linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_sriov.c

3138 lines
87 KiB
C
Raw Normal View History

/* bnx2x_sriov.c: Broadcom Everest network driver.
*
* Copyright 2009-2013 Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available
* at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*
* Maintained by: Ariel Elior <ariel.elior@qlogic.com>
* Written by: Shmulik Ravid
* Ariel Elior <ariel.elior@qlogic.com>
*
*/
#include "bnx2x.h"
#include "bnx2x_init.h"
#include "bnx2x_cmn.h"
#include "bnx2x_sp.h"
#include <linux/crc32.h>
#include <linux/if_vlan.h>
static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
struct bnx2x_virtf **vf,
struct pf_vf_bulletin_content **bulletin,
bool test_queue);
/* General service functions */
static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
u16 pf_id)
{
REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
pf_id);
REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
pf_id);
REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
pf_id);
REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
pf_id);
}
static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
u8 enable)
{
REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
enable);
REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
enable);
REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
enable);
REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
enable);
}
int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
{
int idx;
for_each_vf(bp, idx)
if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
break;
return idx;
}
static
struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
{
u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
}
static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
u8 igu_sb_id, u8 segment, u16 index, u8 op,
u8 update)
{
/* acking a VF sb through the PF - use the GRC */
u32 ctl;
u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
u32 func_encode = vf->abs_vfid;
u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
struct igu_regular cmd_data = {0};
cmd_data.sb_id_and_flags =
((index << IGU_REGULAR_SB_INDEX_SHIFT) |
(segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
(update << IGU_REGULAR_BUPDATE_SHIFT) |
(op << IGU_REGULAR_ENABLE_INT_SHIFT));
ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
func_encode << IGU_CTRL_REG_FID_SHIFT |
IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
cmd_data.sb_id_and_flags, igu_addr_data);
REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
mmiowb();
barrier();
DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
ctl, igu_addr_ctl);
REG_WR(bp, igu_addr_ctl, ctl);
mmiowb();
barrier();
}
static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
struct bnx2x_virtf *vf,
bool print_err)
{
if (!bnx2x_leading_vfq(vf, sp_initialized)) {
if (print_err)
BNX2X_ERR("Slowpath objects not yet initialized!\n");
else
DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
return false;
}
return true;
}
/* VFOP operations states */
void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
struct bnx2x_queue_init_params *init_params,
struct bnx2x_queue_setup_params *setup_params,
u16 q_idx, u16 sb_idx)
{
DP(BNX2X_MSG_IOV,
"VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
vf->abs_vfid,
q_idx,
sb_idx,
init_params->tx.sb_cq_index,
init_params->tx.hc_rate,
setup_params->flags,
setup_params->txq_params.traffic_type);
}
void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
struct bnx2x_queue_init_params *init_params,
struct bnx2x_queue_setup_params *setup_params,
u16 q_idx, u16 sb_idx)
{
struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
"sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
vf->abs_vfid,
q_idx,
sb_idx,
init_params->rx.sb_cq_index,
init_params->rx.hc_rate,
setup_params->gen_params.mtu,
rxq_params->buf_sz,
rxq_params->sge_buf_sz,
rxq_params->max_sges_pkt,
rxq_params->tpa_agg_sz,
setup_params->flags,
rxq_params->drop_flags,
rxq_params->cache_line_log);
}
void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
struct bnx2x_virtf *vf,
struct bnx2x_vf_queue *q,
struct bnx2x_vf_queue_construct_params *p,
unsigned long q_type)
{
struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
/* INIT */
/* Enable host coalescing in the transition to INIT state */
if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
/* FW SB ID */
init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
/* context */
init_p->cxts[0] = q->cxt;
/* SETUP */
/* Setup-op general parameters */
setup_p->gen_params.spcl_id = vf->sp_cl_id;
setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
/* Setup-op pause params:
* Nothing to do, the pause thresholds are set by default to 0 which
* effectively turns off the feature for this queue. We don't want
* one queue (VF) to interfering with another queue (another VF)
*/
if (vf->cfg_flags & VF_CFG_FW_FC)
BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
vf->abs_vfid);
/* Setup-op flags:
* collect statistics, zero statistics, local-switching, security,
* OV for Flex10, RSS and MCAST for leading
*/
if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
/* for VFs, enable tx switching, bd coherency, and mac address
* anti-spoofing
*/
__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
/* Setup-op rx parameters */
if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
}
/* Setup-op tx parameters */
if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
}
}
static int bnx2x_vf_queue_create(struct bnx2x *bp,
struct bnx2x_virtf *vf, int qid,
struct bnx2x_vf_queue_construct_params *qctor)
{
struct bnx2x_queue_state_params *q_params;
int rc = 0;
DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
/* Prepare ramrod information */
q_params = &qctor->qstate;
q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
BNX2X_Q_LOGICAL_STATE_ACTIVE) {
DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
goto out;
}
/* Run Queue 'construction' ramrods */
q_params->cmd = BNX2X_Q_CMD_INIT;
rc = bnx2x_queue_state_change(bp, q_params);
if (rc)
goto out;
memcpy(&q_params->params.setup, &qctor->prep_qsetup,
sizeof(struct bnx2x_queue_setup_params));
q_params->cmd = BNX2X_Q_CMD_SETUP;
rc = bnx2x_queue_state_change(bp, q_params);
if (rc)
goto out;
/* enable interrupts */
bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
USTORM_ID, 0, IGU_INT_ENABLE, 0);
out:
return rc;
}
static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
int qid)
{
enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
BNX2X_Q_CMD_TERMINATE,
BNX2X_Q_CMD_CFC_DEL};
struct bnx2x_queue_state_params q_params;
int rc, i;
DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
/* Prepare ramrod information */
memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
BNX2X_Q_LOGICAL_STATE_STOPPED) {
DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
goto out;
}
/* Run Queue 'destruction' ramrods */
for (i = 0; i < ARRAY_SIZE(cmds); i++) {
q_params.cmd = cmds[i];
rc = bnx2x_queue_state_change(bp, &q_params);
if (rc) {
BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
return rc;
}
}
out:
/* Clean Context */
if (bnx2x_vfq(vf, qid, cxt)) {
bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
}
return 0;
}
static void
bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
{
struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
if (vf) {
/* the first igu entry belonging to VFs of this PF */
if (!BP_VFDB(bp)->first_vf_igu_entry)
BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
/* the first igu entry belonging to this VF */
if (!vf_sb_count(vf))
vf->igu_base_id = igu_sb_id;
++vf_sb_count(vf);
++vf->sb_count;
}
BP_VFDB(bp)->vf_sbs_pool++;
}
static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *obj,
atomic_t *counter)
{
struct list_head *pos;
int read_lock;
int cnt = 0;
bnx2x: Revising locking scheme for MAC configuration On very rare occasions, repeated load/unload stress test in the presence of our storage driver (bnx2i/bnx2fc) causes a kernel panic in bnx2x code (NULL pointer dereference). Stack traces indicate the issue happens during MAC configuration; thorough code review showed that indeed several races exist in which one thread can iterate over the list of configured MACs while another deletes entries from the same list. This patch adds a varient on the single-writer/Multiple-reader lock mechanism - It utilizes an already exsiting bottom-half lock, using it so that Whenever a writer is unable to continue due to the existence of another writer/reader, it pends its request for future deliverance. The writer / last readers will check for the existence of such requests and perform them instead of the original initiator. This prevents the writer from having to sleep while waiting for the lock to be accessible, which might cause deadlocks given the locks already held by the writer. Another result of this patch is that setting of Rx Mode is now made in sleepable context - Setting of Rx Mode is made under a bottom-half lock, which was always nontrivial for the bnx2x driver, as the HW/FW configuration requires wait for completions. Since sleep was impossible (due to the sleepless-context), various mechanisms were utilized to prevent the calling thread from sleep, but the truth was that when the caller thread (i.e, the one calling ndo_set_rx_mode()) returned, the Rx mode was still not set in HW/FW. bnx2x_set_rx_mode() will now overtly schedule for the Rx changes to be configured by the sp_rtnl_task which hold the RTNL lock and is sleepable context. Signed-off-by: Yuval Mintz <yuvalmin@broadcom.com> Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-01 14:30:59 +00:00
read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
if (read_lock)
DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
list_for_each(pos, &obj->head)
cnt++;
if (!read_lock)
bnx2x_vlan_mac_h_read_unlock(bp, obj);
bnx2x: Revising locking scheme for MAC configuration On very rare occasions, repeated load/unload stress test in the presence of our storage driver (bnx2i/bnx2fc) causes a kernel panic in bnx2x code (NULL pointer dereference). Stack traces indicate the issue happens during MAC configuration; thorough code review showed that indeed several races exist in which one thread can iterate over the list of configured MACs while another deletes entries from the same list. This patch adds a varient on the single-writer/Multiple-reader lock mechanism - It utilizes an already exsiting bottom-half lock, using it so that Whenever a writer is unable to continue due to the existence of another writer/reader, it pends its request for future deliverance. The writer / last readers will check for the existence of such requests and perform them instead of the original initiator. This prevents the writer from having to sleep while waiting for the lock to be accessible, which might cause deadlocks given the locks already held by the writer. Another result of this patch is that setting of Rx Mode is now made in sleepable context - Setting of Rx Mode is made under a bottom-half lock, which was always nontrivial for the bnx2x driver, as the HW/FW configuration requires wait for completions. Since sleep was impossible (due to the sleepless-context), various mechanisms were utilized to prevent the calling thread from sleep, but the truth was that when the caller thread (i.e, the one calling ndo_set_rx_mode()) returned, the Rx mode was still not set in HW/FW. bnx2x_set_rx_mode() will now overtly schedule for the Rx changes to be configured by the sp_rtnl_task which hold the RTNL lock and is sleepable context. Signed-off-by: Yuval Mintz <yuvalmin@broadcom.com> Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-01 14:30:59 +00:00
atomic_set(counter, cnt);
}
static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
int qid, bool drv_only, bool mac)
{
struct bnx2x_vlan_mac_ramrod_params ramrod;
int rc;
DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
mac ? "MACs" : "VLANs");
/* Prepare ramrod params */
memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
if (mac) {
set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
} else {
set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
&ramrod.user_req.vlan_mac_flags);
ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
}
ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
if (drv_only)
set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
else
set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
/* Start deleting */
rc = ramrod.vlan_mac_obj->delete_all(bp,
ramrod.vlan_mac_obj,
&ramrod.user_req.vlan_mac_flags,
&ramrod.ramrod_flags);
if (rc) {
BNX2X_ERR("Failed to delete all %s\n",
mac ? "MACs" : "VLANs");
return rc;
}
/* Clear the vlan counters */
if (!mac)
atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0);
return 0;
}
static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
struct bnx2x_virtf *vf, int qid,
struct bnx2x_vf_mac_vlan_filter *filter,
bool drv_only)
{
struct bnx2x_vlan_mac_ramrod_params ramrod;
int rc;
DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
vf->abs_vfid, filter->add ? "Adding" : "Deleting",
filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN");
/* Prepare ramrod params */
memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
if (filter->type == BNX2X_VF_FILTER_VLAN) {
set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
&ramrod.user_req.vlan_mac_flags);
ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
ramrod.user_req.u.vlan.vlan = filter->vid;
} else {
set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
}
ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
BNX2X_VLAN_MAC_DEL;
/* Verify there are available vlan credits */
if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN &&
(atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >=
vf_vlan_rules_cnt(vf))) {
BNX2X_ERR("No credits for vlan [%d >= %d]\n",
atomic_read(&bnx2x_vfq(vf, qid, vlan_count)),
vf_vlan_rules_cnt(vf));
return -ENOMEM;
}
set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
if (drv_only)
set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
else
set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
/* Add/Remove the filter */
rc = bnx2x_config_vlan_mac(bp, &ramrod);
if (rc && rc != -EEXIST) {
BNX2X_ERR("Failed to %s %s\n",
filter->add ? "add" : "delete",
filter->type == BNX2X_VF_FILTER_MAC ? "MAC" :
"VLAN");
return rc;
}
/* Update the vlan counters */
if (filter->type == BNX2X_VF_FILTER_VLAN)
bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj,
&bnx2x_vfq(vf, qid, vlan_count));
return 0;
}
int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
struct bnx2x_vf_mac_vlan_filters *filters,
int qid, bool drv_only)
{
int rc = 0, i;
DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
return -EINVAL;
/* Prepare ramrod params */
for (i = 0; i < filters->count; i++) {
rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
&filters->filters[i], drv_only);
if (rc)
break;
}
/* Rollback if needed */
if (i != filters->count) {
BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
i, filters->count + 1);
while (--i >= 0) {
filters->filters[i].add = !filters->filters[i].add;
bnx2x_vf_mac_vlan_config(bp, vf, qid,
&filters->filters[i],
drv_only);
}
}
/* It's our responsibility to free the filters */
kfree(filters);
return rc;
}
int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
struct bnx2x_vf_queue_construct_params *qctor)
{
int rc;
DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
if (rc)
goto op_err;
/* Configure vlan0 for leading queue */
if (!qid) {
struct bnx2x_vf_mac_vlan_filter filter;
memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter));
filter.type = BNX2X_VF_FILTER_VLAN;
filter.add = true;
filter.vid = 0;
rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false);
if (rc)
goto op_err;
}
/* Schedule the configuration of any pending vlan filters */
vf->cfg_flags |= VF_CFG_VLAN;
bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
BNX2X_MSG_IOV);
return 0;
op_err:
BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
return rc;
}
static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
int qid)
{
int rc;
DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
/* If needed, clean the filtering data base */
if ((qid == LEADING_IDX) &&
bnx2x_validate_vf_sp_objs(bp, vf, false)) {
rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false);
if (rc)
goto op_err;
rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true);
if (rc)
goto op_err;
}
/* Terminate queue */
if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
struct bnx2x_queue_state_params qstate;
memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
qstate.cmd = BNX2X_Q_CMD_TERMINATE;
set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
rc = bnx2x_queue_state_change(bp, &qstate);
if (rc)
goto op_err;
}
return 0;
op_err:
BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
return rc;
}
int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
{
struct bnx2x_mcast_list_elem *mc = NULL;
struct bnx2x_mcast_ramrod_params mcast;
int rc, i;
DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
/* Prepare Multicast command */
memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
mcast.mcast_obj = &vf->mcast_obj;
if (drv_only)
set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
else
set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
if (mc_num) {
mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
GFP_KERNEL);
if (!mc) {
BNX2X_ERR("Cannot Configure mulicasts due to lack of memory\n");
return -ENOMEM;
}
}
/* clear existing mcasts */
mcast.mcast_list_len = vf->mcast_list_len;
vf->mcast_list_len = mc_num;
rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
if (rc) {
BNX2X_ERR("Failed to remove multicasts\n");
kfree(mc);
return rc;
}
/* update mcast list on the ramrod params */
if (mc_num) {
INIT_LIST_HEAD(&mcast.mcast_list);
for (i = 0; i < mc_num; i++) {
mc[i].mac = mcasts[i];
list_add_tail(&mc[i].link,
&mcast.mcast_list);
}
/* add new mcasts */
mcast.mcast_list_len = mc_num;
rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
if (rc)
BNX2X_ERR("Faled to add multicasts\n");
kfree(mc);
}
return rc;
}
static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
struct bnx2x_rx_mode_ramrod_params *ramrod,
struct bnx2x_virtf *vf,
unsigned long accept_flags)
{
struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
memset(ramrod, 0, sizeof(*ramrod));
ramrod->cid = vfq->cid;
ramrod->cl_id = vfq_cl_id(vf, vfq);
ramrod->rx_mode_obj = &bp->rx_mode_obj;
ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
ramrod->rx_accept_flags = accept_flags;
ramrod->tx_accept_flags = accept_flags;
ramrod->pstate = &vf->filter_state;
ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
set_bit(RAMROD_RX, &ramrod->ramrod_flags);
set_bit(RAMROD_TX, &ramrod->ramrod_flags);
ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
}
int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
int qid, unsigned long accept_flags)
{
struct bnx2x_rx_mode_ramrod_params ramrod;
DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
return bnx2x_config_rx_mode(bp, &ramrod);
}
int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
{
int rc;
DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
/* Remove all classification configuration for leading queue */
if (qid == LEADING_IDX) {
rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
if (rc)
goto op_err;
/* Remove filtering if feasible */
if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
false, false);
if (rc)
goto op_err;
rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
false, true);
if (rc)
goto op_err;
rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
if (rc)
goto op_err;
}
}
/* Destroy queue */
rc = bnx2x_vf_queue_destroy(bp, vf, qid);
if (rc)
goto op_err;
return rc;
op_err:
BNX2X_ERR("vf[%d:%d] error: rc %d\n",
vf->abs_vfid, qid, rc);
return rc;
}
/* VF enable primitives
* when pretend is required the caller is responsible
* for calling pretend prior to calling these routines
*/
/* internal vf enable - until vf is enabled internally all transactions
* are blocked. This routine should always be called last with pretend.
*/
static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
{
REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
}
/* clears vf error in all semi blocks */
static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
{
REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
}
static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
{
u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
u32 was_err_reg = 0;
switch (was_err_group) {
case 0:
was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
break;
case 1:
was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
break;
case 2:
was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
break;
case 3:
was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
break;
}
REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
}
static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
int i;
u32 val;
/* Set VF masks and configuration - pretend */
bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
if (vf->cfg_flags & VF_CFG_INT_SIMD)
val |= IGU_VF_CONF_SINGLE_ISR_EN;
val &= ~IGU_VF_CONF_PARENT_MASK;
val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
DP(BNX2X_MSG_IOV,
"value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
vf->abs_vfid, val);
bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
/* iterate over all queues, clear sb consumer */
for (i = 0; i < vf_sb_count(vf); i++) {
u8 igu_sb_id = vf_igu_sb(vf, i);
/* zero prod memory */
REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
/* clear sb state machine */
bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
false /* VF */);
/* disable + update */
bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
IGU_INT_DISABLE, 1);
}
}
void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
{
/* set the VF-PF association in the FW */
storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
/* clear vf errors*/
bnx2x_vf_semi_clear_err(bp, abs_vfid);
bnx2x_vf_pglue_clear_err(bp, abs_vfid);
/* internal vf-enable - pretend */
bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
bnx2x_vf_enable_internal(bp, true);
bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
}
static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
/* Reset vf in IGU interrupts are still disabled */
bnx2x_vf_igu_reset(bp, vf);
/* pretend to enable the vf with the PBF */
bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
REG_WR(bp, PBF_REG_DISABLE_VF, 0);
bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
}
static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
{
struct pci_dev *dev;
struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
if (!vf)
return false;
dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
if (dev)
return bnx2x_is_pcie_pending(dev);
return false;
}
int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
{
/* Verify no pending pci transactions */
if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
BNX2X_ERR("PCIE Transactions still pending\n");
return 0;
}
static void bnx2x_iov_re_set_vlan_filters(struct bnx2x *bp,
struct bnx2x_virtf *vf,
int new)
{
int num = vf_vlan_rules_cnt(vf);
int diff = new - num;
bool rc = true;
DP(BNX2X_MSG_IOV, "vf[%d] - %d vlan filter credits [previously %d]\n",
vf->abs_vfid, new, num);
if (diff > 0)
rc = bp->vlans_pool.get(&bp->vlans_pool, diff);
else if (diff < 0)
rc = bp->vlans_pool.put(&bp->vlans_pool, -diff);
if (rc)
vf_vlan_rules_cnt(vf) = new;
else
DP(BNX2X_MSG_IOV, "vf[%d] - Failed to configure vlan filter credits change\n",
vf->abs_vfid);
}
/* must be called after the number of PF queues and the number of VFs are
* both known
*/
static void
bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
struct vf_pf_resc_request *resc = &vf->alloc_resc;
u16 vlan_count = 0;
/* will be set only during VF-ACQUIRE */
resc->num_rxqs = 0;
resc->num_txqs = 0;
/* no credit calculations for macs (just yet) */
resc->num_mac_filters = 1;
/* divvy up vlan rules */
bnx2x_iov_re_set_vlan_filters(bp, vf, 0);
vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
vlan_count = 1 << ilog2(vlan_count);
bnx2x_iov_re_set_vlan_filters(bp, vf,
vlan_count / BNX2X_NR_VIRTFN(bp));
/* no real limitation */
resc->num_mc_filters = 0;
/* num_sbs already set */
resc->num_sbs = vf->sb_count;
}
/* FLR routines: */
static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
/* reset the state variables */
bnx2x_iov_static_resc(bp, vf);
vf->state = VF_FREE;
}
static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
/* DQ usage counter */
bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
"DQ VF usage counter timed out",
poll_cnt);
bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
/* FW cleanup command - poll for the results */
if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
poll_cnt))
BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
/* verify TX hw is flushed */
bnx2x_tx_hw_flushed(bp, poll_cnt);
}
static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
int rc, i;
DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
/* the cleanup operations are valid if and only if the VF
* was first acquired.
*/
for (i = 0; i < vf_rxq_count(vf); i++) {
rc = bnx2x_vf_queue_flr(bp, vf, i);
if (rc)
goto out;
}
/* remove multicasts */
bnx2x_vf_mcast(bp, vf, NULL, 0, true);
/* dispatch final cleanup and wait for HW queues to flush */
bnx2x_vf_flr_clnup_hw(bp, vf);
/* release VF resources */
bnx2x_vf_free_resc(bp, vf);
/* re-open the mailbox */
bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
return;
out:
BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
vf->abs_vfid, i, rc);
}
static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
{
struct bnx2x_virtf *vf;
int i;
for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
/* VF should be RESET & in FLR cleanup states */
if (bnx2x_vf(bp, i, state) != VF_RESET ||
!bnx2x_vf(bp, i, flr_clnup_stage))
continue;
DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
i, BNX2X_NR_VIRTFN(bp));
vf = BP_VF(bp, i);
/* lock the vf pf channel */
bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
/* invoke the VF FLR SM */
bnx2x_vf_flr(bp, vf);
/* mark the VF to be ACKED and continue */
vf->flr_clnup_stage = false;
bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
}
/* Acknowledge the handled VFs.
* we are acknowledge all the vfs which an flr was requested for, even
* if amongst them there are such that we never opened, since the mcp
* will interrupt us immediately again if we only ack some of the bits,
* resulting in an endless loop. This can happen for example in KVM
* where an 'all ones' flr request is sometimes given by hyper visor
*/
DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
for (i = 0; i < FLRD_VFS_DWORDS; i++)
SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
bp->vfdb->flrd_vfs[i]);
bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
/* clear the acked bits - better yet if the MCP implemented
* write to clear semantics
*/
for (i = 0; i < FLRD_VFS_DWORDS; i++)
SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
}
void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
{
int i;
/* Read FLR'd VFs */
for (i = 0; i < FLRD_VFS_DWORDS; i++)
bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
DP(BNX2X_MSG_MCP,
"DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
for_each_vf(bp, i) {
struct bnx2x_virtf *vf = BP_VF(bp, i);
u32 reset = 0;
if (vf->abs_vfid < 32)
reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
else
reset = bp->vfdb->flrd_vfs[1] &
(1 << (vf->abs_vfid - 32));
if (reset) {
/* set as reset and ready for cleanup */
vf->state = VF_RESET;
vf->flr_clnup_stage = true;
DP(BNX2X_MSG_IOV,
"Initiating Final cleanup for VF %d\n",
vf->abs_vfid);
}
}
/* do the FLR cleanup for all marked VFs*/
bnx2x_vf_flr_clnup(bp);
}
/* IOV global initialization routines */
void bnx2x_iov_init_dq(struct bnx2x *bp)
{
if (!IS_SRIOV(bp))
return;
/* Set the DQ such that the CID reflect the abs_vfid */
REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
* the PF L2 queues
*/
REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
/* The VF window size is the log2 of the max number of CIDs per VF */
REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
/* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
* the Pf doorbell size although the 2 are independent.
*/
REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
/* No security checks for now -
* configure single rule (out of 16) mask = 0x1, value = 0x0,
* CID range 0 - 0x1ffff
*/
REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
/* set the VF doorbell threshold. This threshold represents the amount
* of doorbells allowed in the main DORQ fifo for a specific VF.
*/
REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
}
void bnx2x_iov_init_dmae(struct bnx2x *bp)
{
if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
}
static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
{
struct pci_dev *dev = bp->pdev;
struct bnx2x_sriov *iov = &bp->vfdb->sriov;
return dev->bus->number + ((dev->devfn + iov->offset +
iov->stride * vfid) >> 8);
}
static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
{
struct pci_dev *dev = bp->pdev;
struct bnx2x_sriov *iov = &bp->vfdb->sriov;
return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
}
static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
int i, n;
struct pci_dev *dev = bp->pdev;
struct bnx2x_sriov *iov = &bp->vfdb->sriov;
for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
size /= iov->total;
vf->bars[n].bar = start + size * vf->abs_vfid;
vf->bars[n].size = size;
}
}
static int bnx2x_ari_enabled(struct pci_dev *dev)
{
return dev->bus->self && dev->bus->self->ari_enabled;
}
static int
bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
{
int sb_id;
u32 val;
u8 fid, current_pf = 0;
/* IGU in normal mode - read CAM */
for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
continue;
fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
if (fid & IGU_FID_ENCODE_IS_PF)
current_pf = fid & IGU_FID_PF_NUM_MASK;
else if (current_pf == BP_FUNC(bp))
bnx2x_vf_set_igu_info(bp, sb_id,
(fid & IGU_FID_VF_NUM_MASK));
DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
(fid & IGU_FID_VF_NUM_MASK)), sb_id,
GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
}
DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
return BP_VFDB(bp)->vf_sbs_pool;
}
static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
{
if (bp->vfdb) {
kfree(bp->vfdb->vfqs);
kfree(bp->vfdb->vfs);
kfree(bp->vfdb);
}
bp->vfdb = NULL;
}
static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
{
int pos;
struct pci_dev *dev = bp->pdev;
pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
if (!pos) {
BNX2X_ERR("failed to find SRIOV capability in device\n");
return -ENODEV;
}
iov->pos = pos;
DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
return 0;
}
static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
{
u32 val;
/* read the SRIOV capability structure
* The fields can be read via configuration read or
* directly from the device (starting at offset PCICFG_OFFSET)
*/
if (bnx2x_sriov_pci_cfg_info(bp, iov))
return -ENODEV;
/* get the number of SRIOV bars */
iov->nres = 0;
/* read the first_vfid */
val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
* 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
DP(BNX2X_MSG_IOV,
"IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
BP_FUNC(bp),
iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
return 0;
}
/* must be called after PF bars are mapped */
int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
int num_vfs_param)
{
int err, i;
struct bnx2x_sriov *iov;
struct pci_dev *dev = bp->pdev;
bp->vfdb = NULL;
/* verify is pf */
if (IS_VF(bp))
return 0;
/* verify sriov capability is present in configuration space */
if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
return 0;
/* verify chip revision */
if (CHIP_IS_E1x(bp))
return 0;
/* check if SRIOV support is turned off */
if (!num_vfs_param)
return 0;
/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
return 0;
}
/* SRIOV can be enabled only with MSIX */
if (int_mode_param == BNX2X_INT_MODE_MSI ||
int_mode_param == BNX2X_INT_MODE_INTX) {
BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
return 0;
}
err = -EIO;
/* verify ari is enabled */
if (!bnx2x_ari_enabled(bp->pdev)) {
BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
return 0;
}
/* verify igu is in normal mode */
if (CHIP_INT_MODE_IS_BC(bp)) {
BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
return 0;
}
/* allocate the vfs database */
bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
if (!bp->vfdb) {
BNX2X_ERR("failed to allocate vf database\n");
err = -ENOMEM;
goto failed;
}
/* get the sriov info - Linux already collected all the pertinent
* information, however the sriov structure is for the private use
* of the pci module. Also we want this information regardless
* of the hyper-visor.
*/
iov = &(bp->vfdb->sriov);
err = bnx2x_sriov_info(bp, iov);
if (err)
goto failed;
/* SR-IOV capability was enabled but there are no VFs*/
if (iov->total == 0)
goto failed;
iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
num_vfs_param, iov->nr_virtfn);
/* allocate the vf array */
bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
if (!bp->vfdb->vfs) {
BNX2X_ERR("failed to allocate vf array\n");
err = -ENOMEM;
goto failed;
}
/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
for_each_vf(bp, i) {
bnx2x_vf(bp, i, index) = i;
bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
bnx2x_vf(bp, i, state) = VF_FREE;
mutex_init(&bnx2x_vf(bp, i, op_mutex));
bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
}
/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
if (!bnx2x_get_vf_igu_cam_info(bp)) {
BNX2X_ERR("No entries in IGU CAM for vfs\n");
err = -EINVAL;
goto failed;
}
/* allocate the queue arrays for all VFs */
bp->vfdb->vfqs = kzalloc(
BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
GFP_KERNEL);
if (!bp->vfdb->vfqs) {
BNX2X_ERR("failed to allocate vf queue array\n");
err = -ENOMEM;
goto failed;
}
/* Prepare the VFs event synchronization mechanism */
mutex_init(&bp->vfdb->event_mutex);
mutex_init(&bp->vfdb->bulletin_mutex);
return 0;
failed:
DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
__bnx2x_iov_free_vfdb(bp);
return err;
}
void bnx2x_iov_remove_one(struct bnx2x *bp)
{
int vf_idx;
/* if SRIOV is not enabled there's nothing to do */
if (!IS_SRIOV(bp))
return;
bnx2x_disable_sriov(bp);
/* disable access to all VFs */
for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
bnx2x_pretend_func(bp,
HW_VF_HANDLE(bp,
bp->vfdb->sriov.first_vf_in_pf +
vf_idx));
DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
bp->vfdb->sriov.first_vf_in_pf + vf_idx);
bnx2x_vf_enable_internal(bp, 0);
bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
}
/* free vf database */
__bnx2x_iov_free_vfdb(bp);
}
void bnx2x_iov_free_mem(struct bnx2x *bp)
{
int i;
if (!IS_SRIOV(bp))
return;
/* free vfs hw contexts */
for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
struct hw_dma *cxt = &bp->vfdb->context[i];
BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
}
BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
BP_VFDB(bp)->sp_dma.mapping,
BP_VFDB(bp)->sp_dma.size);
BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
BP_VF_MBX_DMA(bp)->mapping,
BP_VF_MBX_DMA(bp)->size);
BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
BP_VF_BULLETIN_DMA(bp)->mapping,
BP_VF_BULLETIN_DMA(bp)->size);
}
int bnx2x_iov_alloc_mem(struct bnx2x *bp)
{
size_t tot_size;
int i, rc = 0;
if (!IS_SRIOV(bp))
return rc;
/* allocate vfs hw contexts */
tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
if (cxt->size) {
cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
if (!cxt->addr)
goto alloc_mem_err;
} else {
cxt->addr = NULL;
cxt->mapping = 0;
}
tot_size -= cxt->size;
}
/* allocate vfs ramrods dma memory - client_init and set_mac */
tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
tot_size);
if (!BP_VFDB(bp)->sp_dma.addr)
goto alloc_mem_err;
BP_VFDB(bp)->sp_dma.size = tot_size;
/* allocate mailboxes */
tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
tot_size);
if (!BP_VF_MBX_DMA(bp)->addr)
goto alloc_mem_err;
BP_VF_MBX_DMA(bp)->size = tot_size;
/* allocate local bulletin boards */
tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
tot_size);
if (!BP_VF_BULLETIN_DMA(bp)->addr)
goto alloc_mem_err;
BP_VF_BULLETIN_DMA(bp)->size = tot_size;
return 0;
alloc_mem_err:
return -ENOMEM;
}
static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
struct bnx2x_vf_queue *q)
{
u8 cl_id = vfq_cl_id(vf, q);
u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
unsigned long q_type = 0;
set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
/* Queue State object */
bnx2x_init_queue_obj(bp, &q->sp_obj,
cl_id, &q->cid, 1, func_id,
bnx2x_vf_sp(bp, vf, q_data),
bnx2x_vf_sp_map(bp, vf, q_data),
q_type);
/* sp indication is set only when vlan/mac/etc. are initialized */
q->sp_initialized = false;
DP(BNX2X_MSG_IOV,
"initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
vf->abs_vfid, q->sp_obj.func_id, q->cid);
}
static int bnx2x_max_speed_cap(struct bnx2x *bp)
{
u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
if (supported &
(SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
return 20000;
return 10000; /* assume lowest supported speed is 10G */
}
int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
{
struct bnx2x_link_report_data *state = &bp->last_reported_link;
struct pf_vf_bulletin_content *bulletin;
struct bnx2x_virtf *vf;
bool update = true;
int rc = 0;
/* sanity and init */
rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
if (rc)
return rc;
mutex_lock(&bp->vfdb->bulletin_mutex);
if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
bulletin->valid_bitmap |= 1 << LINK_VALID;
bulletin->link_speed = state->line_speed;
bulletin->link_flags = 0;
if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
&state->link_report_flags))
bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
if (test_bit(BNX2X_LINK_REPORT_FD,
&state->link_report_flags))
bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
&state->link_report_flags))
bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
&state->link_report_flags))
bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
!(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
bulletin->valid_bitmap |= 1 << LINK_VALID;
bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
bulletin->valid_bitmap |= 1 << LINK_VALID;
bulletin->link_speed = bnx2x_max_speed_cap(bp);
bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
} else {
update = false;
}
if (update) {
DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
"vf %d mode %u speed %d flags %x\n", idx,
vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
/* Post update on VF's bulletin board */
rc = bnx2x_post_vf_bulletin(bp, idx);
if (rc) {
BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
goto out;
}
}
out:
mutex_unlock(&bp->vfdb->bulletin_mutex);
return rc;
}
int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
{
struct bnx2x *bp = netdev_priv(dev);
struct bnx2x_virtf *vf = BP_VF(bp, idx);
if (!vf)
return -EINVAL;
if (vf->link_cfg == link_state)
return 0; /* nothing todo */
vf->link_cfg = link_state;
return bnx2x_iov_link_update_vf(bp, idx);
}
void bnx2x_iov_link_update(struct bnx2x *bp)
{
int vfid;
if (!IS_SRIOV(bp))
return;
for_each_vf(bp, vfid)
bnx2x_iov_link_update_vf(bp, vfid);
}
/* called by bnx2x_nic_load */
int bnx2x_iov_nic_init(struct bnx2x *bp)
{
int vfid;
if (!IS_SRIOV(bp)) {
DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
return 0;
}
DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
/* let FLR complete ... */
msleep(100);
/* initialize vf database */
for_each_vf(bp, vfid) {
struct bnx2x_virtf *vf = BP_VF(bp, vfid);
int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
BNX2X_CIDS_PER_VF;
union cdu_context *base_cxt = (union cdu_context *)
BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
(base_vf_cid & (ILT_PAGE_CIDS-1));
DP(BNX2X_MSG_IOV,
"VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
/* init statically provisioned resources */
bnx2x_iov_static_resc(bp, vf);
/* queues are initialized during VF-ACQUIRE */
vf->filter_state = 0;
vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
/* init mcast object - This object will be re-initialized
* during VF-ACQUIRE with the proper cl_id and cid.
* It needs to be initialized here so that it can be safely
* handled by a subsequent FLR flow.
*/
vf->mcast_list_len = 0;
bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
0xFF, 0xFF, 0xFF,
bnx2x_vf_sp(bp, vf, mcast_rdata),
bnx2x_vf_sp_map(bp, vf, mcast_rdata),
BNX2X_FILTER_MCAST_PENDING,
&vf->filter_state,
BNX2X_OBJ_TYPE_RX_TX);
/* set the mailbox message addresses */
BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
MBX_MSG_ALIGNED_SIZE);
BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
vfid * MBX_MSG_ALIGNED_SIZE;
/* Enable vf mailbox */
bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
}
/* Final VF init */
for_each_vf(bp, vfid) {
struct bnx2x_virtf *vf = BP_VF(bp, vfid);
/* fill in the BDF and bars */
vf->bus = bnx2x_vf_bus(bp, vfid);
vf->devfn = bnx2x_vf_devfn(bp, vfid);
bnx2x_vf_set_bars(bp, vf);
DP(BNX2X_MSG_IOV,
"VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
vf->abs_vfid, vf->bus, vf->devfn,
(unsigned)vf->bars[0].bar, vf->bars[0].size,
(unsigned)vf->bars[1].bar, vf->bars[1].size,
(unsigned)vf->bars[2].bar, vf->bars[2].size);
}
return 0;
}
/* called by bnx2x_chip_cleanup */
int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
{
int i;
if (!IS_SRIOV(bp))
return 0;
/* release all the VFs */
for_each_vf(bp, i)
bnx2x_vf_release(bp, BP_VF(bp, i));
return 0;
}
/* called by bnx2x_init_hw_func, returns the next ilt line */
int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
{
int i;
struct bnx2x_ilt *ilt = BP_ILT(bp);
if (!IS_SRIOV(bp))
return line;
/* set vfs ilt lines */
for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
ilt->lines[line+i].page = hw_cxt->addr;
ilt->lines[line+i].page_mapping = hw_cxt->mapping;
ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
}
return line + i;
}
static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
{
return ((cid >= BNX2X_FIRST_VF_CID) &&
((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
}
static
void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
struct bnx2x_vf_queue *vfq,
union event_ring_elem *elem)
{
unsigned long ramrod_flags = 0;
int rc = 0;
/* Always push next commands out, don't wait here */
set_bit(RAMROD_CONT, &ramrod_flags);
switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
case BNX2X_FILTER_MAC_PENDING:
rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
&ramrod_flags);
break;
case BNX2X_FILTER_VLAN_PENDING:
rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
&ramrod_flags);
break;
default:
BNX2X_ERR("Unsupported classification command: %d\n",
elem->message.data.eth_event.echo);
return;
}
if (rc < 0)
BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
else if (rc > 0)
DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
}
static
void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
struct bnx2x_virtf *vf)
{
struct bnx2x_mcast_ramrod_params rparam = {NULL};
int rc;
rparam.mcast_obj = &vf->mcast_obj;
vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
/* If there are pending mcast commands - send them */
if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
if (rc < 0)
BNX2X_ERR("Failed to send pending mcast commands: %d\n",
rc);
}
}
static
void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
struct bnx2x_virtf *vf)
{
smp_mb__before_atomic();
clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
smp_mb__after_atomic();
}
static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
struct bnx2x_virtf *vf)
{
vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
}
int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
{
struct bnx2x_virtf *vf;
int qidx = 0, abs_vfid;
u8 opcode;
u16 cid = 0xffff;
if (!IS_SRIOV(bp))
return 1;
/* first get the cid - the only events we handle here are cfc-delete
* and set-mac completion
*/
opcode = elem->message.opcode;
switch (opcode) {
case EVENT_RING_OPCODE_CFC_DEL:
cid = SW_CID((__force __le32)
elem->message.data.cfc_del_event.cid);
DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
break;
case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
case EVENT_RING_OPCODE_MULTICAST_RULES:
case EVENT_RING_OPCODE_FILTERS_RULES:
case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
cid = (elem->message.data.eth_event.echo &
BNX2X_SWCID_MASK);
DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
break;
case EVENT_RING_OPCODE_VF_FLR:
abs_vfid = elem->message.data.vf_flr_event.vf_id;
DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
abs_vfid);
goto get_vf;
case EVENT_RING_OPCODE_MALICIOUS_VF:
abs_vfid = elem->message.data.malicious_vf_event.vf_id;
BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
abs_vfid,
elem->message.data.malicious_vf_event.err_id);
goto get_vf;
default:
return 1;
}
/* check if the cid is the VF range */
if (!bnx2x_iov_is_vf_cid(bp, cid)) {
DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
return 1;
}
/* extract vf and rxq index from vf_cid - relies on the following:
* 1. vfid on cid reflects the true abs_vfid
* 2. The max number of VFs (per path) is 64
*/
qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
get_vf:
vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
if (!vf) {
BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
cid, abs_vfid);
return 0;
}
switch (opcode) {
case EVENT_RING_OPCODE_CFC_DEL:
DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
vf->abs_vfid, qidx);
vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
&vfq_get(vf,
qidx)->sp_obj,
BNX2X_Q_CMD_CFC_DEL);
break;
case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
vf->abs_vfid, qidx);
bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
break;
case EVENT_RING_OPCODE_MULTICAST_RULES:
DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
vf->abs_vfid, qidx);
bnx2x_vf_handle_mcast_eqe(bp, vf);
break;
case EVENT_RING_OPCODE_FILTERS_RULES:
DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
vf->abs_vfid, qidx);
bnx2x_vf_handle_filters_eqe(bp, vf);
break;
case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
vf->abs_vfid, qidx);
bnx2x_vf_handle_rss_update_eqe(bp, vf);
case EVENT_RING_OPCODE_VF_FLR:
case EVENT_RING_OPCODE_MALICIOUS_VF:
/* Do nothing for now */
return 0;
}
return 0;
}
static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
{
/* extract the vf from vf_cid - relies on the following:
* 1. vfid on cid reflects the true abs_vfid
* 2. The max number of VFs (per path) is 64
*/
int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
return bnx2x_vf_by_abs_fid(bp, abs_vfid);
}
void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
struct bnx2x_queue_sp_obj **q_obj)
{
struct bnx2x_virtf *vf;
if (!IS_SRIOV(bp))
return;
vf = bnx2x_vf_by_cid(bp, vf_cid);
if (vf) {
/* extract queue index from vf_cid - relies on the following:
* 1. vfid on cid reflects the true abs_vfid
* 2. The max number of VFs (per path) is 64
*/
int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
} else {
BNX2X_ERR("No vf matching cid %d\n", vf_cid);
}
}
void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
{
int i;
int first_queue_query_index, num_queues_req;
dma_addr_t cur_data_offset;
struct stats_query_entry *cur_query_entry;
u8 stats_count = 0;
bool is_fcoe = false;
if (!IS_SRIOV(bp))
return;
if (!NO_FCOE(bp))
is_fcoe = true;
/* fcoe adds one global request and one queue request */
num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
(is_fcoe ? 0 : 1);
DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
"BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
first_queue_query_index + num_queues_req);
cur_data_offset = bp->fw_stats_data_mapping +
offsetof(struct bnx2x_fw_stats_data, queue_stats) +
num_queues_req * sizeof(struct per_queue_stats);
cur_query_entry = &bp->fw_stats_req->
query[first_queue_query_index + num_queues_req];
for_each_vf(bp, i) {
int j;
struct bnx2x_virtf *vf = BP_VF(bp, i);
if (vf->state != VF_ENABLED) {
DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
"vf %d not enabled so no stats for it\n",
vf->abs_vfid);
continue;
}
DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
for_each_vfq(vf, j) {
struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
dma_addr_t q_stats_addr =
vf->fw_stat_map + j * vf->stats_stride;
/* collect stats fro active queues only */
if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
BNX2X_Q_LOGICAL_STATE_STOPPED)
continue;
/* create stats query entry for this queue */
cur_query_entry->kind = STATS_TYPE_QUEUE;
cur_query_entry->index = vfq_stat_id(vf, rxq);
cur_query_entry->funcID =
cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
cur_query_entry->address.hi =
cpu_to_le32(U64_HI(q_stats_addr));
cur_query_entry->address.lo =
cpu_to_le32(U64_LO(q_stats_addr));
DP(BNX2X_MSG_IOV,
"added address %x %x for vf %d queue %d client %d\n",
cur_query_entry->address.hi,
cur_query_entry->address.lo, cur_query_entry->funcID,
j, cur_query_entry->index);
cur_query_entry++;
cur_data_offset += sizeof(struct per_queue_stats);
stats_count++;
/* all stats are coalesced to the leading queue */
if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
break;
}
}
bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
}
/* VF API helpers */
static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
u8 enable)
{
u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
REG_WR(bp, reg, val);
}
static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
int i;
for_each_vfq(vf, i)
bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
vfq_qzone_id(vf, vfq_get(vf, i)), false);
}
static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
u32 val;
/* clear the VF configuration - pretend */
bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
}
u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
BNX2X_VF_MAX_QUEUES);
}
static
int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
struct vf_pf_resc_request *req_resc)
{
u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
/* Save a vlan filter for the Hypervisor */
return ((req_resc->num_rxqs <= rxq_cnt) &&
(req_resc->num_txqs <= txq_cnt) &&
(req_resc->num_sbs <= vf_sb_count(vf)) &&
(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
(req_resc->num_vlan_filters <= vf_vlan_rules_visible_cnt(vf)));
}
/* CORE VF API */
int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
struct vf_pf_resc_request *resc)
{
int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
BNX2X_CIDS_PER_VF;
union cdu_context *base_cxt = (union cdu_context *)
BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
(base_vf_cid & (ILT_PAGE_CIDS-1));
int i;
/* if state is 'acquired' the VF was not released or FLR'd, in
* this case the returned resources match the acquired already
* acquired resources. Verify that the requested numbers do
* not exceed the already acquired numbers.
*/
if (vf->state == VF_ACQUIRED) {
DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
vf->abs_vfid);
if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
vf->abs_vfid);
return -EINVAL;
}
return 0;
}
/* Otherwise vf state must be 'free' or 'reset' */
if (vf->state != VF_FREE && vf->state != VF_RESET) {
BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
vf->abs_vfid, vf->state);
return -EINVAL;
}
/* static allocation:
* the global maximum number are fixed per VF. Fail the request if
* requested number exceed these globals
*/
if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
DP(BNX2X_MSG_IOV,
"cannot fulfill vf resource request. Placing maximal available values in response\n");
/* set the max resource in the vf */
return -ENOMEM;
}
/* Set resources counters - 0 request means max available */
vf_sb_count(vf) = resc->num_sbs;
vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
if (resc->num_mac_filters)
vf_mac_rules_cnt(vf) = resc->num_mac_filters;
/* Add an additional vlan filter credit for the hypervisor */
bnx2x_iov_re_set_vlan_filters(bp, vf, resc->num_vlan_filters + 1);
DP(BNX2X_MSG_IOV,
"Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
vf_sb_count(vf), vf_rxq_count(vf),
vf_txq_count(vf), vf_mac_rules_cnt(vf),
vf_vlan_rules_visible_cnt(vf));
/* Initialize the queues */
if (!vf->vfqs) {
DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
return -EINVAL;
}
for_each_vfq(vf, i) {
struct bnx2x_vf_queue *q = vfq_get(vf, i);
if (!q) {
BNX2X_ERR("q number %d was not allocated\n", i);
return -EINVAL;
}
q->index = i;
q->cxt = &((base_cxt + i)->eth);
q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
vf->abs_vfid, i, q->index, q->cid, q->cxt);
/* init SP objects */
bnx2x_vfq_init(bp, vf, q);
}
vf->state = VF_ACQUIRED;
return 0;
}
int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
{
struct bnx2x_func_init_params func_init = {0};
u16 flags = 0;
int i;
/* the sb resources are initialized at this point, do the
* FW/HW initializations
*/
for_each_vf_sb(vf, i)
bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
vf_igu_sb(vf, i), vf_igu_sb(vf, i));
/* Sanity checks */
if (vf->state != VF_ACQUIRED) {
DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
vf->abs_vfid, vf->state);
return -EINVAL;
}
/* let FLR complete ... */
msleep(100);
/* FLR cleanup epilogue */
if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
return -EBUSY;
/* reset IGU VF statistics: MSIX */
REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
/* vf init */
if (vf->cfg_flags & VF_CFG_STATS)
flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
if (vf->cfg_flags & VF_CFG_TPA)
flags |= FUNC_FLG_TPA;
if (is_vf_multi(vf))
flags |= FUNC_FLG_RSS;
/* function setup */
func_init.func_flgs = flags;
func_init.pf_id = BP_FUNC(bp);
func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
func_init.fw_stat_map = vf->fw_stat_map;
func_init.spq_map = vf->spq_map;
func_init.spq_prod = 0;
bnx2x_func_init(bp, &func_init);
/* Enable the vf */
bnx2x_vf_enable_access(bp, vf->abs_vfid);
bnx2x_vf_enable_traffic(bp, vf);
/* queue protection table */
for_each_vfq(vf, i)
bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
vfq_qzone_id(vf, vfq_get(vf, i)), true);
vf->state = VF_ENABLED;
/* update vf bulletin board */
bnx2x_post_vf_bulletin(bp, vf->index);
return 0;
}
struct set_vf_state_cookie {
struct bnx2x_virtf *vf;
u8 state;
};
static void bnx2x_set_vf_state(void *cookie)
{
struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
p->vf->state = p->state;
}
int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
int rc = 0, i;
DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
/* Close all queues */
for (i = 0; i < vf_rxq_count(vf); i++) {
rc = bnx2x_vf_queue_teardown(bp, vf, i);
if (rc)
goto op_err;
}
/* disable the interrupts */
DP(BNX2X_MSG_IOV, "disabling igu\n");
bnx2x_vf_igu_disable(bp, vf);
/* disable the VF */
DP(BNX2X_MSG_IOV, "clearing qtbl\n");
bnx2x_vf_clr_qtbl(bp, vf);
/* need to make sure there are no outstanding stats ramrods which may
* cause the device to access the VF's stats buffer which it will free
* as soon as we return from the close flow.
*/
{
struct set_vf_state_cookie cookie;
cookie.vf = vf;
cookie.state = VF_ACQUIRED;
bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
}
DP(BNX2X_MSG_IOV, "set state to acquired\n");
return 0;
op_err:
BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
return rc;
}
/* VF release can be called either: 1. The VF was acquired but
* not enabled 2. the vf was enabled or in the process of being
* enabled
*/
int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
int rc;
DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
vf->state == VF_FREE ? "Free" :
vf->state == VF_ACQUIRED ? "Acquired" :
vf->state == VF_ENABLED ? "Enabled" :
vf->state == VF_RESET ? "Reset" :
"Unknown");
switch (vf->state) {
case VF_ENABLED:
rc = bnx2x_vf_close(bp, vf);
if (rc)
goto op_err;
/* Fallthrough to release resources */
case VF_ACQUIRED:
DP(BNX2X_MSG_IOV, "about to free resources\n");
bnx2x_vf_free_resc(bp, vf);
break;
case VF_FREE:
case VF_RESET:
default:
break;
}
return 0;
op_err:
BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
return rc;
}
int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
struct bnx2x_config_rss_params *rss)
{
DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
return bnx2x_config_rss(bp, rss);
}
int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
struct vfpf_tpa_tlv *tlv,
struct bnx2x_queue_update_tpa_params *params)
{
aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
struct bnx2x_queue_state_params qstate;
int qid, rc = 0;
DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
/* Set ramrod params */
memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
memcpy(&qstate.params.update_tpa, params,
sizeof(struct bnx2x_queue_update_tpa_params));
qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
for (qid = 0; qid < vf_rxq_count(vf); qid++) {
qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
qstate.params.update_tpa.sge_map = sge_addr[qid];
DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
U64_LO(sge_addr[qid]));
rc = bnx2x_queue_state_change(bp, &qstate);
if (rc) {
BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
vf->abs_vfid, qid);
return rc;
}
}
return rc;
}
/* VF release ~ VF close + VF release-resources
* Release is the ultimate SW shutdown and is called whenever an
* irrecoverable error is encountered.
*/
int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
{
int rc;
DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
rc = bnx2x_vf_free(bp, vf);
if (rc)
WARN(rc,
"VF[%d] Failed to allocate resources for release op- rc=%d\n",
vf->abs_vfid, rc);
bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
return rc;
}
void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
enum channel_tlvs tlv)
{
/* we don't lock the channel for unsupported tlvs */
if (!bnx2x_tlv_supported(tlv)) {
BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
return;
}
/* lock the channel */
mutex_lock(&vf->op_mutex);
/* record the locking op */
vf->op_current = tlv;
/* log the lock */
DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
vf->abs_vfid, tlv);
}
void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
enum channel_tlvs expected_tlv)
{
enum channel_tlvs current_tlv;
if (!vf) {
BNX2X_ERR("VF was %p\n", vf);
return;
}
current_tlv = vf->op_current;
/* we don't unlock the channel for unsupported tlvs */
if (!bnx2x_tlv_supported(expected_tlv))
return;
WARN(expected_tlv != vf->op_current,
"lock mismatch: expected %d found %d", expected_tlv,
vf->op_current);
/* record the locking op */
vf->op_current = CHANNEL_TLV_NONE;
/* lock the channel */
mutex_unlock(&vf->op_mutex);
/* log the unlock */
DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
vf->abs_vfid, current_tlv);
}
static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
{
struct bnx2x_queue_state_params q_params;
u32 prev_flags;
int i, rc;
/* Verify changes are needed and record current Tx switching state */
prev_flags = bp->flags;
if (enable)
bp->flags |= TX_SWITCHING;
else
bp->flags &= ~TX_SWITCHING;
if (prev_flags == bp->flags)
return 0;
/* Verify state enables the sending of queue ramrods */
if ((bp->state != BNX2X_STATE_OPEN) ||
(bnx2x_get_q_logical_state(bp,
&bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
BNX2X_Q_LOGICAL_STATE_ACTIVE))
return 0;
/* send q. update ramrod to configure Tx switching */
memset(&q_params, 0, sizeof(q_params));
__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
q_params.cmd = BNX2X_Q_CMD_UPDATE;
__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
&q_params.params.update.update_flags);
if (enable)
__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
&q_params.params.update.update_flags);
else
__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
&q_params.params.update.update_flags);
/* send the ramrod on all the queues of the PF */
for_each_eth_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
/* Set the appropriate Queue object */
q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
/* Update the Queue state */
rc = bnx2x_queue_state_change(bp, &q_params);
if (rc) {
BNX2X_ERR("Failed to configure Tx switching\n");
return rc;
}
}
DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
return 0;
}
int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
{
struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
if (!IS_SRIOV(bp)) {
BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
return -EINVAL;
}
DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
num_vfs_param, BNX2X_NR_VIRTFN(bp));
/* HW channel is only operational when PF is up */
if (bp->state != BNX2X_STATE_OPEN) {
BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
return -EINVAL;
}
/* we are always bound by the total_vfs in the configuration space */
if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
num_vfs_param, BNX2X_NR_VIRTFN(bp));
num_vfs_param = BNX2X_NR_VIRTFN(bp);
}
bp->requested_nr_virtfn = num_vfs_param;
if (num_vfs_param == 0) {
bnx2x_set_pf_tx_switching(bp, false);
bnx2x_disable_sriov(bp);
return 0;
} else {
return bnx2x_enable_sriov(bp);
}
}
#define IGU_ENTRY_SIZE 4
int bnx2x_enable_sriov(struct bnx2x *bp)
{
int rc = 0, req_vfs = bp->requested_nr_virtfn;
int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
u32 igu_entry, address;
u16 num_vf_queues;
if (req_vfs == 0)
return 0;
first_vf = bp->vfdb->sriov.first_vf_in_pf;
/* statically distribute vf sb pool between VFs */
num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
BP_VFDB(bp)->vf_sbs_pool / req_vfs);
/* zero previous values learned from igu cam */
for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
vf->sb_count = 0;
vf_sb_count(BP_VF(bp, vf_idx)) = 0;
}
bp->vfdb->vf_sbs_pool = 0;
/* prepare IGU cam */
sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
IGU_REG_MAPPING_MEMORY_VALID;
DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
sb_idx, vf_idx);
REG_WR(bp, address, igu_entry);
sb_idx++;
address += IGU_ENTRY_SIZE;
}
}
/* Reinitialize vf database according to igu cam */
bnx2x_get_vf_igu_cam_info(bp);
DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
qcount = 0;
for_each_vf(bp, vf_idx) {
struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
/* set local queue arrays */
vf->vfqs = &bp->vfdb->vfqs[qcount];
qcount += vf_sb_count(vf);
bnx2x_iov_static_resc(bp, vf);
}
/* prepare msix vectors in VF configuration space - the value in the
* PCI configuration space should be the index of the last entry,
* namely one less than the actual size of the table
*/
for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
num_vf_queues - 1);
DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
vf_idx, num_vf_queues - 1);
}
bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
/* enable sriov. This will probe all the VFs, and consequentially cause
* the "acquire" messages to appear on the VF PF channel.
*/
DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
bnx2x_disable_sriov(bp);
rc = bnx2x_set_pf_tx_switching(bp, true);
if (rc)
return rc;
rc = pci_enable_sriov(bp->pdev, req_vfs);
if (rc) {
BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
return rc;
}
DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
return req_vfs;
}
void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
{
int vfidx;
struct pf_vf_bulletin_content *bulletin;
DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
for_each_vf(bp, vfidx) {
bulletin = BP_VF_BULLETIN(bp, vfidx);
if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
}
}
void bnx2x_disable_sriov(struct bnx2x *bp)
{
if (pci_vfs_assigned(bp->pdev)) {
DP(BNX2X_MSG_IOV,
"Unloading driver while VFs are assigned - VFs will not be deallocated\n");
return;
}
pci_disable_sriov(bp->pdev);
}
static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
struct bnx2x_virtf **vf,
struct pf_vf_bulletin_content **bulletin,
bool test_queue)
{
if (bp->state != BNX2X_STATE_OPEN) {
BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
return -EINVAL;
}
if (!IS_SRIOV(bp)) {
BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
return -EINVAL;
}
if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
vfidx, BNX2X_NR_VIRTFN(bp));
return -EINVAL;
}
/* init members */
*vf = BP_VF(bp, vfidx);
*bulletin = BP_VF_BULLETIN(bp, vfidx);
if (!*vf) {
BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
return -EINVAL;
}
if (test_queue && !(*vf)->vfqs) {
BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
vfidx);
return -EINVAL;
}
if (!*bulletin) {
BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
vfidx);
return -EINVAL;
}
return 0;
}
int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
struct ifla_vf_info *ivi)
{
struct bnx2x *bp = netdev_priv(dev);
struct bnx2x_virtf *vf = NULL;
struct pf_vf_bulletin_content *bulletin = NULL;
struct bnx2x_vlan_mac_obj *mac_obj;
struct bnx2x_vlan_mac_obj *vlan_obj;
int rc;
/* sanity and init */
rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
if (rc)
return rc;
mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
if (!mac_obj || !vlan_obj) {
BNX2X_ERR("VF partially initialized\n");
return -EINVAL;
}
ivi->vf = vfidx;
ivi->qos = 0;
net-next:v4: Add support to configure SR-IOV VF minimum and maximum Tx rate through ip tool. o min_tx_rate puts lower limit on the VF bandwidth. VF is guaranteed to have a bandwidth of at least this value. max_tx_rate puts cap on the VF bandwidth. VF can have a bandwidth of up to this value. o A new handler set_vf_rate for attr IFLA_VF_RATE has been introduced which takes 4 arguments: netdev, VF number, min_tx_rate, max_tx_rate o ndo_set_vf_rate replaces ndo_set_vf_tx_rate handler. o Drivers that currently implement ndo_set_vf_tx_rate should now call ndo_set_vf_rate instead and reject attempt to set a minimum bandwidth greater than 0 for IFLA_VF_TX_RATE when IFLA_VF_RATE is not yet implemented by driver. o If user enters only one of either min_tx_rate or max_tx_rate, then, userland should read back the other value from driver and set both for IFLA_VF_RATE. Drivers that have not yet implemented IFLA_VF_RATE should always return min_tx_rate as 0 when read from ip tool. o If both IFLA_VF_TX_RATE and IFLA_VF_RATE options are specified, then IFLA_VF_RATE should override. o Idea is to have consistent display of rate values to user. o Usage example: - ./ip link set p4p1 vf 0 rate 900 ./ip link show p4p1 32: p4p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT qlen 1000 link/ether 00:0e:1e:08:b0:f0 brd ff:ff:ff:ff:ff:ff vf 0 MAC 3e:a0:ca:bd:ae:5a, tx rate 900 (Mbps), max_tx_rate 900Mbps vf 1 MAC f6:c6:7c:3f:3d:6c vf 2 MAC 56:32:43:98:d7:71 vf 3 MAC d6:be:c3:b5:85:ff vf 4 MAC ee:a9:9a:1e:19:14 vf 5 MAC 4a:d0:4c:07:52:18 vf 6 MAC 3a:76:44:93:62:f9 vf 7 MAC 82:e9:e7:e3:15:1a ./ip link set p4p1 vf 0 max_tx_rate 300 min_tx_rate 200 ./ip link show p4p1 32: p4p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT qlen 1000 link/ether 00:0e:1e:08:b0:f0 brd ff:ff:ff:ff:ff:ff vf 0 MAC 3e:a0:ca:bd:ae:5a, tx rate 300 (Mbps), max_tx_rate 300Mbps, min_tx_rate 200Mbps vf 1 MAC f6:c6:7c:3f:3d:6c vf 2 MAC 56:32:43:98:d7:71 vf 3 MAC d6:be:c3:b5:85:ff vf 4 MAC ee:a9:9a:1e:19:14 vf 5 MAC 4a:d0:4c:07:52:18 vf 6 MAC 3a:76:44:93:62:f9 vf 7 MAC 82:e9:e7:e3:15:1a ./ip link set p4p1 vf 0 max_tx_rate 600 rate 300 ./ip link show p4p1 32: p4p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT qlen 1000 link/ether 00:0e:1e:08:b0:f brd ff:ff:ff:ff:ff:ff vf 0 MAC 3e:a0:ca:bd:ae:5, tx rate 600 (Mbps), max_tx_rate 600Mbps, min_tx_rate 200Mbps vf 1 MAC f6:c6:7c:3f:3d:6c vf 2 MAC 56:32:43:98:d7:71 vf 3 MAC d6:be:c3:b5:85:ff vf 4 MAC ee:a9:9a:1e:19:14 vf 5 MAC 4a:d0:4c:07:52:18 vf 6 MAC 3a:76:44:93:62:f9 vf 7 MAC 82:e9:e7:e3:15:1a Signed-off-by: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-22 13:59:05 +00:00
ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
ivi->min_tx_rate = 0;
ivi->spoofchk = 1; /*always enabled */
if (vf->state == VF_ENABLED) {
/* mac and vlan are in vlan_mac objects */
if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
0, ETH_ALEN);
vlan_obj->get_n_elements(bp, vlan_obj, 1,
(u8 *)&ivi->vlan, 0,
VLAN_HLEN);
}
} else {
mutex_lock(&bp->vfdb->bulletin_mutex);
/* mac */
if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
/* mac configured by ndo so its in bulletin board */
memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
else
/* function has not been loaded yet. Show mac as 0s */
memset(&ivi->mac, 0, ETH_ALEN);
/* vlan */
if (bulletin->valid_bitmap & (1 << VLAN_VALID))
/* vlan configured by ndo so its in bulletin board */
memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
else
/* function has not been loaded yet. Show vlans as 0s */
memset(&ivi->vlan, 0, VLAN_HLEN);
mutex_unlock(&bp->vfdb->bulletin_mutex);
}
return 0;
}
/* New mac for VF. Consider these cases:
* 1. VF hasn't been acquired yet - save the mac in local bulletin board and
* supply at acquire.
* 2. VF has already been acquired but has not yet initialized - store in local
* bulletin board. mac will be posted on VF bulletin board after VF init. VF
* will configure this mac when it is ready.
* 3. VF has already initialized but has not yet setup a queue - post the new
* mac on VF's bulletin board right now. VF will configure this mac when it
* is ready.
* 4. VF has already set a queue - delete any macs already configured for this
* queue and manually config the new mac.
* In any event, once this function has been called refuse any attempts by the
* VF to configure any mac for itself except for this mac. In case of a race
* where the VF fails to see the new post on its bulletin board before sending a
* mac configuration request, the PF will simply fail the request and VF can try
* again after consulting its bulletin board.
*/
int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
{
struct bnx2x *bp = netdev_priv(dev);
int rc, q_logical_state;
struct bnx2x_virtf *vf = NULL;
struct pf_vf_bulletin_content *bulletin = NULL;
if (!is_valid_ether_addr(mac)) {
BNX2X_ERR("mac address invalid\n");
return -EINVAL;
}
/* sanity and init */
rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
if (rc)
return rc;
mutex_lock(&bp->vfdb->bulletin_mutex);
/* update PF's copy of the VF's bulletin. Will no longer accept mac
* configuration requests from vf unless match this mac
*/
bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
memcpy(bulletin->mac, mac, ETH_ALEN);
/* Post update on VF's bulletin board */
rc = bnx2x_post_vf_bulletin(bp, vfidx);
/* release lock before checking return code */
mutex_unlock(&bp->vfdb->bulletin_mutex);
if (rc) {
BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
return rc;
}
q_logical_state =
bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
if (vf->state == VF_ENABLED &&
q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
/* configure the mac in device on this vf's queue */
unsigned long ramrod_flags = 0;
struct bnx2x_vlan_mac_obj *mac_obj;
/* User should be able to see failure reason in system logs */
if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
return -EINVAL;
/* must lock vfpf channel to protect against vf flows */
bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
/* remove existing eth macs */
mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
if (rc) {
BNX2X_ERR("failed to delete eth macs\n");
rc = -EINVAL;
goto out;
}
/* remove existing uc list macs */
rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
if (rc) {
BNX2X_ERR("failed to delete uc_list macs\n");
rc = -EINVAL;
goto out;
}
/* configure the new mac to device */
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
BNX2X_ETH_MAC, &ramrod_flags);
out:
bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
}
return rc;
}
int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
{
struct bnx2x_queue_state_params q_params = {NULL};
struct bnx2x_vlan_mac_ramrod_params ramrod_param;
struct bnx2x_queue_update_params *update_params;
struct pf_vf_bulletin_content *bulletin = NULL;
struct bnx2x_rx_mode_ramrod_params rx_ramrod;
struct bnx2x *bp = netdev_priv(dev);
struct bnx2x_vlan_mac_obj *vlan_obj;
unsigned long vlan_mac_flags = 0;
unsigned long ramrod_flags = 0;
struct bnx2x_virtf *vf = NULL;
unsigned long accept_flags;
int rc;
if (vlan > 4095) {
BNX2X_ERR("illegal vlan value %d\n", vlan);
return -EINVAL;
}
DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
vfidx, vlan, 0);
/* sanity and init */
rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
if (rc)
return rc;
/* update PF's copy of the VF's bulletin. No point in posting the vlan
* to the VF since it doesn't have anything to do with it. But it useful
* to store it here in case the VF is not up yet and we can only
* configure the vlan later when it does. Treat vlan id 0 as remove the
* Host tag.
*/
mutex_lock(&bp->vfdb->bulletin_mutex);
if (vlan > 0)
bulletin->valid_bitmap |= 1 << VLAN_VALID;
else
bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
bulletin->vlan = vlan;
mutex_unlock(&bp->vfdb->bulletin_mutex);
/* is vf initialized and queue set up? */
if (vf->state != VF_ENABLED ||
bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
BNX2X_Q_LOGICAL_STATE_ACTIVE)
return rc;
/* User should be able to see error in system logs */
if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
return -EINVAL;
/* must lock vfpf channel to protect against vf flows */
bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
/* remove existing vlans */
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
&ramrod_flags);
if (rc) {
BNX2X_ERR("failed to delete vlans\n");
rc = -EINVAL;
goto out;
}
/* need to remove/add the VF's accept_any_vlan bit */
accept_flags = bnx2x_leading_vfq(vf, accept_flags);
if (vlan)
clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
else
set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
accept_flags);
bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
bnx2x_config_rx_mode(bp, &rx_ramrod);
/* configure the new vlan to device */
memset(&ramrod_param, 0, sizeof(ramrod_param));
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
ramrod_param.vlan_mac_obj = vlan_obj;
ramrod_param.ramrod_flags = ramrod_flags;
set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
&ramrod_param.user_req.vlan_mac_flags);
ramrod_param.user_req.u.vlan.vlan = vlan;
ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
if (rc) {
BNX2X_ERR("failed to configure vlan\n");
rc = -EINVAL;
goto out;
}
/* send queue update ramrod to configure default vlan and silent
* vlan removal
*/
__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
q_params.cmd = BNX2X_Q_CMD_UPDATE;
q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj);
update_params = &q_params.params.update;
__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
&update_params->update_flags);
__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
&update_params->update_flags);
if (vlan == 0) {
/* if vlan is 0 then we want to leave the VF traffic
* untagged, and leave the incoming traffic untouched
* (i.e. do not remove any vlan tags).
*/
__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
&update_params->update_flags);
__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
&update_params->update_flags);
} else {
/* configure default vlan to vf queue and set silent
* vlan removal (the vf remains unaware of this vlan).
*/
__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
&update_params->update_flags);
__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
&update_params->update_flags);
update_params->def_vlan = vlan;
update_params->silent_removal_value =
vlan & VLAN_VID_MASK;
update_params->silent_removal_mask = VLAN_VID_MASK;
}
/* Update the Queue state */
rc = bnx2x_queue_state_change(bp, &q_params);
if (rc) {
BNX2X_ERR("Failed to configure default VLAN\n");
goto out;
}
/* clear the flag indicating that this VF needs its vlan
* (will only be set if the HV configured the Vlan before vf was
* up and we were called because the VF came up later
*/
out:
vf->cfg_flags &= ~VF_CFG_VLAN;
bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
return rc;
}
/* crc is the first field in the bulletin board. Compute the crc over the
* entire bulletin board excluding the crc field itself. Use the length field
* as the Bulletin Board was posted by a PF with possibly a different version
* from the vf which will sample it. Therefore, the length is computed by the
* PF and then used blindly by the VF.
*/
u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
{
return crc32(BULLETIN_CRC_SEED,
((u8 *)bulletin) + sizeof(bulletin->crc),
bulletin->length - sizeof(bulletin->crc));
}
/* Check for new posts on the bulletin board */
enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
{
struct pf_vf_bulletin_content *bulletin;
int attempts;
/* sampling structure in mid post may result with corrupted data
* validate crc to ensure coherency.
*/
for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
u32 crc;
/* sample the bulletin board */
memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
sizeof(union pf_vf_bulletin));
crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
if (bp->shadow_bulletin.content.crc == crc)
break;
BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
bp->shadow_bulletin.content.crc, crc);
}
if (attempts >= BULLETIN_ATTEMPTS) {
BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
attempts);
return PFVF_BULLETIN_CRC_ERR;
}
bulletin = &bp->shadow_bulletin.content;
/* bulletin board hasn't changed since last sample */
if (bp->old_bulletin.version == bulletin->version)
return PFVF_BULLETIN_UNCHANGED;
/* the mac address in bulletin board is valid and is new */
if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
!ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
/* update new mac to net device */
memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
}
if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
bulletin->link_speed, bulletin->link_flags);
bp->vf_link_vars.line_speed = bulletin->link_speed;
bp->vf_link_vars.link_report_flags = 0;
/* Link is down */
if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
&bp->vf_link_vars.link_report_flags);
/* Full DUPLEX */
if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
__set_bit(BNX2X_LINK_REPORT_FD,
&bp->vf_link_vars.link_report_flags);
/* Rx Flow Control is ON */
if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
&bp->vf_link_vars.link_report_flags);
/* Tx Flow Control is ON */
if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
&bp->vf_link_vars.link_report_flags);
__bnx2x_link_report(bp);
}
/* copy new bulletin board to bp */
memcpy(&bp->old_bulletin, bulletin,
sizeof(struct pf_vf_bulletin_content));
return PFVF_BULLETIN_UPDATED;
}
void bnx2x_timer_sriov(struct bnx2x *bp)
{
bnx2x_sample_bulletin(bp);
/* if channel is down we need to self destruct */
if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
BNX2X_MSG_IOV);
}
void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
{
/* vf doorbells are embedded within the regview */
return bp->regview + PXP_VF_ADDR_DB_START;
}
void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
{
BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
sizeof(struct bnx2x_vf_mbx_msg));
BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
sizeof(union pf_vf_bulletin));
}
int bnx2x_vf_pci_alloc(struct bnx2x *bp)
{
mutex_init(&bp->vf2pf_mutex);
/* allocate vf2pf mailbox for vf to pf channel */
bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
sizeof(struct bnx2x_vf_mbx_msg));
if (!bp->vf2pf_mbox)
goto alloc_mem_err;
/* allocate pf 2 vf bulletin board */
bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
sizeof(union pf_vf_bulletin));
if (!bp->pf2vf_bulletin)
goto alloc_mem_err;
bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
return 0;
alloc_mem_err:
bnx2x_vf_pci_dealloc(bp);
return -ENOMEM;
}
void bnx2x_iov_channel_down(struct bnx2x *bp)
{
int vf_idx;
struct pf_vf_bulletin_content *bulletin;
if (!IS_SRIOV(bp))
return;
for_each_vf(bp, vf_idx) {
/* locate this VFs bulletin board and update the channel down
* bit
*/
bulletin = BP_VF_BULLETIN(bp, vf_idx);
bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
/* update vf bulletin board */
bnx2x_post_vf_bulletin(bp, vf_idx);
}
}
void bnx2x_iov_task(struct work_struct *work)
{
struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
if (!netif_running(bp->dev))
return;
if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
&bp->iov_task_state))
bnx2x_vf_handle_flr_event(bp);
if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
&bp->iov_task_state))
bnx2x_vf_mbx(bp);
}
void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
{
smp_mb__before_atomic();
set_bit(flag, &bp->iov_task_state);
smp_mb__after_atomic();
DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
}