linux/net/ieee802154/socket.c

1115 lines
23 KiB
C
Raw Normal View History

/*
* IEEE802154.4 socket interface
*
* Copyright 2007, 2008 Siemens AG
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Written by:
* Sergey Lapin <slapin@ossfans.org>
* Maxim Gorbachyov <maxim.gorbachev@siemens.com>
*/
#include <linux/net.h>
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/if_arp.h>
#include <linux/if.h>
#include <linux/termios.h> /* For TIOCOUTQ/INQ */
#include <linux/list.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <net/datalink.h>
#include <net/psnap.h>
#include <net/sock.h>
#include <net/tcp_states.h>
#include <net/route.h>
#include <net/af_ieee802154.h>
#include <net/ieee802154_netdev.h>
/* Utility function for families */
static struct net_device*
ieee802154_get_dev(struct net *net, const struct ieee802154_addr *addr)
{
struct net_device *dev = NULL;
struct net_device *tmp;
__le16 pan_id, short_addr;
u8 hwaddr[IEEE802154_ADDR_LEN];
switch (addr->mode) {
case IEEE802154_ADDR_LONG:
ieee802154_devaddr_to_raw(hwaddr, addr->extended_addr);
rcu_read_lock();
dev = dev_getbyhwaddr_rcu(net, ARPHRD_IEEE802154, hwaddr);
if (dev)
dev_hold(dev);
rcu_read_unlock();
break;
case IEEE802154_ADDR_SHORT:
if (addr->pan_id == cpu_to_le16(IEEE802154_PANID_BROADCAST) ||
addr->short_addr == cpu_to_le16(IEEE802154_ADDR_UNDEF) ||
addr->short_addr == cpu_to_le16(IEEE802154_ADDR_BROADCAST))
break;
rtnl_lock();
for_each_netdev(net, tmp) {
if (tmp->type != ARPHRD_IEEE802154)
continue;
pan_id = tmp->ieee802154_ptr->pan_id;
short_addr = tmp->ieee802154_ptr->short_addr;
if (pan_id == addr->pan_id &&
short_addr == addr->short_addr) {
dev = tmp;
dev_hold(dev);
break;
}
}
rtnl_unlock();
break;
default:
pr_warn("Unsupported ieee802154 address type: %d\n",
addr->mode);
break;
}
return dev;
}
static int ieee802154_sock_release(struct socket *sock)
{
struct sock *sk = sock->sk;
if (sk) {
sock->sk = NULL;
sk->sk_prot->close(sk, 0);
}
return 0;
}
static int ieee802154_sock_sendmsg(struct socket *sock, struct msghdr *msg,
size_t len)
{
struct sock *sk = sock->sk;
return sk->sk_prot->sendmsg(sk, msg, len);
}
static int ieee802154_sock_bind(struct socket *sock, struct sockaddr *uaddr,
int addr_len)
{
struct sock *sk = sock->sk;
if (sk->sk_prot->bind)
return sk->sk_prot->bind(sk, uaddr, addr_len);
return sock_no_bind(sock, uaddr, addr_len);
}
static int ieee802154_sock_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
struct sock *sk = sock->sk;
if (addr_len < sizeof(uaddr->sa_family))
return -EINVAL;
if (uaddr->sa_family == AF_UNSPEC)
return sk->sk_prot->disconnect(sk, flags);
return sk->sk_prot->connect(sk, uaddr, addr_len);
}
static int ieee802154_dev_ioctl(struct sock *sk, struct ifreq __user *arg,
unsigned int cmd)
{
struct ifreq ifr;
int ret = -ENOIOCTLCMD;
struct net_device *dev;
if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
return -EFAULT;
ifr.ifr_name[IFNAMSIZ-1] = 0;
dev_load(sock_net(sk), ifr.ifr_name);
dev = dev_get_by_name(sock_net(sk), ifr.ifr_name);
if (!dev)
return -ENODEV;
if (dev->type == ARPHRD_IEEE802154 && dev->netdev_ops->ndo_do_ioctl)
ret = dev->netdev_ops->ndo_do_ioctl(dev, &ifr, cmd);
if (!ret && copy_to_user(arg, &ifr, sizeof(struct ifreq)))
ret = -EFAULT;
dev_put(dev);
return ret;
}
static int ieee802154_sock_ioctl(struct socket *sock, unsigned int cmd,
unsigned long arg)
{
struct sock *sk = sock->sk;
switch (cmd) {
case SIOCGSTAMP:
return sock_get_timestamp(sk, (struct timeval __user *)arg);
case SIOCGSTAMPNS:
return sock_get_timestampns(sk, (struct timespec __user *)arg);
case SIOCGIFADDR:
case SIOCSIFADDR:
return ieee802154_dev_ioctl(sk, (struct ifreq __user *)arg,
cmd);
default:
if (!sk->sk_prot->ioctl)
return -ENOIOCTLCMD;
return sk->sk_prot->ioctl(sk, cmd, arg);
}
}
/* RAW Sockets (802.15.4 created in userspace) */
static HLIST_HEAD(raw_head);
static DEFINE_RWLOCK(raw_lock);
static void raw_hash(struct sock *sk)
{
write_lock_bh(&raw_lock);
sk_add_node(sk, &raw_head);
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
write_unlock_bh(&raw_lock);
}
static void raw_unhash(struct sock *sk)
{
write_lock_bh(&raw_lock);
if (sk_del_node_init(sk))
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
write_unlock_bh(&raw_lock);
}
static void raw_close(struct sock *sk, long timeout)
{
sk_common_release(sk);
}
static int raw_bind(struct sock *sk, struct sockaddr *_uaddr, int len)
{
struct ieee802154_addr addr;
struct sockaddr_ieee802154 *uaddr = (struct sockaddr_ieee802154 *)_uaddr;
int err = 0;
struct net_device *dev = NULL;
if (len < sizeof(*uaddr))
return -EINVAL;
uaddr = (struct sockaddr_ieee802154 *)_uaddr;
if (uaddr->family != AF_IEEE802154)
return -EINVAL;
lock_sock(sk);
ieee802154_addr_from_sa(&addr, &uaddr->addr);
dev = ieee802154_get_dev(sock_net(sk), &addr);
if (!dev) {
err = -ENODEV;
goto out;
}
sk->sk_bound_dev_if = dev->ifindex;
sk_dst_reset(sk);
dev_put(dev);
out:
release_sock(sk);
return err;
}
static int raw_connect(struct sock *sk, struct sockaddr *uaddr,
int addr_len)
{
return -ENOTSUPP;
}
static int raw_disconnect(struct sock *sk, int flags)
{
return 0;
}
static int raw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
struct net_device *dev;
unsigned int mtu;
struct sk_buff *skb;
int hlen, tlen;
int err;
if (msg->msg_flags & MSG_OOB) {
pr_debug("msg->msg_flags = 0x%x\n", msg->msg_flags);
return -EOPNOTSUPP;
}
lock_sock(sk);
if (!sk->sk_bound_dev_if)
dev = dev_getfirstbyhwtype(sock_net(sk), ARPHRD_IEEE802154);
else
dev = dev_get_by_index(sock_net(sk), sk->sk_bound_dev_if);
release_sock(sk);
if (!dev) {
pr_debug("no dev\n");
err = -ENXIO;
goto out;
}
mtu = dev->mtu;
pr_debug("name = %s, mtu = %u\n", dev->name, mtu);
if (size > mtu) {
pr_debug("size = %Zu, mtu = %u\n", size, mtu);
err = -EMSGSIZE;
goto out_dev;
}
hlen = LL_RESERVED_SPACE(dev);
tlen = dev->needed_tailroom;
skb = sock_alloc_send_skb(sk, hlen + tlen + size,
msg->msg_flags & MSG_DONTWAIT, &err);
if (!skb)
goto out_dev;
skb_reserve(skb, hlen);
skb_reset_mac_header(skb);
skb_reset_network_header(skb);
err = memcpy_from_msg(skb_put(skb, size), msg, size);
if (err < 0)
goto out_skb;
skb->dev = dev;
skb->sk = sk;
skb->protocol = htons(ETH_P_IEEE802154);
dev_put(dev);
err = dev_queue_xmit(skb);
if (err > 0)
err = net_xmit_errno(err);
return err ?: size;
out_skb:
kfree_skb(skb);
out_dev:
dev_put(dev);
out:
return err;
}
static int raw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int noblock, int flags, int *addr_len)
{
size_t copied = 0;
int err = -EOPNOTSUPP;
struct sk_buff *skb;
skb = skb_recv_datagram(sk, flags, noblock, &err);
if (!skb)
goto out;
copied = skb->len;
if (len < copied) {
msg->msg_flags |= MSG_TRUNC;
copied = len;
}
err = skb_copy_datagram_msg(skb, 0, msg, copied);
if (err)
goto done;
sock_recv_ts_and_drops(msg, sk, skb);
if (flags & MSG_TRUNC)
copied = skb->len;
done:
skb_free_datagram(sk, skb);
out:
if (err)
return err;
return copied;
}
static int raw_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb)
return NET_RX_DROP;
if (sock_queue_rcv_skb(sk, skb) < 0) {
kfree_skb(skb);
return NET_RX_DROP;
}
return NET_RX_SUCCESS;
}
static void ieee802154_raw_deliver(struct net_device *dev, struct sk_buff *skb)
{
struct sock *sk;
read_lock(&raw_lock);
sk_for_each(sk, &raw_head) {
bh_lock_sock(sk);
if (!sk->sk_bound_dev_if ||
sk->sk_bound_dev_if == dev->ifindex) {
struct sk_buff *clone;
clone = skb_clone(skb, GFP_ATOMIC);
if (clone)
raw_rcv_skb(sk, clone);
}
bh_unlock_sock(sk);
}
read_unlock(&raw_lock);
}
static int raw_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
return -EOPNOTSUPP;
}
static int raw_setsockopt(struct sock *sk, int level, int optname,
char __user *optval, unsigned int optlen)
{
return -EOPNOTSUPP;
}
static struct proto ieee802154_raw_prot = {
.name = "IEEE-802.15.4-RAW",
.owner = THIS_MODULE,
.obj_size = sizeof(struct sock),
.close = raw_close,
.bind = raw_bind,
.sendmsg = raw_sendmsg,
.recvmsg = raw_recvmsg,
.hash = raw_hash,
.unhash = raw_unhash,
.connect = raw_connect,
.disconnect = raw_disconnect,
.getsockopt = raw_getsockopt,
.setsockopt = raw_setsockopt,
};
static const struct proto_ops ieee802154_raw_ops = {
.family = PF_IEEE802154,
.owner = THIS_MODULE,
.release = ieee802154_sock_release,
.bind = ieee802154_sock_bind,
.connect = ieee802154_sock_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = sock_no_getname,
.poll = datagram_poll,
.ioctl = ieee802154_sock_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = ieee802154_sock_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
#endif
};
/* DGRAM Sockets (802.15.4 dataframes) */
static HLIST_HEAD(dgram_head);
static DEFINE_RWLOCK(dgram_lock);
struct dgram_sock {
struct sock sk;
struct ieee802154_addr src_addr;
struct ieee802154_addr dst_addr;
unsigned int bound:1;
unsigned int connected:1;
unsigned int want_ack:1;
unsigned int secen:1;
unsigned int secen_override:1;
unsigned int seclevel:3;
unsigned int seclevel_override:1;
};
static inline struct dgram_sock *dgram_sk(const struct sock *sk)
{
return container_of(sk, struct dgram_sock, sk);
}
static void dgram_hash(struct sock *sk)
{
write_lock_bh(&dgram_lock);
sk_add_node(sk, &dgram_head);
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
write_unlock_bh(&dgram_lock);
}
static void dgram_unhash(struct sock *sk)
{
write_lock_bh(&dgram_lock);
if (sk_del_node_init(sk))
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
write_unlock_bh(&dgram_lock);
}
static int dgram_init(struct sock *sk)
{
struct dgram_sock *ro = dgram_sk(sk);
ro->want_ack = 1;
return 0;
}
static void dgram_close(struct sock *sk, long timeout)
{
sk_common_release(sk);
}
static int dgram_bind(struct sock *sk, struct sockaddr *uaddr, int len)
{
struct sockaddr_ieee802154 *addr = (struct sockaddr_ieee802154 *)uaddr;
struct ieee802154_addr haddr;
struct dgram_sock *ro = dgram_sk(sk);
int err = -EINVAL;
struct net_device *dev;
lock_sock(sk);
ro->bound = 0;
if (len < sizeof(*addr))
goto out;
if (addr->family != AF_IEEE802154)
goto out;
ieee802154_addr_from_sa(&haddr, &addr->addr);
dev = ieee802154_get_dev(sock_net(sk), &haddr);
if (!dev) {
err = -ENODEV;
goto out;
}
if (dev->type != ARPHRD_IEEE802154) {
err = -ENODEV;
goto out_put;
}
ro->src_addr = haddr;
ro->bound = 1;
err = 0;
out_put:
dev_put(dev);
out:
release_sock(sk);
return err;
}
static int dgram_ioctl(struct sock *sk, int cmd, unsigned long arg)
{
switch (cmd) {
case SIOCOUTQ:
{
int amount = sk_wmem_alloc_get(sk);
return put_user(amount, (int __user *)arg);
}
case SIOCINQ:
{
struct sk_buff *skb;
unsigned long amount;
amount = 0;
spin_lock_bh(&sk->sk_receive_queue.lock);
skb = skb_peek(&sk->sk_receive_queue);
if (skb) {
/* We will only return the amount
* of this packet since that is all
* that will be read.
*/
amount = skb->len - ieee802154_hdr_length(skb);
}
spin_unlock_bh(&sk->sk_receive_queue.lock);
return put_user(amount, (int __user *)arg);
}
}
return -ENOIOCTLCMD;
}
/* FIXME: autobind */
static int dgram_connect(struct sock *sk, struct sockaddr *uaddr,
int len)
{
struct sockaddr_ieee802154 *addr = (struct sockaddr_ieee802154 *)uaddr;
struct dgram_sock *ro = dgram_sk(sk);
int err = 0;
if (len < sizeof(*addr))
return -EINVAL;
if (addr->family != AF_IEEE802154)
return -EINVAL;
lock_sock(sk);
if (!ro->bound) {
err = -ENETUNREACH;
goto out;
}
ieee802154_addr_from_sa(&ro->dst_addr, &addr->addr);
ro->connected = 1;
out:
release_sock(sk);
return err;
}
static int dgram_disconnect(struct sock *sk, int flags)
{
struct dgram_sock *ro = dgram_sk(sk);
lock_sock(sk);
ro->connected = 0;
release_sock(sk);
return 0;
}
static int dgram_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
struct net_device *dev;
unsigned int mtu;
struct sk_buff *skb;
struct ieee802154_mac_cb *cb;
struct dgram_sock *ro = dgram_sk(sk);
struct ieee802154_addr dst_addr;
int hlen, tlen;
int err;
if (msg->msg_flags & MSG_OOB) {
pr_debug("msg->msg_flags = 0x%x\n", msg->msg_flags);
return -EOPNOTSUPP;
}
if (!ro->connected && !msg->msg_name)
return -EDESTADDRREQ;
else if (ro->connected && msg->msg_name)
return -EISCONN;
if (!ro->bound)
dev = dev_getfirstbyhwtype(sock_net(sk), ARPHRD_IEEE802154);
else
dev = ieee802154_get_dev(sock_net(sk), &ro->src_addr);
if (!dev) {
pr_debug("no dev\n");
err = -ENXIO;
goto out;
}
mtu = dev->mtu;
pr_debug("name = %s, mtu = %u\n", dev->name, mtu);
if (size > mtu) {
pr_debug("size = %Zu, mtu = %u\n", size, mtu);
err = -EMSGSIZE;
goto out_dev;
}
hlen = LL_RESERVED_SPACE(dev);
tlen = dev->needed_tailroom;
skb = sock_alloc_send_skb(sk, hlen + tlen + size,
msg->msg_flags & MSG_DONTWAIT,
&err);
if (!skb)
goto out_dev;
skb_reserve(skb, hlen);
skb_reset_network_header(skb);
cb = mac_cb_init(skb);
cb->type = IEEE802154_FC_TYPE_DATA;
cb->ackreq = ro->want_ack;
if (msg->msg_name) {
DECLARE_SOCKADDR(struct sockaddr_ieee802154*,
daddr, msg->msg_name);
ieee802154_addr_from_sa(&dst_addr, &daddr->addr);
} else {
dst_addr = ro->dst_addr;
}
cb->secen = ro->secen;
cb->secen_override = ro->secen_override;
cb->seclevel = ro->seclevel;
cb->seclevel_override = ro->seclevel_override;
err = dev_hard_header(skb, dev, ETH_P_IEEE802154, &dst_addr,
ro->bound ? &ro->src_addr : NULL, size);
if (err < 0)
goto out_skb;
err = memcpy_from_msg(skb_put(skb, size), msg, size);
if (err < 0)
goto out_skb;
skb->dev = dev;
skb->sk = sk;
skb->protocol = htons(ETH_P_IEEE802154);
dev_put(dev);
err = dev_queue_xmit(skb);
if (err > 0)
err = net_xmit_errno(err);
return err ?: size;
out_skb:
kfree_skb(skb);
out_dev:
dev_put(dev);
out:
return err;
}
static int dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int noblock, int flags, int *addr_len)
{
size_t copied = 0;
int err = -EOPNOTSUPP;
struct sk_buff *skb;
DECLARE_SOCKADDR(struct sockaddr_ieee802154 *, saddr, msg->msg_name);
skb = skb_recv_datagram(sk, flags, noblock, &err);
if (!skb)
goto out;
copied = skb->len;
if (len < copied) {
msg->msg_flags |= MSG_TRUNC;
copied = len;
}
/* FIXME: skip headers if necessary ?! */
err = skb_copy_datagram_msg(skb, 0, msg, copied);
if (err)
goto done;
sock_recv_ts_and_drops(msg, sk, skb);
if (saddr) {
saddr->family = AF_IEEE802154;
ieee802154_addr_to_sa(&saddr->addr, &mac_cb(skb)->source);
*addr_len = sizeof(*saddr);
}
if (flags & MSG_TRUNC)
copied = skb->len;
done:
skb_free_datagram(sk, skb);
out:
if (err)
return err;
return copied;
}
static int dgram_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb)
return NET_RX_DROP;
if (sock_queue_rcv_skb(sk, skb) < 0) {
kfree_skb(skb);
return NET_RX_DROP;
}
return NET_RX_SUCCESS;
}
static inline bool
ieee802154_match_sock(__le64 hw_addr, __le16 pan_id, __le16 short_addr,
struct dgram_sock *ro)
{
if (!ro->bound)
return true;
if (ro->src_addr.mode == IEEE802154_ADDR_LONG &&
hw_addr == ro->src_addr.extended_addr)
return true;
if (ro->src_addr.mode == IEEE802154_ADDR_SHORT &&
pan_id == ro->src_addr.pan_id &&
short_addr == ro->src_addr.short_addr)
return true;
return false;
}
static int ieee802154_dgram_deliver(struct net_device *dev, struct sk_buff *skb)
{
struct sock *sk, *prev = NULL;
int ret = NET_RX_SUCCESS;
__le16 pan_id, short_addr;
__le64 hw_addr;
/* Data frame processing */
BUG_ON(dev->type != ARPHRD_IEEE802154);
pan_id = dev->ieee802154_ptr->pan_id;
short_addr = dev->ieee802154_ptr->short_addr;
hw_addr = dev->ieee802154_ptr->extended_addr;
read_lock(&dgram_lock);
sk_for_each(sk, &dgram_head) {
if (ieee802154_match_sock(hw_addr, pan_id, short_addr,
dgram_sk(sk))) {
if (prev) {
struct sk_buff *clone;
clone = skb_clone(skb, GFP_ATOMIC);
if (clone)
dgram_rcv_skb(prev, clone);
}
prev = sk;
}
}
if (prev) {
dgram_rcv_skb(prev, skb);
} else {
kfree_skb(skb);
ret = NET_RX_DROP;
}
read_unlock(&dgram_lock);
return ret;
}
static int dgram_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
struct dgram_sock *ro = dgram_sk(sk);
int val, len;
if (level != SOL_IEEE802154)
return -EOPNOTSUPP;
if (get_user(len, optlen))
return -EFAULT;
len = min_t(unsigned int, len, sizeof(int));
switch (optname) {
case WPAN_WANTACK:
val = ro->want_ack;
break;
case WPAN_SECURITY:
if (!ro->secen_override)
val = WPAN_SECURITY_DEFAULT;
else if (ro->secen)
val = WPAN_SECURITY_ON;
else
val = WPAN_SECURITY_OFF;
break;
case WPAN_SECURITY_LEVEL:
if (!ro->seclevel_override)
val = WPAN_SECURITY_LEVEL_DEFAULT;
else
val = ro->seclevel;
break;
default:
return -ENOPROTOOPT;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
static int dgram_setsockopt(struct sock *sk, int level, int optname,
char __user *optval, unsigned int optlen)
{
struct dgram_sock *ro = dgram_sk(sk);
struct net *net = sock_net(sk);
int val;
int err = 0;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
lock_sock(sk);
switch (optname) {
case WPAN_WANTACK:
ro->want_ack = !!val;
break;
case WPAN_SECURITY:
if (!ns_capable(net->user_ns, CAP_NET_ADMIN) &&
!ns_capable(net->user_ns, CAP_NET_RAW)) {
err = -EPERM;
break;
}
switch (val) {
case WPAN_SECURITY_DEFAULT:
ro->secen_override = 0;
break;
case WPAN_SECURITY_ON:
ro->secen_override = 1;
ro->secen = 1;
break;
case WPAN_SECURITY_OFF:
ro->secen_override = 1;
ro->secen = 0;
break;
default:
err = -EINVAL;
break;
}
break;
case WPAN_SECURITY_LEVEL:
if (!ns_capable(net->user_ns, CAP_NET_ADMIN) &&
!ns_capable(net->user_ns, CAP_NET_RAW)) {
err = -EPERM;
break;
}
if (val < WPAN_SECURITY_LEVEL_DEFAULT ||
val > IEEE802154_SCF_SECLEVEL_ENC_MIC128) {
err = -EINVAL;
} else if (val == WPAN_SECURITY_LEVEL_DEFAULT) {
ro->seclevel_override = 0;
} else {
ro->seclevel_override = 1;
ro->seclevel = val;
}
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
static struct proto ieee802154_dgram_prot = {
.name = "IEEE-802.15.4-MAC",
.owner = THIS_MODULE,
.obj_size = sizeof(struct dgram_sock),
.init = dgram_init,
.close = dgram_close,
.bind = dgram_bind,
.sendmsg = dgram_sendmsg,
.recvmsg = dgram_recvmsg,
.hash = dgram_hash,
.unhash = dgram_unhash,
.connect = dgram_connect,
.disconnect = dgram_disconnect,
.ioctl = dgram_ioctl,
.getsockopt = dgram_getsockopt,
.setsockopt = dgram_setsockopt,
};
static const struct proto_ops ieee802154_dgram_ops = {
.family = PF_IEEE802154,
.owner = THIS_MODULE,
.release = ieee802154_sock_release,
.bind = ieee802154_sock_bind,
.connect = ieee802154_sock_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = sock_no_getname,
.poll = datagram_poll,
.ioctl = ieee802154_sock_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = ieee802154_sock_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
#endif
};
/* Create a socket. Initialise the socket, blank the addresses
* set the state.
*/
static int ieee802154_create(struct net *net, struct socket *sock,
int protocol, int kern)
{
struct sock *sk;
int rc;
struct proto *proto;
const struct proto_ops *ops;
if (!net_eq(net, &init_net))
return -EAFNOSUPPORT;
switch (sock->type) {
case SOCK_RAW:
proto = &ieee802154_raw_prot;
ops = &ieee802154_raw_ops;
break;
case SOCK_DGRAM:
proto = &ieee802154_dgram_prot;
ops = &ieee802154_dgram_ops;
break;
default:
rc = -ESOCKTNOSUPPORT;
goto out;
}
rc = -ENOMEM;
sk = sk_alloc(net, PF_IEEE802154, GFP_KERNEL, proto, kern);
if (!sk)
goto out;
rc = 0;
sock->ops = ops;
sock_init_data(sock, sk);
/* FIXME: sk->sk_destruct */
sk->sk_family = PF_IEEE802154;
/* Checksums on by default */
sock_set_flag(sk, SOCK_ZAPPED);
if (sk->sk_prot->hash)
sk->sk_prot->hash(sk);
if (sk->sk_prot->init) {
rc = sk->sk_prot->init(sk);
if (rc)
sk_common_release(sk);
}
out:
return rc;
}
static const struct net_proto_family ieee802154_family_ops = {
.family = PF_IEEE802154,
.create = ieee802154_create,
.owner = THIS_MODULE,
};
static int ieee802154_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
if (!netif_running(dev))
goto drop;
pr_debug("got frame, type %d, dev %p\n", dev->type, dev);
#ifdef DEBUG
print_hex_dump_bytes("ieee802154_rcv ",
DUMP_PREFIX_NONE, skb->data, skb->len);
#endif
if (!net_eq(dev_net(dev), &init_net))
goto drop;
ieee802154_raw_deliver(dev, skb);
if (dev->type != ARPHRD_IEEE802154)
goto drop;
if (skb->pkt_type != PACKET_OTHERHOST)
return ieee802154_dgram_deliver(dev, skb);
drop:
kfree_skb(skb);
return NET_RX_DROP;
}
static struct packet_type ieee802154_packet_type = {
.type = htons(ETH_P_IEEE802154),
.func = ieee802154_rcv,
};
static int __init af_ieee802154_init(void)
{
int rc = -EINVAL;
rc = proto_register(&ieee802154_raw_prot, 1);
if (rc)
goto out;
rc = proto_register(&ieee802154_dgram_prot, 1);
if (rc)
goto err_dgram;
/* Tell SOCKET that we are alive */
rc = sock_register(&ieee802154_family_ops);
if (rc)
goto err_sock;
dev_add_pack(&ieee802154_packet_type);
rc = 0;
goto out;
err_sock:
proto_unregister(&ieee802154_dgram_prot);
err_dgram:
proto_unregister(&ieee802154_raw_prot);
out:
return rc;
}
static void __exit af_ieee802154_remove(void)
{
dev_remove_pack(&ieee802154_packet_type);
sock_unregister(PF_IEEE802154);
proto_unregister(&ieee802154_dgram_prot);
proto_unregister(&ieee802154_raw_prot);
}
module_init(af_ieee802154_init);
module_exit(af_ieee802154_remove);
MODULE_LICENSE("GPL");
MODULE_ALIAS_NETPROTO(PF_IEEE802154);