freebsd-src/usr.sbin/pccard/pccardd/readcis.c
1995-08-25 09:46:01 +00:00

632 lines
13 KiB
C

/* set tab=4
* Read/dump CIS tuples.
*/
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <pccard/card.h>
#include <pccard/cis.h>
#include "readcis.h"
static int read_attr(int fd, char *bp, int len);
struct tuple_list *read_one_tuplelist(int, int, off_t);
int ck_linktarget(int, off_t, int);
void cis_info(struct cis *cp, unsigned char *p, int len);
void device_desc(unsigned char *p, int len, struct dev_mem *dp);
void config_map(struct cis *cp, unsigned char *p, int len);
void cis_config(struct cis *cp, unsigned char *p, int len);
struct tuple_info tuple_info[] =
{
{ "Null tuple", 0x00, 0 },
{ "Common memory descriptor", 0x01, 255 },
{ "Checksum", 0x10, 5 },
{ "Long link to attribute memory", 0x11, 4 },
{ "Long link to common memory", 0x12, 4 },
{ "Link target", 0x13, 3 },
{ "No link", 0x14, 0 },
{ "Version 1 info", 0x15, 255 },
{ "Alternate language string", 0x16, 255 },
{ "Attribute memory descriptor", 0x17, 255 },
{ "JEDEC descr for common memory", 0x18, 255 },
{ "JEDEC descr for attribute memory", 0x19, 255 },
{ "Configuration map", 0x1A, 255 },
{ "Configuration entry", 0x1B, 255 },
{ "Other conditions for common memory", 0x1C, 255 },
{ "Other conditions for attribute memory", 0x1D, 255 },
{ "Geometry info for common memory", 0x1E, 255 },
{ "Geometry info for attribute memory", 0x1F, 255 },
{ "Manufacturer ID", 0x20, 4 },
{ "Functional ID", 0x21, 255 },
{ "Functional EXT", 0x22, 255 },
{ "Software interleave", 0x23, 2 },
{ "Version 2 Info", 0x40, 255 },
{ "Data format", 0x41, 255 },
{ "Geometry", 0x42, 4 },
{ "Byte order", 0x43, 2 },
{ "Card init date", 0x44, 4 },
{ "Battery replacement", 0x45, 4 },
{ "Organisation", 0x46, 255 },
{ "Terminator", 0xFF, 255 },
{ 0, 0, 0 }
};
/*
* After reading the tuples, decode the relevant ones.
*/
struct cis *
readcis(int fd)
{
struct tuple_list *tl;
struct tuple *tp;
struct cis *cp;
cp = xmalloc(sizeof(*cp));
cp->tlist = read_tuples(fd);
if (cp->tlist == 0)
return(NULL);
for (tl = cp->tlist; tl; tl = tl->next)
for (tp = tl->tuples; tp; tp = tp->next)
{
#if 0
printf("tuple code = 0x%02x, data is\n", tp->code);
dump(tp->data, tp->length);
#endif
switch(tp->code)
{
case CIS_MEM_COMMON: /* 0x01 */
device_desc(tp->data, tp->length, &cp->common_mem);
break;
case CIS_INFO_V1: /* 0x15 */
cis_info(cp, tp->data, tp->length);
break;
case CIS_MEM_ATTR: /* 0x17 */
device_desc(tp->data, tp->length, &cp->attr_mem);
break;
case CIS_CONF_MAP: /* 0x1A */
config_map(cp, tp->data, tp->length);
break;
case CIS_CONFIG: /* 0x1B */
cis_config(cp, tp->data, tp->length);
break;
}
}
return(cp);
}
/*
* free_cis - delete cis entry.
*/
void
freecis(struct cis *cp)
{
struct cis_ioblk *io;
struct cis_memblk *mem;
struct cis_config *conf;
struct tuple *tp;
struct tuple_list *tl;
while ((tl = cp->tlist) != 0)
{
cp->tlist = tl->next;
while ((tp = tl->tuples) != 0)
{
tl->tuples = tp->next;
if (tp->data)
free(tp->data);
}
}
while ((conf = cp->conf) != 0)
{
cp->conf = conf->next;
while ((io = conf->io) != 0)
{
conf->io = io->next;
free(io);
}
while ((mem = conf->mem) != 0)
{
conf->mem = mem->next;
free(mem);
}
free(conf);
}
free(cp);
}
/*
* Fills in CIS version data.
*/
void
cis_info(struct cis *cp, unsigned char *p, int len)
{
cp->maj_v = *p++;
cp->min_v = *p++;
strncpy(cp->manuf, p, MAXSTR-1);
while (*p++)
;
strncpy(cp->vers, p, MAXSTR-1);
while (*p++)
;
strncpy(cp->add_info1, p, MAXSTR-1);
while (*p++)
;
strncpy(cp->add_info2, p, MAXSTR-1);
}
/*
* device_desc - decode device descriptor.
*/
void
device_desc(unsigned char *p, int len, struct dev_mem *dp)
{
while (len > 0 && *p != 0xFF)
{
dp->valid = 1;
dp->type = (*p & 0xF0) >> 4;
dp->wps = !!(*p & 0x8);
dp->speed = *p & 7;
p++;
if (*p != 0xFF)
{
dp->addr = *p >> 3;
dp->units = *p & 7;
}
p++;
len -= 2;
}
}
/*
* configuration map of card control register.
*/
void
config_map(struct cis *cp, unsigned char *p, int len)
{
unsigned char *p1;
int i;
union {
unsigned long l;
unsigned char b[4];
}u;
p1 = p + 1;
cp->last_config = *p1++ & 0x3F;
u.l = 0;
for (i = 0 ; i <= (*p & 3); i++)
u.b[i] = *p1++;
cp->reg_addr = u.l;
cp->ccrs = *p1;
}
/*
* CIS config entry - Decode and build configuration entry.
*/
void
cis_config(struct cis *cp, unsigned char *p, int len)
{
int x;
int i, j;
union {
unsigned long l;
unsigned char b[4];
}u;
struct cis_config *conf, *last;
struct cis_memblk *mem;
unsigned char feat;
struct cis_memblk *lastmem = 0;
conf = xmalloc(sizeof(*conf));
if ((last = cp->conf) !=0)
{
while (last->next)
last = last->next;
last->next = conf;
}
else
cp->conf = conf;
conf->id = *p & 0x3F;
if (*p & 0x40)
cp->def_config = conf;
if (*p++ & 0x80)
p++;
feat = *p++;
for (i = 0; i < CIS_FEAT_POWER(feat); i++)
{
unsigned char parms = *p++;
conf->pwr = 1;
for (j = 0; j < 8; j++)
if (parms & (1 << j))
while (*p++ & 0x80)
;
}
if (feat & CIS_FEAT_TIMING)
{
conf->timing = 1;
i = *p++;
if (CIS_WAIT_SCALE(i) != 3)
p++;
if (CIS_READY_SCALE(i) != 7)
p++;
if (CIS_RESERVED_SCALE(i) != 7)
p++;
}
if (feat & CIS_FEAT_I_O)
{
conf->iospace = 1;
if (CIS_IO_RANGE & *p)
conf->io_blks = CIS_IO_BLKS(p[1])+1;
conf->io_addr = CIS_IO_ADDR(*p);
conf->io_bus = (*p >> 5) & 3;
if (*p++ & CIS_IO_RANGE)
{
struct cis_ioblk *io, *last = 0;
i = CIS_IO_ADSZ(*p);
j = CIS_IO_BLKSZ(*p++);
for (x = 0; x < conf->io_blks; x++)
{
io = xmalloc(sizeof(*io));
if (last)
last->next = io;
else
conf->io = io;
last = io;
u.l = 0;
switch(i)
{
case 0:
break;
case 1:
u.b[0] = *p++;
break;
case 2:
u.b[0] = *p++;
u.b[1] = *p++;
break;
case 3:
u.b[0] = *p++;
u.b[1] = *p++;
u.b[2] = *p++;
u.b[3] = *p++;
break;
}
io->addr = u.l;
u.l = 0;
switch(j)
{
case 0:
break;
case 1:
u.b[0] = *p++;
u.l++;
break;
case 2:
u.b[0] = *p++;
u.b[1] = *p++;
u.l++;
break;
case 3:
u.b[0] = *p++;
u.b[1] = *p++;
u.b[2] = *p++;
u.b[3] = *p++;
u.l++;
break;
}
io->size = u.l;
}
}
}
if (feat & CIS_FEAT_IRQ)
{
conf->irq = 1;
conf->irqlevel = *p & 0xF;
conf->irq_flags = *p & 0xF0;
if (*p++ & CIS_IRQ_MASK)
{
conf->irq_mask = (p[1] << 8) | p[0];
p += 2;
}
}
switch(CIS_FEAT_MEMORY(feat))
{
case 0:
break;
case 1:
conf->memspace = 1;
conf->mem = xmalloc(sizeof(*conf->mem));
conf->mem->length = ((p[1] << 8) | p[0])<<8;
break;
case 2:
conf->memspace = 1;
conf->mem = xmalloc(sizeof(*conf->mem));
conf->mem->length = ((p[1] << 8) | p[0]) << 8;
conf->mem->address = ((p[3] << 8) | p[2]) << 8;
break;
case 3:
conf->memspace = 1;
x = *p++;
conf->memwins = CIS_MEM_WINS(x);
for (i = 0; i < conf->memwins; i++)
{
mem = xmalloc(sizeof(*mem));
if (i == 0)
conf->mem = mem;
else
lastmem->next = mem;
lastmem = mem;
u.l = 0;
for (j = 0 ; j < CIS_MEM_LENSZ(x); j++)
u.b[j] = *p++;
mem->length = u.l << 8;
u.l = 0;
for (j = 0 ; j < CIS_MEM_ADDRSZ(x); j++)
u.b[j] = *p++;
mem->address = u.l << 8;
if (x & CIS_MEM_HOST)
{
u.l = 0;
for (j = 0 ; j < CIS_MEM_ADDRSZ(x); j++)
u.b[j] = *p++;
mem->host_address = u.l << 8;
}
}
break;
}
if (feat & 0x80)
{
conf->misc_valid = 1;
conf->misc = *p++;
}
}
/*
* Read the tuples from the card.
* The processing of tuples is as follows:
* - Read tuples at attribute memory, offset 0.
* - If a CIS_END is the first tuple, look for
* a tuple list at common memory offset 0; this list
* must start with a LINKTARGET.
* - If a long link tuple was encountered, execute the long
* link.
* - If a no-link tuple was seen, terminate processing.
* - If no no-link tuple exists, and no long link tuple
* exists while processing the primary tuple list,
* then look for a LINKTARGET tuple in common memory.
* - If a long link tuple is found in any list, then process
* it. Only one link is allowed per list.
*/
static struct tuple_list *tlist;
struct tuple_list *
read_tuples(int fd)
{
struct tuple_list *tl = 0, *last_tl;
struct tuple *tp;
int flag;
off_t offs;
tlist = 0;
last_tl = tlist = read_one_tuplelist(fd, MDF_ATTR, (off_t)0);
/*
* Now start processing the links (if any).
*/
do
{
flag = MDF_ATTR;
tp = find_tuple_in_list(last_tl, CIS_LONGLINK_A);
if (tp == 0)
{
flag = 0;
tp = find_tuple_in_list(last_tl, CIS_LONGLINK_C);
}
if (tp && tp->length == 4)
{
offs = tp->data[0] |
(tp->data[1] << 8) |
(tp->data[2] << 16) |
(tp->data[3] << 24);
#ifdef DEBUG
printf("Checking long link at %ld (%s memory)\n",
offs, flag ? "Attribute" : "Common");
#endif
if (ck_linktarget(fd, offs, flag))
{
/*
* If a link was found, then read the tuple list from it.
*/
tl = read_one_tuplelist(fd, flag, offs);
last_tl->next = tl;
last_tl = tl;
}
}
} while (tl);
/*
* If the primary list had no NOLINK tuple, and no LINKTARGET,
* then try to read a tuple list at common memory (offset 0).
*/
if (find_tuple_in_list(tlist, CIS_NOLINK)==0 && tlist->next == 0 &&
ck_linktarget(fd, (off_t)0, 0))
{
#ifdef DEBUG
printf("Reading long link at %ld (%s memory)\n",
offs, flag ? "Attribute" : "Common");
#endif
tlist->next = read_one_tuplelist(fd, 0, (off_t)0);
}
return(tlist);
}
/*
* Read one tuple list from the card.
*/
struct tuple_list *
read_one_tuplelist(int fd, int flags, off_t offs)
{
struct tuple *tp, *last_tp = 0;
struct tuple_list *tl;
struct tuple_info *tinfo;
int total = 0;
unsigned char code, length;
/*
* Check to see if this memory has already been scanned.
*/
for (tl = tlist; tl; tl = tl->next)
if (tl->offs == offs && tl->flags == (flags & MDF_ATTR))
return(0);
tl = xmalloc(sizeof(*tl));
tl->offs = offs;
tl->flags = flags & MDF_ATTR;
ioctl(fd, PIOCRWFLAG, &flags);
lseek(fd, offs, SEEK_SET);
do {
if (read_attr(fd, &code, 1) != 1)
{
perror("CIS code read");
break;
}
total++;
if (code == CIS_NULL)
continue;
tp = xmalloc(sizeof(*tp));
tp->code = code;
if (read_attr(fd, &length, 1) != 1)
{
perror("CIS len read");
break;
}
total++;
tp->length = length;
#ifdef DEBUG
fprintf(stderr, "Tuple code = 0x%x, len = %d\n",
code, length);
#endif
if (length == 0xFF)
{
length = tp->length = 0;
code = CIS_END;
}
if (length != 0)
{
total += length;
tp->data = xmalloc(length);
if (read_attr(fd, tp->data, length) != length)
{
perror("CIS read");
break;
}
}
/*
* Check the tuple, and ignore it if it isn't in the table
* or the length is illegal.
*/
tinfo = get_tuple_info(code);
if (tinfo == 0 || (tinfo->length != 255 && tinfo->length != length))
{
printf("code %s ignored\n", tuple_name(code));
tp->code = CIS_NULL;
}
if (tl->tuples==0)
tl->tuples = tp;
else
last_tp->next = tp;
last_tp = tp;
} while (code != CIS_END && total < 1024);
return(tl);
}
/*
* return true if the offset points to a LINKTARGET tuple.
*/
int
ck_linktarget(int fd, off_t offs, int flag)
{
char blk[5];
ioctl(fd, PIOCRWFLAG, &flag);
lseek(fd, offs, SEEK_SET);
if (read_attr(fd, blk, 5) != 5)
return(0);
if (blk[0] == 0x13 &&
blk[1] == 0x3 &&
blk[2] == 'C' &&
blk[3] == 'I' &&
blk[4] == 'S')
return(1);
return(0);
}
/*
* find_tuple - find the indicated tuple in the CIS
*/
struct tuple *
find_tuple(struct cis *sp, unsigned char code)
{
struct tuple_list *tl;
struct tuple *tp;
for (tl = sp->tlist; tl; tl = tl->next)
if ((tp = find_tuple_in_list(tl, code)) != 0)
return(tp);
return(0);
}
/*
* find_tuple_in_list - find a tuple within a
* single tuple list.
*/
struct tuple *
find_tuple_in_list(struct tuple_list *tl, unsigned char code)
{
struct tuple *tp;
for (tp = tl->tuples; tp; tp = tp->next)
if (tp->code == code)
break;
return(tp);
}
static int
read_attr(int fd, char *bp, int len)
{
char blk[1024], *p = blk;
int i,l;
if (len > sizeof(blk)/2)
len = sizeof(blk)/2;
l = i = read(fd, blk, len*2);
if (i <= 0)
{
printf("Read return %d bytes (expected %d)\n", i, len*2);
return(i);
}
while (i > 0)
{
*bp++ = *p++;
p++;
i -= 2;
}
return(l/2);
}
/*
* return table entry for code.
*/
struct tuple_info *
get_tuple_info(unsigned char code)
{
struct tuple_info *tp;
for (tp = tuple_info; tp->name; tp++)
if (tp->code == code)
return(tp);
printf("Code %d not found\n", code);
return(0);
}
char *
tuple_name(unsigned char code)
{
struct tuple_info *tp;
tp = get_tuple_info(code);
if (tp)
return(tp->name);
return("Unknown");
}