linux/drivers/net/wireless/ath/ath9k/init.c

873 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include "ath9k.h"
static char *dev_info = "ath9k";
MODULE_AUTHOR("Atheros Communications");
MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
MODULE_LICENSE("Dual BSD/GPL");
static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
module_param_named(debug, ath9k_debug, uint, 0);
MODULE_PARM_DESC(debug, "Debugging mask");
int modparam_nohwcrypt;
module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
int led_blink = 1;
module_param_named(blink, led_blink, int, 0444);
MODULE_PARM_DESC(blink, "Enable LED blink on activity");
/* We use the hw_value as an index into our private channel structure */
#define CHAN2G(_freq, _idx) { \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 20, \
}
#define CHAN5G(_freq, _idx) { \
.band = IEEE80211_BAND_5GHZ, \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 20, \
}
/* Some 2 GHz radios are actually tunable on 2312-2732
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static struct ieee80211_channel ath9k_2ghz_chantable[] = {
CHAN2G(2412, 0), /* Channel 1 */
CHAN2G(2417, 1), /* Channel 2 */
CHAN2G(2422, 2), /* Channel 3 */
CHAN2G(2427, 3), /* Channel 4 */
CHAN2G(2432, 4), /* Channel 5 */
CHAN2G(2437, 5), /* Channel 6 */
CHAN2G(2442, 6), /* Channel 7 */
CHAN2G(2447, 7), /* Channel 8 */
CHAN2G(2452, 8), /* Channel 9 */
CHAN2G(2457, 9), /* Channel 10 */
CHAN2G(2462, 10), /* Channel 11 */
CHAN2G(2467, 11), /* Channel 12 */
CHAN2G(2472, 12), /* Channel 13 */
CHAN2G(2484, 13), /* Channel 14 */
};
/* Some 5 GHz radios are actually tunable on XXXX-YYYY
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static struct ieee80211_channel ath9k_5ghz_chantable[] = {
/* _We_ call this UNII 1 */
CHAN5G(5180, 14), /* Channel 36 */
CHAN5G(5200, 15), /* Channel 40 */
CHAN5G(5220, 16), /* Channel 44 */
CHAN5G(5240, 17), /* Channel 48 */
/* _We_ call this UNII 2 */
CHAN5G(5260, 18), /* Channel 52 */
CHAN5G(5280, 19), /* Channel 56 */
CHAN5G(5300, 20), /* Channel 60 */
CHAN5G(5320, 21), /* Channel 64 */
/* _We_ call this "Middle band" */
CHAN5G(5500, 22), /* Channel 100 */
CHAN5G(5520, 23), /* Channel 104 */
CHAN5G(5540, 24), /* Channel 108 */
CHAN5G(5560, 25), /* Channel 112 */
CHAN5G(5580, 26), /* Channel 116 */
CHAN5G(5600, 27), /* Channel 120 */
CHAN5G(5620, 28), /* Channel 124 */
CHAN5G(5640, 29), /* Channel 128 */
CHAN5G(5660, 30), /* Channel 132 */
CHAN5G(5680, 31), /* Channel 136 */
CHAN5G(5700, 32), /* Channel 140 */
/* _We_ call this UNII 3 */
CHAN5G(5745, 33), /* Channel 149 */
CHAN5G(5765, 34), /* Channel 153 */
CHAN5G(5785, 35), /* Channel 157 */
CHAN5G(5805, 36), /* Channel 161 */
CHAN5G(5825, 37), /* Channel 165 */
};
/* Atheros hardware rate code addition for short premble */
#define SHPCHECK(__hw_rate, __flags) \
((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
#define RATE(_bitrate, _hw_rate, _flags) { \
.bitrate = (_bitrate), \
.flags = (_flags), \
.hw_value = (_hw_rate), \
.hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
}
static struct ieee80211_rate ath9k_legacy_rates[] = {
RATE(10, 0x1b, 0),
RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(60, 0x0b, 0),
RATE(90, 0x0f, 0),
RATE(120, 0x0a, 0),
RATE(180, 0x0e, 0),
RATE(240, 0x09, 0),
RATE(360, 0x0d, 0),
RATE(480, 0x08, 0),
RATE(540, 0x0c, 0),
};
static void ath9k_deinit_softc(struct ath_softc *sc);
/*
* Read and write, they both share the same lock. We do this to serialize
* reads and writes on Atheros 802.11n PCI devices only. This is required
* as the FIFO on these devices can only accept sanely 2 requests.
*/
static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
{
struct ath_hw *ah = (struct ath_hw *) hw_priv;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_softc *sc = (struct ath_softc *) common->priv;
if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
unsigned long flags;
spin_lock_irqsave(&sc->sc_serial_rw, flags);
iowrite32(val, sc->mem + reg_offset);
spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
} else
iowrite32(val, sc->mem + reg_offset);
}
static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
{
struct ath_hw *ah = (struct ath_hw *) hw_priv;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_softc *sc = (struct ath_softc *) common->priv;
u32 val;
if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
unsigned long flags;
spin_lock_irqsave(&sc->sc_serial_rw, flags);
val = ioread32(sc->mem + reg_offset);
spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
} else
val = ioread32(sc->mem + reg_offset);
return val;
}
static const struct ath_ops ath9k_common_ops = {
.read = ath9k_ioread32,
.write = ath9k_iowrite32,
};
/**************************/
/* Initialization */
/**************************/
static void setup_ht_cap(struct ath_softc *sc,
struct ieee80211_sta_ht_cap *ht_info)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
u8 tx_streams, rx_streams;
int i, max_streams;
ht_info->ht_supported = true;
ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_SM_PS |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_DSSSCCK40;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_LDPC)
ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
if (AR_SREV_9300_20_OR_LATER(ah))
max_streams = 3;
else
max_streams = 2;
if (AR_SREV_9280_10_OR_LATER(ah)) {
if (max_streams >= 2)
ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
}
/* set up supported mcs set */
memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
tx_streams = ath9k_cmn_count_streams(common->tx_chainmask, max_streams);
rx_streams = ath9k_cmn_count_streams(common->rx_chainmask, max_streams);
ath_print(common, ATH_DBG_CONFIG,
"TX streams %d, RX streams: %d\n",
tx_streams, rx_streams);
if (tx_streams != rx_streams) {
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
ht_info->mcs.tx_params |= ((tx_streams - 1) <<
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
}
for (i = 0; i < rx_streams; i++)
ht_info->mcs.rx_mask[i] = 0xff;
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
}
static int ath9k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
return ath_reg_notifier_apply(wiphy, request, reg);
}
/*
* This function will allocate both the DMA descriptor structure, and the
* buffers it contains. These are used to contain the descriptors used
* by the system.
*/
int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
struct list_head *head, const char *name,
int nbuf, int ndesc, bool is_tx)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
#define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
u8 *ds;
struct ath_buf *bf;
int i, bsize, error, desc_len;
ath_print(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
name, nbuf, ndesc);
INIT_LIST_HEAD(head);
if (is_tx)
desc_len = sc->sc_ah->caps.tx_desc_len;
else
desc_len = sizeof(struct ath_desc);
/* ath_desc must be a multiple of DWORDs */
if ((desc_len % 4) != 0) {
ath_print(common, ATH_DBG_FATAL,
"ath_desc not DWORD aligned\n");
BUG_ON((desc_len % 4) != 0);
error = -ENOMEM;
goto fail;
}
dd->dd_desc_len = desc_len * nbuf * ndesc;
/*
* Need additional DMA memory because we can't use
* descriptors that cross the 4K page boundary. Assume
* one skipped descriptor per 4K page.
*/
if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
u32 ndesc_skipped =
ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
u32 dma_len;
while (ndesc_skipped) {
dma_len = ndesc_skipped * desc_len;
dd->dd_desc_len += dma_len;
ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
}
}
/* allocate descriptors */
dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
&dd->dd_desc_paddr, GFP_KERNEL);
if (dd->dd_desc == NULL) {
error = -ENOMEM;
goto fail;
}
ds = (u8 *) dd->dd_desc;
ath_print(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
name, ds, (u32) dd->dd_desc_len,
ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
/* allocate buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = kzalloc(bsize, GFP_KERNEL);
if (bf == NULL) {
error = -ENOMEM;
goto fail2;
}
dd->dd_bufptr = bf;
for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
if (!(sc->sc_ah->caps.hw_caps &
ATH9K_HW_CAP_4KB_SPLITTRANS)) {
/*
* Skip descriptor addresses which can cause 4KB
* boundary crossing (addr + length) with a 32 dword
* descriptor fetch.
*/
while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
BUG_ON((caddr_t) bf->bf_desc >=
((caddr_t) dd->dd_desc +
dd->dd_desc_len));
ds += (desc_len * ndesc);
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
}
}
list_add_tail(&bf->list, head);
}
return 0;
fail2:
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
fail:
memset(dd, 0, sizeof(*dd));
return error;
#undef ATH_DESC_4KB_BOUND_CHECK
#undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
#undef DS2PHYS
}
static void ath9k_init_crypto(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
int i = 0;
/* Get the hardware key cache size. */
common->keymax = sc->sc_ah->caps.keycache_size;
if (common->keymax > ATH_KEYMAX) {
ath_print(common, ATH_DBG_ANY,
"Warning, using only %u entries in %u key cache\n",
ATH_KEYMAX, common->keymax);
common->keymax = ATH_KEYMAX;
}
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < common->keymax; i++)
ath9k_hw_keyreset(sc->sc_ah, (u16) i);
/*
* Check whether the separate key cache entries
* are required to handle both tx+rx MIC keys.
* With split mic keys the number of stations is limited
* to 27 otherwise 59.
*/
if (!(sc->sc_ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA))
common->splitmic = 1;
}
static int ath9k_init_btcoex(struct ath_softc *sc)
{
int r, qnum;
switch (sc->sc_ah->btcoex_hw.scheme) {
case ATH_BTCOEX_CFG_NONE:
break;
case ATH_BTCOEX_CFG_2WIRE:
ath9k_hw_btcoex_init_2wire(sc->sc_ah);
break;
case ATH_BTCOEX_CFG_3WIRE:
ath9k_hw_btcoex_init_3wire(sc->sc_ah);
r = ath_init_btcoex_timer(sc);
if (r)
return -1;
qnum = sc->tx.hwq_map[WME_AC_BE];
ath9k_hw_init_btcoex_hw(sc->sc_ah, qnum);
sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
break;
default:
WARN_ON(1);
break;
}
return 0;
}
static int ath9k_init_queues(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
int i = 0;
for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
sc->tx.hwq_map[i] = -1;
sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
if (sc->beacon.beaconq == -1) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup a beacon xmit queue\n");
goto err;
}
sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
if (sc->beacon.cabq == NULL) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup CAB xmit queue\n");
goto err;
}
sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
ath_cabq_update(sc);
if (!ath_tx_setup(sc, WME_AC_BK)) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup xmit queue for BK traffic\n");
goto err;
}
if (!ath_tx_setup(sc, WME_AC_BE)) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup xmit queue for BE traffic\n");
goto err;
}
if (!ath_tx_setup(sc, WME_AC_VI)) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup xmit queue for VI traffic\n");
goto err;
}
if (!ath_tx_setup(sc, WME_AC_VO)) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup xmit queue for VO traffic\n");
goto err;
}
return 0;
err:
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
return -EIO;
}
static void ath9k_init_channels_rates(struct ath_softc *sc)
{
if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes)) {
sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
ARRAY_SIZE(ath9k_2ghz_chantable);
sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
ARRAY_SIZE(ath9k_legacy_rates);
}
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
ARRAY_SIZE(ath9k_5ghz_chantable);
sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
ath9k_legacy_rates + 4;
sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
ARRAY_SIZE(ath9k_legacy_rates) - 4;
}
}
static void ath9k_init_misc(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
int i = 0;
common->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
sc->config.txpowlimit = ATH_TXPOWER_MAX;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
sc->sc_flags |= SC_OP_TXAGGR;
sc->sc_flags |= SC_OP_RXAGGR;
}
common->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
common->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
ath9k_hw_set_diversity(sc->sc_ah, true);
sc->rx.defant = ath9k_hw_getdefantenna(sc->sc_ah);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
sc->beacon.slottime = ATH9K_SLOT_TIME_9;
for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
sc->beacon.bslot[i] = NULL;
sc->beacon.bslot_aphy[i] = NULL;
}
}
static int ath9k_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
const struct ath_bus_ops *bus_ops)
{
struct ath_hw *ah = NULL;
struct ath_common *common;
int ret = 0, i;
int csz = 0;
ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
if (!ah)
return -ENOMEM;
ah->hw_version.devid = devid;
ah->hw_version.subsysid = subsysid;
sc->sc_ah = ah;
common = ath9k_hw_common(ah);
common->ops = &ath9k_common_ops;
common->bus_ops = bus_ops;
common->ah = ah;
common->hw = sc->hw;
common->priv = sc;
common->debug_mask = ath9k_debug;
spin_lock_init(&sc->wiphy_lock);
spin_lock_init(&sc->sc_resetlock);
spin_lock_init(&sc->sc_serial_rw);
spin_lock_init(&sc->sc_pm_lock);
mutex_init(&sc->mutex);
tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
(unsigned long)sc);
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
ath_read_cachesize(common, &csz);
common->cachelsz = csz << 2; /* convert to bytes */
/* Initializes the hardware for all supported chipsets */
ret = ath9k_hw_init(ah);
if (ret)
goto err_hw;
ret = ath9k_init_debug(ah);
if (ret) {
ath_print(common, ATH_DBG_FATAL,
"Unable to create debugfs files\n");
goto err_debug;
}
ret = ath9k_init_queues(sc);
if (ret)
goto err_queues;
ret = ath9k_init_btcoex(sc);
if (ret)
goto err_btcoex;
ath9k_init_crypto(sc);
ath9k_init_channels_rates(sc);
ath9k_init_misc(sc);
return 0;
err_btcoex:
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
err_queues:
ath9k_exit_debug(ah);
err_debug:
ath9k_hw_deinit(ah);
err_hw:
tasklet_kill(&sc->intr_tq);
tasklet_kill(&sc->bcon_tasklet);
kfree(ah);
sc->sc_ah = NULL;
return ret;
}
void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_PS_NULLFUNC_STACK |
IEEE80211_HW_SPECTRUM_MGMT |
IEEE80211_HW_REPORTS_TX_ACK_STATUS;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
hw->flags |= IEEE80211_HW_MFP_CAPABLE;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT);
hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
hw->queues = 4;
hw->max_rates = 4;
hw->channel_change_time = 5000;
hw->max_listen_interval = 10;
hw->max_rate_tries = 10;
hw->sta_data_size = sizeof(struct ath_node);
hw->vif_data_size = sizeof(struct ath_vif);
hw->rate_control_algorithm = "ath9k_rate_control";
if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes))
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
&sc->sbands[IEEE80211_BAND_2GHZ];
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
&sc->sbands[IEEE80211_BAND_5GHZ];
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes))
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
}
SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
}
int ath9k_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
const struct ath_bus_ops *bus_ops)
{
struct ieee80211_hw *hw = sc->hw;
struct ath_common *common;
struct ath_hw *ah;
int error = 0;
struct ath_regulatory *reg;
/* Bring up device */
error = ath9k_init_softc(devid, sc, subsysid, bus_ops);
if (error != 0)
goto error_init;
ah = sc->sc_ah;
common = ath9k_hw_common(ah);
ath9k_set_hw_capab(sc, hw);
/* Initialize regulatory */
error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
ath9k_reg_notifier);
if (error)
goto error_regd;
reg = &common->regulatory;
/* Setup TX DMA */
error = ath_tx_init(sc, ATH_TXBUF);
if (error != 0)
goto error_tx;
/* Setup RX DMA */
error = ath_rx_init(sc, ATH_RXBUF);
if (error != 0)
goto error_rx;
/* Register with mac80211 */
error = ieee80211_register_hw(hw);
if (error)
goto error_register;
/* Handle world regulatory */
if (!ath_is_world_regd(reg)) {
error = regulatory_hint(hw->wiphy, reg->alpha2);
if (error)
goto error_world;
}
INIT_WORK(&sc->hw_check_work, ath_hw_check);
INIT_WORK(&sc->paprd_work, ath_paprd_calibrate);
INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
sc->wiphy_scheduler_int = msecs_to_jiffies(500);
ath_init_leds(sc);
ath_start_rfkill_poll(sc);
return 0;
error_world:
ieee80211_unregister_hw(hw);
error_register:
ath_rx_cleanup(sc);
error_rx:
ath_tx_cleanup(sc);
error_tx:
/* Nothing */
error_regd:
ath9k_deinit_softc(sc);
error_init:
return error;
}
/*****************************/
/* De-Initialization */
/*****************************/
static void ath9k_deinit_softc(struct ath_softc *sc)
{
int i = 0;
if ((sc->btcoex.no_stomp_timer) &&
sc->sc_ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
ath_gen_timer_free(sc->sc_ah, sc->btcoex.no_stomp_timer);
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
ath9k_exit_debug(sc->sc_ah);
ath9k_hw_deinit(sc->sc_ah);
tasklet_kill(&sc->intr_tq);
tasklet_kill(&sc->bcon_tasklet);
kfree(sc->sc_ah);
sc->sc_ah = NULL;
}
void ath9k_deinit_device(struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
int i = 0;
ath9k_ps_wakeup(sc);
wiphy_rfkill_stop_polling(sc->hw->wiphy);
ath_deinit_leds(sc);
for (i = 0; i < sc->num_sec_wiphy; i++) {
struct ath_wiphy *aphy = sc->sec_wiphy[i];
if (aphy == NULL)
continue;
sc->sec_wiphy[i] = NULL;
ieee80211_unregister_hw(aphy->hw);
ieee80211_free_hw(aphy->hw);
}
kfree(sc->sec_wiphy);
ieee80211_unregister_hw(hw);
ath_rx_cleanup(sc);
ath_tx_cleanup(sc);
ath9k_deinit_softc(sc);
}
void ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd,
struct list_head *head)
{
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
INIT_LIST_HEAD(head);
kfree(dd->dd_bufptr);
memset(dd, 0, sizeof(*dd));
}
/************************/
/* Module Hooks */
/************************/
static int __init ath9k_init(void)
{
int error;
/* Register rate control algorithm */
error = ath_rate_control_register();
if (error != 0) {
printk(KERN_ERR
"ath9k: Unable to register rate control "
"algorithm: %d\n",
error);
goto err_out;
}
error = ath9k_debug_create_root();
if (error) {
printk(KERN_ERR
"ath9k: Unable to create debugfs root: %d\n",
error);
goto err_rate_unregister;
}
error = ath_pci_init();
if (error < 0) {
printk(KERN_ERR
"ath9k: No PCI devices found, driver not installed.\n");
error = -ENODEV;
goto err_remove_root;
}
error = ath_ahb_init();
if (error < 0) {
error = -ENODEV;
goto err_pci_exit;
}
return 0;
err_pci_exit:
ath_pci_exit();
err_remove_root:
ath9k_debug_remove_root();
err_rate_unregister:
ath_rate_control_unregister();
err_out:
return error;
}
module_init(ath9k_init);
static void __exit ath9k_exit(void)
{
ath_ahb_exit();
ath_pci_exit();
ath9k_debug_remove_root();
ath_rate_control_unregister();
printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
}
module_exit(ath9k_exit);