linux/fs/logfs/super.c

672 lines
17 KiB
C
Raw Normal View History

/*
* fs/logfs/super.c
*
* As should be obvious for Linux kernel code, license is GPLv2
*
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
*
* Generally contains mount/umount code and also serves as a dump area for
* any functions that don't fit elsewhere and neither justify a file of their
* own.
*/
#include "logfs.h"
#include <linux/bio.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/mtd/mtd.h>
#include <linux/statfs.h>
#include <linux/buffer_head.h>
static DEFINE_MUTEX(emergency_mutex);
static struct page *emergency_page;
struct page *emergency_read_begin(struct address_space *mapping, pgoff_t index)
{
filler_t *filler = (filler_t *)mapping->a_ops->readpage;
struct page *page;
int err;
page = read_cache_page(mapping, index, filler, NULL);
if (page)
return page;
/* No more pages available, switch to emergency page */
printk(KERN_INFO"Logfs: Using emergency page\n");
mutex_lock(&emergency_mutex);
err = filler(NULL, emergency_page);
if (err) {
mutex_unlock(&emergency_mutex);
printk(KERN_EMERG"Logfs: Error reading emergency page\n");
return ERR_PTR(err);
}
return emergency_page;
}
void emergency_read_end(struct page *page)
{
if (page == emergency_page)
mutex_unlock(&emergency_mutex);
else
page_cache_release(page);
}
static void dump_segfile(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
struct logfs_segment_entry se;
u32 segno;
for (segno = 0; segno < super->s_no_segs; segno++) {
logfs_get_segment_entry(sb, segno, &se);
printk("%3x: %6x %8x", segno, be32_to_cpu(se.ec_level),
be32_to_cpu(se.valid));
if (++segno < super->s_no_segs) {
logfs_get_segment_entry(sb, segno, &se);
printk(" %6x %8x", be32_to_cpu(se.ec_level),
be32_to_cpu(se.valid));
}
if (++segno < super->s_no_segs) {
logfs_get_segment_entry(sb, segno, &se);
printk(" %6x %8x", be32_to_cpu(se.ec_level),
be32_to_cpu(se.valid));
}
if (++segno < super->s_no_segs) {
logfs_get_segment_entry(sb, segno, &se);
printk(" %6x %8x", be32_to_cpu(se.ec_level),
be32_to_cpu(se.valid));
}
printk("\n");
}
}
/*
* logfs_crash_dump - dump debug information to device
*
* The LogFS superblock only occupies part of a segment. This function will
* write as much debug information as it can gather into the spare space.
*/
void logfs_crash_dump(struct super_block *sb)
{
dump_segfile(sb);
}
/*
* TODO: move to lib/string.c
*/
/**
* memchr_inv - Find a character in an area of memory.
* @s: The memory area
* @c: The byte to search for
* @n: The size of the area.
*
* returns the address of the first character other than @c, or %NULL
* if the whole buffer contains just @c.
*/
void *memchr_inv(const void *s, int c, size_t n)
{
const unsigned char *p = s;
while (n-- != 0)
if ((unsigned char)c != *p++)
return (void *)(p - 1);
return NULL;
}
/*
* FIXME: There should be a reserve for root, similar to ext2.
*/
int logfs_statfs(struct dentry *dentry, struct kstatfs *stats)
{
struct super_block *sb = dentry->d_sb;
struct logfs_super *super = logfs_super(sb);
stats->f_type = LOGFS_MAGIC_U32;
stats->f_bsize = sb->s_blocksize;
stats->f_blocks = super->s_size >> LOGFS_BLOCK_BITS >> 3;
stats->f_bfree = super->s_free_bytes >> sb->s_blocksize_bits;
stats->f_bavail = super->s_free_bytes >> sb->s_blocksize_bits;
stats->f_files = 0;
stats->f_ffree = 0;
stats->f_namelen = LOGFS_MAX_NAMELEN;
return 0;
}
static int logfs_sb_set(struct super_block *sb, void *_super)
{
struct logfs_super *super = _super;
sb->s_fs_info = super;
sb->s_mtd = super->s_mtd;
sb->s_bdev = super->s_bdev;
#ifdef CONFIG_BLOCK
if (sb->s_bdev)
sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
#endif
#ifdef CONFIG_MTD
if (sb->s_mtd)
sb->s_bdi = sb->s_mtd->backing_dev_info;
#endif
return 0;
}
static int logfs_sb_test(struct super_block *sb, void *_super)
{
struct logfs_super *super = _super;
struct mtd_info *mtd = super->s_mtd;
if (mtd && sb->s_mtd == mtd)
return 1;
if (super->s_bdev && sb->s_bdev == super->s_bdev)
return 1;
return 0;
}
static void set_segment_header(struct logfs_segment_header *sh, u8 type,
u8 level, u32 segno, u32 ec)
{
sh->pad = 0;
sh->type = type;
sh->level = level;
sh->segno = cpu_to_be32(segno);
sh->ec = cpu_to_be32(ec);
sh->gec = cpu_to_be64(segno);
sh->crc = logfs_crc32(sh, LOGFS_SEGMENT_HEADERSIZE, 4);
}
static void logfs_write_ds(struct super_block *sb, struct logfs_disk_super *ds,
u32 segno, u32 ec)
{
struct logfs_super *super = logfs_super(sb);
struct logfs_segment_header *sh = &ds->ds_sh;
int i;
memset(ds, 0, sizeof(*ds));
set_segment_header(sh, SEG_SUPER, 0, segno, ec);
ds->ds_ifile_levels = super->s_ifile_levels;
ds->ds_iblock_levels = super->s_iblock_levels;
ds->ds_data_levels = super->s_data_levels; /* XXX: Remove */
ds->ds_segment_shift = super->s_segshift;
ds->ds_block_shift = sb->s_blocksize_bits;
ds->ds_write_shift = super->s_writeshift;
ds->ds_filesystem_size = cpu_to_be64(super->s_size);
ds->ds_segment_size = cpu_to_be32(super->s_segsize);
ds->ds_bad_seg_reserve = cpu_to_be32(super->s_bad_seg_reserve);
ds->ds_feature_incompat = cpu_to_be64(super->s_feature_incompat);
ds->ds_feature_ro_compat= cpu_to_be64(super->s_feature_ro_compat);
ds->ds_feature_compat = cpu_to_be64(super->s_feature_compat);
ds->ds_feature_flags = cpu_to_be64(super->s_feature_flags);
ds->ds_root_reserve = cpu_to_be64(super->s_root_reserve);
ds->ds_speed_reserve = cpu_to_be64(super->s_speed_reserve);
journal_for_each(i)
ds->ds_journal_seg[i] = cpu_to_be32(super->s_journal_seg[i]);
ds->ds_magic = cpu_to_be64(LOGFS_MAGIC);
ds->ds_crc = logfs_crc32(ds, sizeof(*ds),
LOGFS_SEGMENT_HEADERSIZE + 12);
}
static int write_one_sb(struct super_block *sb,
struct page *(*find_sb)(struct super_block *sb, u64 *ofs))
{
struct logfs_super *super = logfs_super(sb);
struct logfs_disk_super *ds;
struct logfs_segment_entry se;
struct page *page;
u64 ofs;
u32 ec, segno;
int err;
page = find_sb(sb, &ofs);
if (!page)
return -EIO;
ds = page_address(page);
segno = seg_no(sb, ofs);
logfs_get_segment_entry(sb, segno, &se);
ec = be32_to_cpu(se.ec_level) >> 4;
ec++;
logfs_set_segment_erased(sb, segno, ec, 0);
logfs_write_ds(sb, ds, segno, ec);
err = super->s_devops->write_sb(sb, page);
page_cache_release(page);
return err;
}
int logfs_write_sb(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
int err;
/* First superblock */
err = write_one_sb(sb, super->s_devops->find_first_sb);
if (err)
return err;
/* Last superblock */
err = write_one_sb(sb, super->s_devops->find_last_sb);
if (err)
return err;
return 0;
}
static int ds_cmp(const void *ds0, const void *ds1)
{
size_t len = sizeof(struct logfs_disk_super);
/* We know the segment headers differ, so ignore them */
len -= LOGFS_SEGMENT_HEADERSIZE;
ds0 += LOGFS_SEGMENT_HEADERSIZE;
ds1 += LOGFS_SEGMENT_HEADERSIZE;
return memcmp(ds0, ds1, len);
}
static int logfs_recover_sb(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
struct logfs_disk_super _ds0, *ds0 = &_ds0;
struct logfs_disk_super _ds1, *ds1 = &_ds1;
int err, valid0, valid1;
/* read first superblock */
err = wbuf_read(sb, super->s_sb_ofs[0], sizeof(*ds0), ds0);
if (err)
return err;
/* read last superblock */
err = wbuf_read(sb, super->s_sb_ofs[1], sizeof(*ds1), ds1);
if (err)
return err;
valid0 = logfs_check_ds(ds0) == 0;
valid1 = logfs_check_ds(ds1) == 0;
if (!valid0 && valid1) {
printk(KERN_INFO"First superblock is invalid - fixing.\n");
return write_one_sb(sb, super->s_devops->find_first_sb);
}
if (valid0 && !valid1) {
printk(KERN_INFO"Last superblock is invalid - fixing.\n");
return write_one_sb(sb, super->s_devops->find_last_sb);
}
if (valid0 && valid1 && ds_cmp(ds0, ds1)) {
printk(KERN_INFO"Superblocks don't match - fixing.\n");
return logfs_write_sb(sb);
}
/* If neither is valid now, something's wrong. Didn't we properly
* check them before?!? */
BUG_ON(!valid0 && !valid1);
return 0;
}
static int logfs_make_writeable(struct super_block *sb)
{
int err;
err = logfs_open_segfile(sb);
if (err)
return err;
/* Repair any broken superblock copies */
err = logfs_recover_sb(sb);
if (err)
return err;
/* Check areas for trailing unaccounted data */
err = logfs_check_areas(sb);
if (err)
return err;
/* Do one GC pass before any data gets dirtied */
logfs_gc_pass(sb);
/* after all initializations are done, replay the journal
* for rw-mounts, if necessary */
err = logfs_replay_journal(sb);
if (err)
return err;
return 0;
}
static int logfs_get_sb_final(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
struct inode *rootdir;
int err;
/* root dir */
rootdir = logfs_iget(sb, LOGFS_INO_ROOT);
if (IS_ERR(rootdir))
goto fail;
sb->s_root = d_alloc_root(rootdir);
if (!sb->s_root) {
iput(rootdir);
goto fail;
}
/* at that point we know that ->put_super() will be called */
super->s_erase_page = alloc_pages(GFP_KERNEL, 0);
if (!super->s_erase_page)
return -ENOMEM;
memset(page_address(super->s_erase_page), 0xFF, PAGE_SIZE);
/* FIXME: check for read-only mounts */
err = logfs_make_writeable(sb);
if (err) {
__free_page(super->s_erase_page);
return err;
}
log_super("LogFS: Finished mounting\n");
return 0;
fail:
iput(super->s_master_inode);
iput(super->s_segfile_inode);
iput(super->s_mapping_inode);
return -EIO;
}
int logfs_check_ds(struct logfs_disk_super *ds)
{
struct logfs_segment_header *sh = &ds->ds_sh;
if (ds->ds_magic != cpu_to_be64(LOGFS_MAGIC))
return -EINVAL;
if (sh->crc != logfs_crc32(sh, LOGFS_SEGMENT_HEADERSIZE, 4))
return -EINVAL;
if (ds->ds_crc != logfs_crc32(ds, sizeof(*ds),
LOGFS_SEGMENT_HEADERSIZE + 12))
return -EINVAL;
return 0;
}
static struct page *find_super_block(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
struct page *first, *last;
first = super->s_devops->find_first_sb(sb, &super->s_sb_ofs[0]);
if (!first || IS_ERR(first))
return NULL;
last = super->s_devops->find_last_sb(sb, &super->s_sb_ofs[1]);
if (!last || IS_ERR(last)) {
page_cache_release(first);
return NULL;
}
if (!logfs_check_ds(page_address(first))) {
page_cache_release(last);
return first;
}
/* First one didn't work, try the second superblock */
if (!logfs_check_ds(page_address(last))) {
page_cache_release(first);
return last;
}
/* Neither worked, sorry folks */
page_cache_release(first);
page_cache_release(last);
return NULL;
}
static int __logfs_read_sb(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
struct page *page;
struct logfs_disk_super *ds;
int i;
page = find_super_block(sb);
if (!page)
return -EINVAL;
ds = page_address(page);
super->s_size = be64_to_cpu(ds->ds_filesystem_size);
super->s_root_reserve = be64_to_cpu(ds->ds_root_reserve);
super->s_speed_reserve = be64_to_cpu(ds->ds_speed_reserve);
super->s_bad_seg_reserve = be32_to_cpu(ds->ds_bad_seg_reserve);
super->s_segsize = 1 << ds->ds_segment_shift;
super->s_segmask = (1 << ds->ds_segment_shift) - 1;
super->s_segshift = ds->ds_segment_shift;
sb->s_blocksize = 1 << ds->ds_block_shift;
sb->s_blocksize_bits = ds->ds_block_shift;
super->s_writesize = 1 << ds->ds_write_shift;
super->s_writeshift = ds->ds_write_shift;
super->s_no_segs = super->s_size >> super->s_segshift;
super->s_no_blocks = super->s_segsize >> sb->s_blocksize_bits;
super->s_feature_incompat = be64_to_cpu(ds->ds_feature_incompat);
super->s_feature_ro_compat = be64_to_cpu(ds->ds_feature_ro_compat);
super->s_feature_compat = be64_to_cpu(ds->ds_feature_compat);
super->s_feature_flags = be64_to_cpu(ds->ds_feature_flags);
journal_for_each(i)
super->s_journal_seg[i] = be32_to_cpu(ds->ds_journal_seg[i]);
super->s_ifile_levels = ds->ds_ifile_levels;
super->s_iblock_levels = ds->ds_iblock_levels;
super->s_data_levels = ds->ds_data_levels;
super->s_total_levels = super->s_ifile_levels + super->s_iblock_levels
+ super->s_data_levels;
page_cache_release(page);
return 0;
}
2010-03-05 15:07:04 +00:00
static int logfs_read_sb(struct super_block *sb, int read_only)
{
struct logfs_super *super = logfs_super(sb);
int ret;
super->s_btree_pool = mempool_create(32, btree_alloc, btree_free, NULL);
if (!super->s_btree_pool)
return -ENOMEM;
btree_init_mempool64(&super->s_shadow_tree.new, super->s_btree_pool);
btree_init_mempool64(&super->s_shadow_tree.old, super->s_btree_pool);
btree_init_mempool32(&super->s_shadow_tree.segment_map,
super->s_btree_pool);
ret = logfs_init_mapping(sb);
if (ret)
return ret;
ret = __logfs_read_sb(sb);
if (ret)
return ret;
2010-03-05 15:07:04 +00:00
if (super->s_feature_incompat & ~LOGFS_FEATURES_INCOMPAT)
return -EIO;
if ((super->s_feature_ro_compat & ~LOGFS_FEATURES_RO_COMPAT) &&
!read_only)
return -EIO;
ret = logfs_init_rw(sb);
if (ret)
return ret;
ret = logfs_init_areas(sb);
if (ret)
return ret;
ret = logfs_init_gc(sb);
if (ret)
return ret;
ret = logfs_init_journal(sb);
if (ret)
return ret;
return 0;
}
static void logfs_kill_sb(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
log_super("LogFS: Start unmounting\n");
/* Alias entries slow down mount, so evict as many as possible */
sync_filesystem(sb);
logfs_write_anchor(sb);
/*
* From this point on alias entries are simply dropped - and any
* writes to the object store are considered bugs.
*/
super->s_flags |= LOGFS_SB_FLAG_SHUTDOWN;
log_super("LogFS: Now in shutdown\n");
generic_shutdown_super(sb);
BUG_ON(super->s_dirty_used_bytes || super->s_dirty_free_bytes);
logfs_cleanup_gc(sb);
logfs_cleanup_journal(sb);
logfs_cleanup_areas(sb);
logfs_cleanup_rw(sb);
if (super->s_erase_page)
__free_page(super->s_erase_page);
super->s_devops->put_device(super);
logfs_mempool_destroy(super->s_btree_pool);
logfs_mempool_destroy(super->s_alias_pool);
kfree(super);
log_super("LogFS: Finished unmounting\n");
}
static struct dentry *logfs_get_sb_device(struct logfs_super *super,
struct file_system_type *type, int flags)
{
struct super_block *sb;
int err = -ENOMEM;
static int mount_count;
log_super("LogFS: Start mount %x\n", mount_count++);
err = -EINVAL;
sb = sget(type, logfs_sb_test, logfs_sb_set, super);
if (IS_ERR(sb)) {
super->s_devops->put_device(super);
kfree(super);
return ERR_CAST(sb);
}
if (sb->s_root) {
/* Device is already in use */
super->s_devops->put_device(super);
kfree(super);
return dget(sb->s_root);
}
/*
* sb->s_maxbytes is limited to 8TB. On 32bit systems, the page cache
* only covers 16TB and the upper 8TB are used for indirect blocks.
* On 64bit system we could bump up the limit, but that would make
* the filesystem incompatible with 32bit systems.
*/
sb->s_maxbytes = (1ull << 43) - 1;
sb->s_op = &logfs_super_operations;
sb->s_flags = flags | MS_NOATIME;
2010-03-05 15:07:04 +00:00
err = logfs_read_sb(sb, sb->s_flags & MS_RDONLY);
if (err)
goto err1;
sb->s_flags |= MS_ACTIVE;
err = logfs_get_sb_final(sb);
if (err) {
deactivate_locked_super(sb);
return ERR_PTR(err);
}
return dget(sb->s_root);
err1:
/* no ->s_root, no ->put_super() */
iput(super->s_master_inode);
iput(super->s_segfile_inode);
iput(super->s_mapping_inode);
deactivate_locked_super(sb);
return ERR_PTR(err);
}
static struct dentry *logfs_mount(struct file_system_type *type, int flags,
const char *devname, void *data)
{
ulong mtdnr;
struct logfs_super *super;
int err;
super = kzalloc(sizeof(*super), GFP_KERNEL);
if (!super)
return ERR_PTR(-ENOMEM);
mutex_init(&super->s_dirop_mutex);
mutex_init(&super->s_object_alias_mutex);
INIT_LIST_HEAD(&super->s_freeing_list);
if (!devname)
err = logfs_get_sb_bdev(super, type, devname);
else if (strncmp(devname, "mtd", 3))
err = logfs_get_sb_bdev(super, type, devname);
else {
char *garbage;
mtdnr = simple_strtoul(devname+3, &garbage, 0);
if (*garbage)
err = -EINVAL;
else
err = logfs_get_sb_mtd(super, mtdnr);
}
if (err) {
kfree(super);
return ERR_PTR(err);
}
return logfs_get_sb_device(super, type, flags);
}
static struct file_system_type logfs_fs_type = {
.owner = THIS_MODULE,
.name = "logfs",
.mount = logfs_mount,
.kill_sb = logfs_kill_sb,
.fs_flags = FS_REQUIRES_DEV,
};
static int __init logfs_init(void)
{
int ret;
emergency_page = alloc_pages(GFP_KERNEL, 0);
if (!emergency_page)
return -ENOMEM;
ret = logfs_compr_init();
if (ret)
goto out1;
ret = logfs_init_inode_cache();
if (ret)
goto out2;
return register_filesystem(&logfs_fs_type);
out2:
logfs_compr_exit();
out1:
__free_pages(emergency_page, 0);
return ret;
}
static void __exit logfs_exit(void)
{
unregister_filesystem(&logfs_fs_type);
logfs_destroy_inode_cache();
logfs_compr_exit();
__free_pages(emergency_page, 0);
}
module_init(logfs_init);
module_exit(logfs_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
MODULE_DESCRIPTION("scalable flash filesystem");