-endian but the qSPI have two
* versions for big-endian and little-endian.
*/
static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
{
if (q->big_endian)
iowrite32be(val, addr);
else
iowrite32(val, addr);
}
static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
{
if (q->big_endian)
return ioread32be(addr);
else
return ioread32(addr);
}
/*
* An IC bug makes us to re-arrange the 32-bit data.
* The following chips, such as IMX6SLX, have fixed this bug.
@ -310,14 +333,14 @@ static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
{
writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
}
static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
{
writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
}
static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
@ -326,8 +349,8 @@ static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
u32 reg;
/* clear interrupt */
reg = readl(q->iobase + QUADSPI_FR);
writel(reg, q->iobase + QUADSPI_FR);
reg = qspi_readl(q, q->iobase + QUADSPI_FR);
qspi_writel(q, reg, q->iobase + QUADSPI_FR);
if (reg & QUADSPI_FR_TFF_MASK)
complete(&q->c);
@ -348,7 +371,7 @@ static void fsl_qspi_init_lut(struct fsl_qspi *q)
/* Clear all the LUT table */
for (i = 0; i < QUADSPI_LUT_NUM; i++)
writel(0, base + QUADSPI_LUT_BASE + i * 4);
qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);
/* Quad Read */
lut_base = SEQID_QUAD_READ * 4;
@ -364,14 +387,15 @@ static void fsl_qspi_init_lut(struct fsl_qspi *q)
dummy = 8;
}
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
writel(LUT0(DUMMY, PAD1, dummy) | LUT1(FSL_READ, PAD4, rxfifo),
qspi_writel(q, LUT0(DUMMY, PAD1, dummy) | LUT1(FSL_READ, PAD4, rxfifo),
base + QUADSPI_LUT(lut_base + 1));
/* Write enable */
lut_base = SEQID_WREN * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
base + QUADSPI_LUT(lut_base));
/* Page Program */
lut_base = SEQID_PP * 4;
@ -385,13 +409,15 @@ static void fsl_qspi_init_lut(struct fsl_qspi *q)
addrlen = ADDR32BIT;
}
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
writel(LUT0(FSL_WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
base + QUADSPI_LUT(lut_base + 1));
/* Read Status */
lut_base = SEQID_RDSR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(FSL_READ, PAD1, 0x1),
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
LUT1(FSL_READ, PAD1, 0x1),
base + QUADSPI_LUT(lut_base));
/* Erase a sector */
@ -400,40 +426,46 @@ static void fsl_qspi_init_lut(struct fsl_qspi *q)
cmd = q->nor[0].erase_opcode;
addrlen = q->nor_size <= SZ_16M ? ADDR24BIT : ADDR32BIT;
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
/* Erase the whole chip */
lut_base = SEQID_CHIP_ERASE * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
base + QUADSPI_LUT(lut_base));
/* READ ID */
lut_base = SEQID_RDID * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(FSL_READ, PAD1, 0x8),
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
LUT1(FSL_READ, PAD1, 0x8),
base + QUADSPI_LUT(lut_base));
/* Write Register */
lut_base = SEQID_WRSR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(FSL_WRITE, PAD1, 0x2),
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
LUT1(FSL_WRITE, PAD1, 0x2),
base + QUADSPI_LUT(lut_base));
/* Read Configuration Register */
lut_base = SEQID_RDCR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(FSL_READ, PAD1, 0x1),
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
LUT1(FSL_READ, PAD1, 0x1),
base + QUADSPI_LUT(lut_base));
/* Write disable */
lut_base = SEQID_WRDI * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
base + QUADSPI_LUT(lut_base));
/* Enter 4 Byte Mode (Micron) */
lut_base = SEQID_EN4B * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
base + QUADSPI_LUT(lut_base));
/* Enter 4 Byte Mode (Spansion) */
lut_base = SEQID_BRWR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
base + QUADSPI_LUT(lut_base));
fsl_qspi_lock_lut(q);
}
@ -488,15 +520,16 @@ fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
q->chip_base_addr, addr, len, cmd);
/* save the reg */
reg = readl(base + QUADSPI_MCR);
reg = qspi_readl(q, base + QUADSPI_MCR);
writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
base + QUADSPI_SFAR);
qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
base + QUADSPI_RBCT);
writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
do {
reg2 = readl(base + QUADSPI_SR);
reg2 = qspi_readl(q, base + QUADSPI_SR);
if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
udelay(1);
dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
@ -507,21 +540,22 @@ fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
/* trigger the LUT now */
seqid = fsl_qspi_get_seqid(q, cmd);
writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
base + QUADSPI_IPCR);
/* Wait for the interrupt. */
if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
dev_err(q->dev,
"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
cmd, addr, readl(base + QUADSPI_FR),
readl(base + QUADSPI_SR));
cmd, addr, qspi_readl(q, base + QUADSPI_FR),
qspi_readl(q, base + QUADSPI_SR));
err = -ETIMEDOUT;
} else {
err = 0;
}
/* restore the MCR */
writel(reg, base + QUADSPI_MCR);
qspi_writel(q, reg, base + QUADSPI_MCR);
return err;
}
@ -533,7 +567,7 @@ static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
int i = 0;
while (len > 0) {
tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
tmp = fsl_qspi_endian_xchg(q, tmp);
dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
q->chip_base_addr, tmp);
@ -561,9 +595,9 @@ static inline void fsl_qspi_invalid(struct fsl_qspi *q)
{
u32 reg;
reg = readl(q->iobase + QUADSPI_MCR);
reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
writel(reg, q->iobase + QUADSPI_MCR);
qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
/*
* The minimum delay : 1 AHB + 2 SFCK clocks.
@ -572,7 +606,7 @@ static inline void fsl_qspi_invalid(struct fsl_qspi *q)
udelay(1);
reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
writel(reg, q->iobase + QUADSPI_MCR);
qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
}
static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
@ -586,20 +620,20 @@ static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
q->chip_base_addr, to, count);
/* clear the TX FIFO. */
tmp = readl(q->iobase + QUADSPI_MCR);
writel(tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
/* fill the TX data to the FIFO */
for (j = 0, i = ((count + 3) / 4); j < i; j++) {
tmp = fsl_qspi_endian_xchg(q, *txbuf);
writel(tmp, q->iobase + QUADSPI_TBDR);
qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
txbuf++;
}
/* fill the TXFIFO upto 16 bytes for i.MX7d */
if (needs_fill_txfifo(q))
for (; i < 4; i++)
writel(tmp, q->iobase + QUADSPI_TBDR);
qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
/* Trigger it */
ret = fsl_qspi_runcmd(q, opcode, to, count);
@ -615,10 +649,10 @@ static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
int nor_size = q->nor_size;
void __iomem *base = q->iobase;
writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
}
/*
@ -640,24 +674,26 @@ static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
int seqid;
/* AHB configuration for access buffer 0/1/2 .*/
writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
/*
* Set ADATSZ with the maximum AHB buffer size to improve the
* read performance.
*/
writel(QUADSPI_BUF3CR_ALLMST_MASK | ((q->devtype_data->ahb_buf_size / 8)
<< QUADSPI_BUF3CR_ADATSZ_SHIFT), base + QUADSPI_BUF3CR);
qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
((q->devtype_data->ahb_buf_size / 8)
<< QUADSPI_BUF3CR_ADATSZ_SHIFT),
base + QUADSPI_BUF3CR);
/* We only use the buffer3 */
writel(0, base + QUADSPI_BUF0IND);
writel(0, base + QUADSPI_BUF1IND);
writel(0, base + QUADSPI_BUF2IND);
qspi_writel(q, 0, base + QUADSPI_BUF0IND);
qspi_writel(q, 0, base + QUADSPI_BUF1IND);
qspi_writel(q, 0, base + QUADSPI_BUF2IND);
/* Set the default lut sequence for AHB Read. */
seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
q->iobase + QUADSPI_BFGENCR);
}
@ -713,7 +749,7 @@ static int fsl_qspi_nor_setup(struct fsl_qspi *q)
return ret;
/* Reset the module */
writel(QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
base + QUADSPI_MCR);
udelay(1);
@ -721,24 +757,24 @@ static int fsl_qspi_nor_setup(struct fsl_qspi *q)
fsl_qspi_init_lut(q);
/* Disable the module */
writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
base + QUADSPI_MCR);
reg = readl(base + QUADSPI_SMPR);
writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
reg = qspi_readl(q, base + QUADSPI_SMPR);
qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
| QUADSPI_SMPR_FSPHS_MASK
| QUADSPI_SMPR_HSENA_MASK
| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
/* Enable the module */
writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
base + QUADSPI_MCR);
/* clear all interrupt status */
writel(0xffffffff, q->iobase + QUADSPI_FR);
qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
/* enable the interrupt */
writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
return 0;
}
@ -954,6 +990,7 @@ static int fsl_qspi_probe(struct platform_device *pdev)
if (IS_ERR(q->iobase))
return PTR_ERR(q->iobase);
q->big_endian = of_property_read_bool(np, "big-endian");
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"QuadSPI-memory");
if (!devm_request_mem_region(dev, res->start, resource_size(res),
@ -1101,8 +1138,8 @@ static int fsl_qspi_remove(struct platform_device *pdev)
}
/* disable the hardware */
writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
writel(0x0, q->iobase + QUADSPI_RSER);
qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
mutex_destroy(&q->lock);