2008-02-08 12:18:24 +00:00
|
|
|
/*
|
|
|
|
* Pid namespaces
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
|
|
|
|
* (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
|
|
|
|
* Many thanks to Oleg Nesterov for comments and help
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/pid.h>
|
|
|
|
#include <linux/pid_namespace.h>
|
2012-08-02 11:25:10 +00:00
|
|
|
#include <linux/user_namespace.h>
|
2008-02-08 12:18:24 +00:00
|
|
|
#include <linux/syscalls.h>
|
|
|
|
#include <linux/err.h>
|
2008-07-25 08:48:47 +00:00
|
|
|
#include <linux/acct.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
|
|
|
#include <linux/slab.h>
|
2011-03-23 23:43:13 +00:00
|
|
|
#include <linux/proc_fs.h>
|
pidns: add reboot_pid_ns() to handle the reboot syscall
In the case of a child pid namespace, rebooting the system does not really
makes sense. When the pid namespace is used in conjunction with the other
namespaces in order to create a linux container, the reboot syscall leads
to some problems.
A container can reboot the host. That can be fixed by dropping the
sys_reboot capability but we are unable to correctly to poweroff/
halt/reboot a container and the container stays stuck at the shutdown time
with the container's init process waiting indefinitively.
After several attempts, no solution from userspace was found to reliabily
handle the shutdown from a container.
This patch propose to make the init process of the child pid namespace to
exit with a signal status set to : SIGINT if the child pid namespace
called "halt/poweroff" and SIGHUP if the child pid namespace called
"reboot". When the reboot syscall is called and we are not in the initial
pid namespace, we kill the pid namespace for "HALT", "POWEROFF",
"RESTART", and "RESTART2". Otherwise we return EINVAL.
Returning EINVAL is also an easy way to check if this feature is supported
by the kernel when invoking another 'reboot' option like CAD.
By this way the parent process of the child pid namespace knows if it
rebooted or not and can take the right decision.
Test case:
==========
#include <alloca.h>
#include <stdio.h>
#include <sched.h>
#include <unistd.h>
#include <signal.h>
#include <sys/reboot.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <linux/reboot.h>
static int do_reboot(void *arg)
{
int *cmd = arg;
if (reboot(*cmd))
printf("failed to reboot(%d): %m\n", *cmd);
}
int test_reboot(int cmd, int sig)
{
long stack_size = 4096;
void *stack = alloca(stack_size) + stack_size;
int status;
pid_t ret;
ret = clone(do_reboot, stack, CLONE_NEWPID | SIGCHLD, &cmd);
if (ret < 0) {
printf("failed to clone: %m\n");
return -1;
}
if (wait(&status) < 0) {
printf("unexpected wait error: %m\n");
return -1;
}
if (!WIFSIGNALED(status)) {
printf("child process exited but was not signaled\n");
return -1;
}
if (WTERMSIG(status) != sig) {
printf("signal termination is not the one expected\n");
return -1;
}
return 0;
}
int main(int argc, char *argv[])
{
int status;
status = test_reboot(LINUX_REBOOT_CMD_RESTART, SIGHUP);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_RESTART) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_RESTART2, SIGHUP);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_RESTART2) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_HALT, SIGINT);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_HALT) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_POWER_OFF, SIGINT);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_POWERR_OFF) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_CAD_ON, -1);
if (status >= 0) {
printf("reboot(LINUX_REBOOT_CMD_CAD_ON) should have failed\n");
return 1;
}
printf("reboot(LINUX_REBOOT_CMD_CAD_ON) has failed as expected\n");
return 0;
}
[akpm@linux-foundation.org: tweak and add comments]
[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Tested-by: Serge Hallyn <serge.hallyn@canonical.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-28 21:42:51 +00:00
|
|
|
#include <linux/reboot.h>
|
2012-08-04 02:11:22 +00:00
|
|
|
#include <linux/export.h>
|
2008-02-08 12:18:24 +00:00
|
|
|
|
|
|
|
#define BITS_PER_PAGE (PAGE_SIZE*8)
|
|
|
|
|
|
|
|
struct pid_cache {
|
|
|
|
int nr_ids;
|
|
|
|
char name[16];
|
|
|
|
struct kmem_cache *cachep;
|
|
|
|
struct list_head list;
|
|
|
|
};
|
|
|
|
|
|
|
|
static LIST_HEAD(pid_caches_lh);
|
|
|
|
static DEFINE_MUTEX(pid_caches_mutex);
|
|
|
|
static struct kmem_cache *pid_ns_cachep;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* creates the kmem cache to allocate pids from.
|
|
|
|
* @nr_ids: the number of numerical ids this pid will have to carry
|
|
|
|
*/
|
|
|
|
|
|
|
|
static struct kmem_cache *create_pid_cachep(int nr_ids)
|
|
|
|
{
|
|
|
|
struct pid_cache *pcache;
|
|
|
|
struct kmem_cache *cachep;
|
|
|
|
|
|
|
|
mutex_lock(&pid_caches_mutex);
|
|
|
|
list_for_each_entry(pcache, &pid_caches_lh, list)
|
|
|
|
if (pcache->nr_ids == nr_ids)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
|
|
|
|
if (pcache == NULL)
|
|
|
|
goto err_alloc;
|
|
|
|
|
|
|
|
snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
|
|
|
|
cachep = kmem_cache_create(pcache->name,
|
|
|
|
sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
|
|
|
|
0, SLAB_HWCACHE_ALIGN, NULL);
|
|
|
|
if (cachep == NULL)
|
|
|
|
goto err_cachep;
|
|
|
|
|
|
|
|
pcache->nr_ids = nr_ids;
|
|
|
|
pcache->cachep = cachep;
|
|
|
|
list_add(&pcache->list, &pid_caches_lh);
|
|
|
|
out:
|
|
|
|
mutex_unlock(&pid_caches_mutex);
|
|
|
|
return pcache->cachep;
|
|
|
|
|
|
|
|
err_cachep:
|
|
|
|
kfree(pcache);
|
|
|
|
err_alloc:
|
|
|
|
mutex_unlock(&pid_caches_mutex);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2012-08-01 17:33:47 +00:00
|
|
|
static void proc_cleanup_work(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
|
|
|
|
pid_ns_release_proc(ns);
|
|
|
|
}
|
|
|
|
|
pidns: limit the nesting depth of pid namespaces
'struct pid' is a "variable sized struct" - a header with an array of
upids at the end.
The size of the array depends on a level (depth) of pid namespaces. Now a
level of pidns is not limited, so 'struct pid' can be more than one page.
Looks reasonable, that it should be less than a page. MAX_PIS_NS_LEVEL is
not calculated from PAGE_SIZE, because in this case it depends on
architectures, config options and it will be reduced, if someone adds a
new fields in struct pid or struct upid.
I suggest to set MAX_PIS_NS_LEVEL = 32, because it saves ability to expand
"struct pid" and it's more than enough for all known for me use-cases.
When someone finds a reasonable use case, we can add a config option or a
sysctl parameter.
In addition it will reduce the effect of another problem, when we have
many nested namespaces and the oldest one starts dying.
zap_pid_ns_processe will be called for each namespace and find_vpid will
be called for each process in a namespace. find_vpid will be called
minimum max_level^2 / 2 times. The reason of that is that when we found a
bit in pidmap, we can't determine this pidns is top for this process or it
isn't.
vpid is a heavy operation, so a fork bomb, which create many nested
namespace, can make a system inaccessible for a long time. For example my
system becomes inaccessible for a few minutes with 4000 processes.
[akpm@linux-foundation.org: return -EINVAL in response to excessive nesting, not -ENOMEM]
Signed-off-by: Andrew Vagin <avagin@openvz.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-25 20:38:07 +00:00
|
|
|
/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
|
|
|
|
#define MAX_PID_NS_LEVEL 32
|
|
|
|
|
2012-08-02 11:25:10 +00:00
|
|
|
static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
|
|
|
|
struct pid_namespace *parent_pid_ns)
|
2008-02-08 12:18:24 +00:00
|
|
|
{
|
|
|
|
struct pid_namespace *ns;
|
2009-06-17 23:27:52 +00:00
|
|
|
unsigned int level = parent_pid_ns->level + 1;
|
pidns: limit the nesting depth of pid namespaces
'struct pid' is a "variable sized struct" - a header with an array of
upids at the end.
The size of the array depends on a level (depth) of pid namespaces. Now a
level of pidns is not limited, so 'struct pid' can be more than one page.
Looks reasonable, that it should be less than a page. MAX_PIS_NS_LEVEL is
not calculated from PAGE_SIZE, because in this case it depends on
architectures, config options and it will be reduced, if someone adds a
new fields in struct pid or struct upid.
I suggest to set MAX_PIS_NS_LEVEL = 32, because it saves ability to expand
"struct pid" and it's more than enough for all known for me use-cases.
When someone finds a reasonable use case, we can add a config option or a
sysctl parameter.
In addition it will reduce the effect of another problem, when we have
many nested namespaces and the oldest one starts dying.
zap_pid_ns_processe will be called for each namespace and find_vpid will
be called for each process in a namespace. find_vpid will be called
minimum max_level^2 / 2 times. The reason of that is that when we found a
bit in pidmap, we can't determine this pidns is top for this process or it
isn't.
vpid is a heavy operation, so a fork bomb, which create many nested
namespace, can make a system inaccessible for a long time. For example my
system becomes inaccessible for a few minutes with 4000 processes.
[akpm@linux-foundation.org: return -EINVAL in response to excessive nesting, not -ENOMEM]
Signed-off-by: Andrew Vagin <avagin@openvz.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-25 20:38:07 +00:00
|
|
|
int i;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (level > MAX_PID_NS_LEVEL) {
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
2008-02-08 12:18:24 +00:00
|
|
|
|
pidns: limit the nesting depth of pid namespaces
'struct pid' is a "variable sized struct" - a header with an array of
upids at the end.
The size of the array depends on a level (depth) of pid namespaces. Now a
level of pidns is not limited, so 'struct pid' can be more than one page.
Looks reasonable, that it should be less than a page. MAX_PIS_NS_LEVEL is
not calculated from PAGE_SIZE, because in this case it depends on
architectures, config options and it will be reduced, if someone adds a
new fields in struct pid or struct upid.
I suggest to set MAX_PIS_NS_LEVEL = 32, because it saves ability to expand
"struct pid" and it's more than enough for all known for me use-cases.
When someone finds a reasonable use case, we can add a config option or a
sysctl parameter.
In addition it will reduce the effect of another problem, when we have
many nested namespaces and the oldest one starts dying.
zap_pid_ns_processe will be called for each namespace and find_vpid will
be called for each process in a namespace. find_vpid will be called
minimum max_level^2 / 2 times. The reason of that is that when we found a
bit in pidmap, we can't determine this pidns is top for this process or it
isn't.
vpid is a heavy operation, so a fork bomb, which create many nested
namespace, can make a system inaccessible for a long time. For example my
system becomes inaccessible for a few minutes with 4000 processes.
[akpm@linux-foundation.org: return -EINVAL in response to excessive nesting, not -ENOMEM]
Signed-off-by: Andrew Vagin <avagin@openvz.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-25 20:38:07 +00:00
|
|
|
err = -ENOMEM;
|
2008-07-25 08:48:42 +00:00
|
|
|
ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
|
2008-02-08 12:18:24 +00:00
|
|
|
if (ns == NULL)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
|
|
if (!ns->pidmap[0].page)
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
ns->pid_cachep = create_pid_cachep(level + 1);
|
|
|
|
if (ns->pid_cachep == NULL)
|
|
|
|
goto out_free_map;
|
|
|
|
|
2011-06-15 17:21:48 +00:00
|
|
|
err = proc_alloc_inum(&ns->proc_inum);
|
|
|
|
if (err)
|
|
|
|
goto out_free_map;
|
|
|
|
|
2008-02-08 12:18:24 +00:00
|
|
|
kref_init(&ns->kref);
|
|
|
|
ns->level = level;
|
2009-06-17 23:27:52 +00:00
|
|
|
ns->parent = get_pid_ns(parent_pid_ns);
|
2012-08-02 11:25:10 +00:00
|
|
|
ns->user_ns = get_user_ns(user_ns);
|
2012-12-22 04:27:12 +00:00
|
|
|
ns->nr_hashed = PIDNS_HASH_ADDING;
|
2012-08-01 17:33:47 +00:00
|
|
|
INIT_WORK(&ns->proc_work, proc_cleanup_work);
|
2008-02-08 12:18:24 +00:00
|
|
|
|
|
|
|
set_bit(0, ns->pidmap[0].page);
|
|
|
|
atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
|
|
|
|
|
2008-07-25 08:48:42 +00:00
|
|
|
for (i = 1; i < PIDMAP_ENTRIES; i++)
|
2008-02-08 12:18:24 +00:00
|
|
|
atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
|
|
|
|
|
|
|
|
return ns;
|
|
|
|
|
|
|
|
out_free_map:
|
|
|
|
kfree(ns->pidmap[0].page);
|
|
|
|
out_free:
|
|
|
|
kmem_cache_free(pid_ns_cachep, ns);
|
|
|
|
out:
|
2011-03-23 23:43:13 +00:00
|
|
|
return ERR_PTR(err);
|
2008-02-08 12:18:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void destroy_pid_namespace(struct pid_namespace *ns)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
2011-06-15 17:21:48 +00:00
|
|
|
proc_free_inum(ns->proc_inum);
|
2008-02-08 12:18:24 +00:00
|
|
|
for (i = 0; i < PIDMAP_ENTRIES; i++)
|
|
|
|
kfree(ns->pidmap[i].page);
|
2012-08-02 11:25:10 +00:00
|
|
|
put_user_ns(ns->user_ns);
|
2008-02-08 12:18:24 +00:00
|
|
|
kmem_cache_free(pid_ns_cachep, ns);
|
|
|
|
}
|
|
|
|
|
2012-08-02 11:25:10 +00:00
|
|
|
struct pid_namespace *copy_pid_ns(unsigned long flags,
|
|
|
|
struct user_namespace *user_ns, struct pid_namespace *old_ns)
|
2008-02-08 12:18:24 +00:00
|
|
|
{
|
|
|
|
if (!(flags & CLONE_NEWPID))
|
2009-06-17 23:27:53 +00:00
|
|
|
return get_pid_ns(old_ns);
|
2012-08-02 15:35:35 +00:00
|
|
|
if (task_active_pid_ns(current) != old_ns)
|
|
|
|
return ERR_PTR(-EINVAL);
|
2012-08-02 11:25:10 +00:00
|
|
|
return create_pid_namespace(user_ns, old_ns);
|
2008-02-08 12:18:24 +00:00
|
|
|
}
|
|
|
|
|
2012-10-19 20:56:53 +00:00
|
|
|
static void free_pid_ns(struct kref *kref)
|
2008-02-08 12:18:24 +00:00
|
|
|
{
|
2012-10-19 20:56:53 +00:00
|
|
|
struct pid_namespace *ns;
|
2008-02-08 12:18:24 +00:00
|
|
|
|
|
|
|
ns = container_of(kref, struct pid_namespace, kref);
|
|
|
|
destroy_pid_namespace(ns);
|
2012-10-19 20:56:53 +00:00
|
|
|
}
|
2008-02-08 12:18:24 +00:00
|
|
|
|
2012-10-19 20:56:53 +00:00
|
|
|
void put_pid_ns(struct pid_namespace *ns)
|
|
|
|
{
|
|
|
|
struct pid_namespace *parent;
|
|
|
|
|
|
|
|
while (ns != &init_pid_ns) {
|
|
|
|
parent = ns->parent;
|
|
|
|
if (!kref_put(&ns->kref, free_pid_ns))
|
|
|
|
break;
|
|
|
|
ns = parent;
|
|
|
|
}
|
2008-02-08 12:18:24 +00:00
|
|
|
}
|
2012-10-19 20:56:53 +00:00
|
|
|
EXPORT_SYMBOL_GPL(put_pid_ns);
|
2008-02-08 12:18:24 +00:00
|
|
|
|
|
|
|
void zap_pid_ns_processes(struct pid_namespace *pid_ns)
|
|
|
|
{
|
|
|
|
int nr;
|
|
|
|
int rc;
|
2012-05-31 23:26:40 +00:00
|
|
|
struct task_struct *task, *me = current;
|
2013-03-26 09:27:11 +00:00
|
|
|
int init_pids = thread_group_leader(me) ? 1 : 2;
|
2012-05-31 23:26:40 +00:00
|
|
|
|
2012-12-22 04:27:12 +00:00
|
|
|
/* Don't allow any more processes into the pid namespace */
|
|
|
|
disable_pid_allocation(pid_ns);
|
|
|
|
|
2012-05-31 23:26:40 +00:00
|
|
|
/* Ignore SIGCHLD causing any terminated children to autoreap */
|
|
|
|
spin_lock_irq(&me->sighand->siglock);
|
|
|
|
me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
|
|
|
|
spin_unlock_irq(&me->sighand->siglock);
|
2008-02-08 12:18:24 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The last thread in the cgroup-init thread group is terminating.
|
|
|
|
* Find remaining pid_ts in the namespace, signal and wait for them
|
|
|
|
* to exit.
|
|
|
|
*
|
|
|
|
* Note: This signals each threads in the namespace - even those that
|
|
|
|
* belong to the same thread group, To avoid this, we would have
|
|
|
|
* to walk the entire tasklist looking a processes in this
|
|
|
|
* namespace, but that could be unnecessarily expensive if the
|
|
|
|
* pid namespace has just a few processes. Or we need to
|
|
|
|
* maintain a tasklist for each pid namespace.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
read_lock(&tasklist_lock);
|
|
|
|
nr = next_pidmap(pid_ns, 1);
|
|
|
|
while (nr > 0) {
|
2009-04-02 23:58:06 +00:00
|
|
|
rcu_read_lock();
|
|
|
|
|
|
|
|
task = pid_task(find_vpid(nr), PIDTYPE_PID);
|
2012-03-23 22:02:46 +00:00
|
|
|
if (task && !__fatal_signal_pending(task))
|
|
|
|
send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
|
2009-04-02 23:58:06 +00:00
|
|
|
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
2008-02-08 12:18:24 +00:00
|
|
|
nr = next_pidmap(pid_ns, nr);
|
|
|
|
}
|
|
|
|
read_unlock(&tasklist_lock);
|
|
|
|
|
2012-06-20 19:53:03 +00:00
|
|
|
/* Firstly reap the EXIT_ZOMBIE children we may have. */
|
2008-02-08 12:18:24 +00:00
|
|
|
do {
|
|
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
|
|
rc = sys_wait4(-1, NULL, __WALL, NULL);
|
|
|
|
} while (rc != -ECHILD);
|
|
|
|
|
2012-06-20 19:53:03 +00:00
|
|
|
/*
|
|
|
|
* sys_wait4() above can't reap the TASK_DEAD children.
|
2012-08-01 22:03:42 +00:00
|
|
|
* Make sure they all go away, see free_pid().
|
2012-06-20 19:53:03 +00:00
|
|
|
*/
|
|
|
|
for (;;) {
|
2012-08-01 22:03:42 +00:00
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
2013-03-26 09:27:11 +00:00
|
|
|
if (pid_ns->nr_hashed == init_pids)
|
2012-06-20 19:53:03 +00:00
|
|
|
break;
|
|
|
|
schedule();
|
|
|
|
}
|
2012-08-01 22:03:42 +00:00
|
|
|
__set_current_state(TASK_RUNNING);
|
2012-06-20 19:53:03 +00:00
|
|
|
|
pidns: add reboot_pid_ns() to handle the reboot syscall
In the case of a child pid namespace, rebooting the system does not really
makes sense. When the pid namespace is used in conjunction with the other
namespaces in order to create a linux container, the reboot syscall leads
to some problems.
A container can reboot the host. That can be fixed by dropping the
sys_reboot capability but we are unable to correctly to poweroff/
halt/reboot a container and the container stays stuck at the shutdown time
with the container's init process waiting indefinitively.
After several attempts, no solution from userspace was found to reliabily
handle the shutdown from a container.
This patch propose to make the init process of the child pid namespace to
exit with a signal status set to : SIGINT if the child pid namespace
called "halt/poweroff" and SIGHUP if the child pid namespace called
"reboot". When the reboot syscall is called and we are not in the initial
pid namespace, we kill the pid namespace for "HALT", "POWEROFF",
"RESTART", and "RESTART2". Otherwise we return EINVAL.
Returning EINVAL is also an easy way to check if this feature is supported
by the kernel when invoking another 'reboot' option like CAD.
By this way the parent process of the child pid namespace knows if it
rebooted or not and can take the right decision.
Test case:
==========
#include <alloca.h>
#include <stdio.h>
#include <sched.h>
#include <unistd.h>
#include <signal.h>
#include <sys/reboot.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <linux/reboot.h>
static int do_reboot(void *arg)
{
int *cmd = arg;
if (reboot(*cmd))
printf("failed to reboot(%d): %m\n", *cmd);
}
int test_reboot(int cmd, int sig)
{
long stack_size = 4096;
void *stack = alloca(stack_size) + stack_size;
int status;
pid_t ret;
ret = clone(do_reboot, stack, CLONE_NEWPID | SIGCHLD, &cmd);
if (ret < 0) {
printf("failed to clone: %m\n");
return -1;
}
if (wait(&status) < 0) {
printf("unexpected wait error: %m\n");
return -1;
}
if (!WIFSIGNALED(status)) {
printf("child process exited but was not signaled\n");
return -1;
}
if (WTERMSIG(status) != sig) {
printf("signal termination is not the one expected\n");
return -1;
}
return 0;
}
int main(int argc, char *argv[])
{
int status;
status = test_reboot(LINUX_REBOOT_CMD_RESTART, SIGHUP);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_RESTART) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_RESTART2, SIGHUP);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_RESTART2) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_HALT, SIGINT);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_HALT) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_POWER_OFF, SIGINT);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_POWERR_OFF) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_CAD_ON, -1);
if (status >= 0) {
printf("reboot(LINUX_REBOOT_CMD_CAD_ON) should have failed\n");
return 1;
}
printf("reboot(LINUX_REBOOT_CMD_CAD_ON) has failed as expected\n");
return 0;
}
[akpm@linux-foundation.org: tweak and add comments]
[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Tested-by: Serge Hallyn <serge.hallyn@canonical.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-28 21:42:51 +00:00
|
|
|
if (pid_ns->reboot)
|
|
|
|
current->signal->group_exit_code = pid_ns->reboot;
|
|
|
|
|
2008-07-25 08:48:47 +00:00
|
|
|
acct_exit_ns(pid_ns);
|
2008-02-08 12:18:24 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2012-05-31 23:26:42 +00:00
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
2012-01-13 01:20:27 +00:00
|
|
|
static int pid_ns_ctl_handler(struct ctl_table *table, int write,
|
|
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
|
|
{
|
2012-08-02 11:25:10 +00:00
|
|
|
struct pid_namespace *pid_ns = task_active_pid_ns(current);
|
2012-01-13 01:20:27 +00:00
|
|
|
struct ctl_table tmp = *table;
|
|
|
|
|
2012-08-02 11:25:10 +00:00
|
|
|
if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
|
2012-01-13 01:20:27 +00:00
|
|
|
return -EPERM;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Writing directly to ns' last_pid field is OK, since this field
|
|
|
|
* is volatile in a living namespace anyway and a code writing to
|
|
|
|
* it should synchronize its usage with external means.
|
|
|
|
*/
|
|
|
|
|
2012-08-02 11:25:10 +00:00
|
|
|
tmp.data = &pid_ns->last_pid;
|
2012-09-17 21:09:12 +00:00
|
|
|
return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
|
2012-01-13 01:20:27 +00:00
|
|
|
}
|
|
|
|
|
2012-09-17 21:09:12 +00:00
|
|
|
extern int pid_max;
|
|
|
|
static int zero = 0;
|
2012-01-13 01:20:27 +00:00
|
|
|
static struct ctl_table pid_ns_ctl_table[] = {
|
|
|
|
{
|
|
|
|
.procname = "ns_last_pid",
|
|
|
|
.maxlen = sizeof(int),
|
|
|
|
.mode = 0666, /* permissions are checked in the handler */
|
|
|
|
.proc_handler = pid_ns_ctl_handler,
|
2012-09-17 21:09:12 +00:00
|
|
|
.extra1 = &zero,
|
|
|
|
.extra2 = &pid_max,
|
2012-01-13 01:20:27 +00:00
|
|
|
},
|
|
|
|
{ }
|
|
|
|
};
|
|
|
|
static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
|
2012-05-31 23:26:42 +00:00
|
|
|
#endif /* CONFIG_CHECKPOINT_RESTORE */
|
2012-01-13 01:20:27 +00:00
|
|
|
|
pidns: add reboot_pid_ns() to handle the reboot syscall
In the case of a child pid namespace, rebooting the system does not really
makes sense. When the pid namespace is used in conjunction with the other
namespaces in order to create a linux container, the reboot syscall leads
to some problems.
A container can reboot the host. That can be fixed by dropping the
sys_reboot capability but we are unable to correctly to poweroff/
halt/reboot a container and the container stays stuck at the shutdown time
with the container's init process waiting indefinitively.
After several attempts, no solution from userspace was found to reliabily
handle the shutdown from a container.
This patch propose to make the init process of the child pid namespace to
exit with a signal status set to : SIGINT if the child pid namespace
called "halt/poweroff" and SIGHUP if the child pid namespace called
"reboot". When the reboot syscall is called and we are not in the initial
pid namespace, we kill the pid namespace for "HALT", "POWEROFF",
"RESTART", and "RESTART2". Otherwise we return EINVAL.
Returning EINVAL is also an easy way to check if this feature is supported
by the kernel when invoking another 'reboot' option like CAD.
By this way the parent process of the child pid namespace knows if it
rebooted or not and can take the right decision.
Test case:
==========
#include <alloca.h>
#include <stdio.h>
#include <sched.h>
#include <unistd.h>
#include <signal.h>
#include <sys/reboot.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <linux/reboot.h>
static int do_reboot(void *arg)
{
int *cmd = arg;
if (reboot(*cmd))
printf("failed to reboot(%d): %m\n", *cmd);
}
int test_reboot(int cmd, int sig)
{
long stack_size = 4096;
void *stack = alloca(stack_size) + stack_size;
int status;
pid_t ret;
ret = clone(do_reboot, stack, CLONE_NEWPID | SIGCHLD, &cmd);
if (ret < 0) {
printf("failed to clone: %m\n");
return -1;
}
if (wait(&status) < 0) {
printf("unexpected wait error: %m\n");
return -1;
}
if (!WIFSIGNALED(status)) {
printf("child process exited but was not signaled\n");
return -1;
}
if (WTERMSIG(status) != sig) {
printf("signal termination is not the one expected\n");
return -1;
}
return 0;
}
int main(int argc, char *argv[])
{
int status;
status = test_reboot(LINUX_REBOOT_CMD_RESTART, SIGHUP);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_RESTART) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_RESTART2, SIGHUP);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_RESTART2) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_HALT, SIGINT);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_HALT) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_POWER_OFF, SIGINT);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_POWERR_OFF) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_CAD_ON, -1);
if (status >= 0) {
printf("reboot(LINUX_REBOOT_CMD_CAD_ON) should have failed\n");
return 1;
}
printf("reboot(LINUX_REBOOT_CMD_CAD_ON) has failed as expected\n");
return 0;
}
[akpm@linux-foundation.org: tweak and add comments]
[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Tested-by: Serge Hallyn <serge.hallyn@canonical.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-28 21:42:51 +00:00
|
|
|
int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
|
|
|
|
{
|
|
|
|
if (pid_ns == &init_pid_ns)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
switch (cmd) {
|
|
|
|
case LINUX_REBOOT_CMD_RESTART2:
|
|
|
|
case LINUX_REBOOT_CMD_RESTART:
|
|
|
|
pid_ns->reboot = SIGHUP;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case LINUX_REBOOT_CMD_POWER_OFF:
|
|
|
|
case LINUX_REBOOT_CMD_HALT:
|
|
|
|
pid_ns->reboot = SIGINT;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
read_lock(&tasklist_lock);
|
|
|
|
force_sig(SIGKILL, pid_ns->child_reaper);
|
|
|
|
read_unlock(&tasklist_lock);
|
|
|
|
|
|
|
|
do_exit(0);
|
|
|
|
|
|
|
|
/* Not reached */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-03-08 02:17:03 +00:00
|
|
|
static void *pidns_get(struct task_struct *task)
|
|
|
|
{
|
|
|
|
struct pid_namespace *ns;
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
ns = get_pid_ns(task_active_pid_ns(task));
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
return ns;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pidns_put(void *ns)
|
|
|
|
{
|
|
|
|
put_pid_ns(ns);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pidns_install(struct nsproxy *nsproxy, void *ns)
|
|
|
|
{
|
|
|
|
struct pid_namespace *active = task_active_pid_ns(current);
|
|
|
|
struct pid_namespace *ancestor, *new = ns;
|
|
|
|
|
2012-12-14 15:55:36 +00:00
|
|
|
if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
|
|
|
|
!nsown_capable(CAP_SYS_ADMIN))
|
2010-03-08 02:17:03 +00:00
|
|
|
return -EPERM;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Only allow entering the current active pid namespace
|
|
|
|
* or a child of the current active pid namespace.
|
|
|
|
*
|
|
|
|
* This is required for fork to return a usable pid value and
|
|
|
|
* this maintains the property that processes and their
|
|
|
|
* children can not escape their current pid namespace.
|
|
|
|
*/
|
|
|
|
if (new->level < active->level)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
ancestor = new;
|
|
|
|
while (ancestor->level > active->level)
|
|
|
|
ancestor = ancestor->parent;
|
|
|
|
if (ancestor != active)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
put_pid_ns(nsproxy->pid_ns);
|
|
|
|
nsproxy->pid_ns = get_pid_ns(new);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-06-15 17:21:48 +00:00
|
|
|
static unsigned int pidns_inum(void *ns)
|
|
|
|
{
|
|
|
|
struct pid_namespace *pid_ns = ns;
|
|
|
|
return pid_ns->proc_inum;
|
|
|
|
}
|
|
|
|
|
2010-03-08 02:17:03 +00:00
|
|
|
const struct proc_ns_operations pidns_operations = {
|
|
|
|
.name = "pid",
|
|
|
|
.type = CLONE_NEWPID,
|
|
|
|
.get = pidns_get,
|
|
|
|
.put = pidns_put,
|
|
|
|
.install = pidns_install,
|
2011-06-15 17:21:48 +00:00
|
|
|
.inum = pidns_inum,
|
2010-03-08 02:17:03 +00:00
|
|
|
};
|
|
|
|
|
2008-02-08 12:18:24 +00:00
|
|
|
static __init int pid_namespaces_init(void)
|
|
|
|
{
|
|
|
|
pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
|
2012-05-31 23:26:42 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
2012-01-13 01:20:27 +00:00
|
|
|
register_sysctl_paths(kern_path, pid_ns_ctl_table);
|
2012-05-31 23:26:42 +00:00
|
|
|
#endif
|
2008-02-08 12:18:24 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
__initcall(pid_namespaces_init);
|