freebsd-src/tests/sys/kern/ktls_test.c
Mark Johnston b08a9b86f5 ktls tests: Relax error checking for shutdown(2) a bit
In my test suite runs I occasionally see shutdown(2) fail with
ECONNRESET rather than ENOTCONN.  soshutdown(2) will return ENOTCONN if
the socket has been disconnected (synchronized by the socket lock), and
tcp_usr_shutdown() will return ECONNRESET if the inpcb has been dropped
(synchronized by the inpcb lock).  I think it's possible to pass the
first check in soshutdown() but fail the second check in
tcp_usr_shutdown(), so modify the KTLS tests to permit this.

Reviewed by:	jhb
MFC after:	1 week
Differential Revision:	https://reviews.freebsd.org/D42277
2023-11-17 09:31:21 -05:00

2849 lines
85 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2021 Netflix Inc.
* Written by: John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/event.h>
#include <sys/ktls.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <crypto/cryptodev.h>
#include <assert.h>
#include <err.h>
#include <fcntl.h>
#include <libutil.h>
#include <netdb.h>
#include <poll.h>
#include <stdbool.h>
#include <stdlib.h>
#include <atf-c.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
static void
require_ktls(void)
{
size_t len;
bool enable;
len = sizeof(enable);
if (sysctlbyname("kern.ipc.tls.enable", &enable, &len, NULL, 0) == -1) {
if (errno == ENOENT)
atf_tc_skip("kernel does not support TLS offload");
atf_libc_error(errno, "Failed to read kern.ipc.tls.enable");
}
if (!enable)
atf_tc_skip("Kernel TLS is disabled");
}
#define ATF_REQUIRE_KTLS() require_ktls()
static void
check_tls_mode(const atf_tc_t *tc, int s, int sockopt)
{
if (atf_tc_get_config_var_as_bool_wd(tc, "ktls.require_ifnet", false)) {
socklen_t len;
int mode;
len = sizeof(mode);
if (getsockopt(s, IPPROTO_TCP, sockopt, &mode, &len) == -1)
atf_libc_error(errno, "Failed to fetch TLS mode");
if (mode != TCP_TLS_MODE_IFNET)
atf_tc_skip("connection did not use ifnet TLS");
}
if (atf_tc_get_config_var_as_bool_wd(tc, "ktls.require_toe", false)) {
socklen_t len;
int mode;
len = sizeof(mode);
if (getsockopt(s, IPPROTO_TCP, sockopt, &mode, &len) == -1)
atf_libc_error(errno, "Failed to fetch TLS mode");
if (mode != TCP_TLS_MODE_TOE)
atf_tc_skip("connection did not use TOE TLS");
}
}
static void __printflike(2, 3)
debug(const atf_tc_t *tc, const char *fmt, ...)
{
if (!atf_tc_get_config_var_as_bool_wd(tc, "ktls.debug", false))
return;
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
static void
debug_hexdump(const atf_tc_t *tc, const void *buf, int length,
const char *label)
{
if (!atf_tc_get_config_var_as_bool_wd(tc, "ktls.debug", false))
return;
if (label != NULL)
printf("%s:\n", label);
hexdump(buf, length, NULL, 0);
}
static char
rdigit(void)
{
/* ASCII printable values between 0x20 and 0x7e */
return (0x20 + random() % (0x7f - 0x20));
}
static char *
alloc_buffer(size_t len)
{
char *buf;
size_t i;
if (len == 0)
return (NULL);
buf = malloc(len);
for (i = 0; i < len; i++)
buf[i] = rdigit();
return (buf);
}
static bool
socketpair_tcp(int sv[2])
{
struct pollfd pfd;
struct sockaddr_in sin;
socklen_t len;
int as, cs, ls;
ls = socket(PF_INET, SOCK_STREAM, 0);
if (ls == -1) {
warn("socket() for listen");
return (false);
}
memset(&sin, 0, sizeof(sin));
sin.sin_len = sizeof(sin);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
if (bind(ls, (struct sockaddr *)&sin, sizeof(sin)) == -1) {
warn("bind");
close(ls);
return (false);
}
if (listen(ls, 1) == -1) {
warn("listen");
close(ls);
return (false);
}
len = sizeof(sin);
if (getsockname(ls, (struct sockaddr *)&sin, &len) == -1) {
warn("getsockname");
close(ls);
return (false);
}
cs = socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0);
if (cs == -1) {
warn("socket() for connect");
close(ls);
return (false);
}
if (connect(cs, (struct sockaddr *)&sin, sizeof(sin)) == -1) {
if (errno != EINPROGRESS) {
warn("connect");
close(ls);
close(cs);
return (false);
}
}
as = accept4(ls, NULL, NULL, SOCK_NONBLOCK);
if (as == -1) {
warn("accept4");
close(ls);
close(cs);
return (false);
}
close(ls);
pfd.fd = cs;
pfd.events = POLLOUT;
pfd.revents = 0;
ATF_REQUIRE_INTEQ(1, poll(&pfd, 1, INFTIM));
ATF_REQUIRE_INTEQ(POLLOUT, pfd.revents);
sv[0] = cs;
sv[1] = as;
return (true);
}
static bool
echo_socket(const atf_tc_t *tc, int sv[2])
{
const char *cause, *host, *port;
struct addrinfo hints, *ai, *tofree;
int error, flags, s;
host = atf_tc_get_config_var(tc, "ktls.host");
port = atf_tc_get_config_var_wd(tc, "ktls.port", "echo");
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
error = getaddrinfo(host, port, &hints, &tofree);
if (error != 0) {
warnx("getaddrinfo(%s:%s) failed: %s", host, port,
gai_strerror(error));
return (false);
}
cause = NULL;
for (ai = tofree; ai != NULL; ai = ai->ai_next) {
s = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
if (s == -1) {
cause = "socket";
error = errno;
continue;
}
if (connect(s, ai->ai_addr, ai->ai_addrlen) == -1) {
cause = "connect";
error = errno;
close(s);
continue;
}
freeaddrinfo(tofree);
ATF_REQUIRE((flags = fcntl(s, F_GETFL)) != -1);
flags |= O_NONBLOCK;
ATF_REQUIRE(fcntl(s, F_SETFL, flags) != -1);
sv[0] = s;
sv[1] = s;
return (true);
}
warnc(error, "%s", cause);
freeaddrinfo(tofree);
return (false);
}
static bool
open_sockets(const atf_tc_t *tc, int sv[2])
{
if (atf_tc_has_config_var(tc, "ktls.host"))
return (echo_socket(tc, sv));
else
return (socketpair_tcp(sv));
}
static void
close_sockets(int sv[2])
{
if (sv[0] != sv[1])
ATF_REQUIRE(close(sv[1]) == 0);
ATF_REQUIRE(close(sv[0]) == 0);
}
static void
close_sockets_ignore_errors(int sv[2])
{
if (sv[0] != sv[1])
close(sv[1]);
close(sv[0]);
}
static void
fd_set_blocking(int fd)
{
int flags;
ATF_REQUIRE((flags = fcntl(fd, F_GETFL)) != -1);
flags &= ~O_NONBLOCK;
ATF_REQUIRE(fcntl(fd, F_SETFL, flags) != -1);
}
static bool
cbc_crypt(const EVP_CIPHER *cipher, const char *key, const char *iv,
const char *input, char *output, size_t size, int enc)
{
EVP_CIPHER_CTX *ctx;
int outl, total;
ctx = EVP_CIPHER_CTX_new();
if (ctx == NULL) {
warnx("EVP_CIPHER_CTX_new failed: %s",
ERR_error_string(ERR_get_error(), NULL));
return (false);
}
if (EVP_CipherInit_ex(ctx, cipher, NULL, (const u_char *)key,
(const u_char *)iv, enc) != 1) {
warnx("EVP_CipherInit_ex failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
EVP_CIPHER_CTX_set_padding(ctx, 0);
if (EVP_CipherUpdate(ctx, (u_char *)output, &outl,
(const u_char *)input, size) != 1) {
warnx("EVP_CipherUpdate failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
total = outl;
if (EVP_CipherFinal_ex(ctx, (u_char *)output + outl, &outl) != 1) {
warnx("EVP_CipherFinal_ex failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
total += outl;
if ((size_t)total != size) {
warnx("decrypt size mismatch: %zu vs %d", size, total);
EVP_CIPHER_CTX_free(ctx);
return (false);
}
EVP_CIPHER_CTX_free(ctx);
return (true);
}
static bool
cbc_encrypt(const EVP_CIPHER *cipher, const char *key, const char *iv,
const char *input, char *output, size_t size)
{
return (cbc_crypt(cipher, key, iv, input, output, size, 1));
}
static bool
cbc_decrypt(const EVP_CIPHER *cipher, const char *key, const char *iv,
const char *input, char *output, size_t size)
{
return (cbc_crypt(cipher, key, iv, input, output, size, 0));
}
static bool
compute_hash(const EVP_MD *md, const void *key, size_t key_len, const void *aad,
size_t aad_len, const void *buffer, size_t len, void *digest,
u_int *digest_len)
{
HMAC_CTX *ctx;
ctx = HMAC_CTX_new();
if (ctx == NULL) {
warnx("HMAC_CTX_new failed: %s",
ERR_error_string(ERR_get_error(), NULL));
return (false);
}
if (HMAC_Init_ex(ctx, key, key_len, md, NULL) != 1) {
warnx("HMAC_Init_ex failed: %s",
ERR_error_string(ERR_get_error(), NULL));
HMAC_CTX_free(ctx);
return (false);
}
if (HMAC_Update(ctx, aad, aad_len) != 1) {
warnx("HMAC_Update (aad) failed: %s",
ERR_error_string(ERR_get_error(), NULL));
HMAC_CTX_free(ctx);
return (false);
}
if (HMAC_Update(ctx, buffer, len) != 1) {
warnx("HMAC_Update (payload) failed: %s",
ERR_error_string(ERR_get_error(), NULL));
HMAC_CTX_free(ctx);
return (false);
}
if (HMAC_Final(ctx, digest, digest_len) != 1) {
warnx("HMAC_Final failed: %s",
ERR_error_string(ERR_get_error(), NULL));
HMAC_CTX_free(ctx);
return (false);
}
HMAC_CTX_free(ctx);
return (true);
}
static bool
verify_hash(const EVP_MD *md, const void *key, size_t key_len, const void *aad,
size_t aad_len, const void *buffer, size_t len, const void *digest)
{
unsigned char digest2[EVP_MAX_MD_SIZE];
u_int digest_len;
if (!compute_hash(md, key, key_len, aad, aad_len, buffer, len, digest2,
&digest_len))
return (false);
if (memcmp(digest, digest2, digest_len) != 0) {
warnx("HMAC mismatch");
return (false);
}
return (true);
}
static bool
aead_encrypt(const EVP_CIPHER *cipher, const char *key, const char *nonce,
const void *aad, size_t aad_len, const char *input, char *output,
size_t size, char *tag, size_t tag_len)
{
EVP_CIPHER_CTX *ctx;
int outl, total;
ctx = EVP_CIPHER_CTX_new();
if (ctx == NULL) {
warnx("EVP_CIPHER_CTX_new failed: %s",
ERR_error_string(ERR_get_error(), NULL));
return (false);
}
if (EVP_EncryptInit_ex(ctx, cipher, NULL, (const u_char *)key,
(const u_char *)nonce) != 1) {
warnx("EVP_EncryptInit_ex failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
EVP_CIPHER_CTX_set_padding(ctx, 0);
if (aad != NULL) {
if (EVP_EncryptUpdate(ctx, NULL, &outl, (const u_char *)aad,
aad_len) != 1) {
warnx("EVP_EncryptUpdate for AAD failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
}
if (EVP_EncryptUpdate(ctx, (u_char *)output, &outl,
(const u_char *)input, size) != 1) {
warnx("EVP_EncryptUpdate failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
total = outl;
if (EVP_EncryptFinal_ex(ctx, (u_char *)output + outl, &outl) != 1) {
warnx("EVP_EncryptFinal_ex failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
total += outl;
if ((size_t)total != size) {
warnx("encrypt size mismatch: %zu vs %d", size, total);
EVP_CIPHER_CTX_free(ctx);
return (false);
}
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, tag_len, tag) !=
1) {
warnx("EVP_CIPHER_CTX_ctrl(EVP_CTRL_AEAD_GET_TAG) failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
EVP_CIPHER_CTX_free(ctx);
return (true);
}
static bool
aead_decrypt(const EVP_CIPHER *cipher, const char *key, const char *nonce,
const void *aad, size_t aad_len, const char *input, char *output,
size_t size, const char *tag, size_t tag_len)
{
EVP_CIPHER_CTX *ctx;
int outl, total;
bool valid;
ctx = EVP_CIPHER_CTX_new();
if (ctx == NULL) {
warnx("EVP_CIPHER_CTX_new failed: %s",
ERR_error_string(ERR_get_error(), NULL));
return (false);
}
if (EVP_DecryptInit_ex(ctx, cipher, NULL, (const u_char *)key,
(const u_char *)nonce) != 1) {
warnx("EVP_DecryptInit_ex failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
EVP_CIPHER_CTX_set_padding(ctx, 0);
if (aad != NULL) {
if (EVP_DecryptUpdate(ctx, NULL, &outl, (const u_char *)aad,
aad_len) != 1) {
warnx("EVP_DecryptUpdate for AAD failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
}
if (EVP_DecryptUpdate(ctx, (u_char *)output, &outl,
(const u_char *)input, size) != 1) {
warnx("EVP_DecryptUpdate failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
total = outl;
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, tag_len,
__DECONST(char *, tag)) != 1) {
warnx("EVP_CIPHER_CTX_ctrl(EVP_CTRL_AEAD_SET_TAG) failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_free(ctx);
return (false);
}
valid = (EVP_DecryptFinal_ex(ctx, (u_char *)output + outl, &outl) == 1);
total += outl;
if ((size_t)total != size) {
warnx("decrypt size mismatch: %zu vs %d", size, total);
EVP_CIPHER_CTX_free(ctx);
return (false);
}
if (!valid)
warnx("tag mismatch");
EVP_CIPHER_CTX_free(ctx);
return (valid);
}
static void
build_tls_enable(const atf_tc_t *tc, int cipher_alg, size_t cipher_key_len,
int auth_alg, int minor, uint64_t seqno, struct tls_enable *en)
{
u_int auth_key_len, iv_len;
memset(en, 0, sizeof(*en));
switch (cipher_alg) {
case CRYPTO_AES_CBC:
if (minor == TLS_MINOR_VER_ZERO)
iv_len = AES_BLOCK_LEN;
else
iv_len = 0;
break;
case CRYPTO_AES_NIST_GCM_16:
if (minor == TLS_MINOR_VER_TWO)
iv_len = TLS_AEAD_GCM_LEN;
else
iv_len = TLS_1_3_GCM_IV_LEN;
break;
case CRYPTO_CHACHA20_POLY1305:
iv_len = TLS_CHACHA20_IV_LEN;
break;
default:
iv_len = 0;
break;
}
switch (auth_alg) {
case CRYPTO_SHA1_HMAC:
auth_key_len = SHA1_HASH_LEN;
break;
case CRYPTO_SHA2_256_HMAC:
auth_key_len = SHA2_256_HASH_LEN;
break;
case CRYPTO_SHA2_384_HMAC:
auth_key_len = SHA2_384_HASH_LEN;
break;
default:
auth_key_len = 0;
break;
}
en->cipher_key = alloc_buffer(cipher_key_len);
debug_hexdump(tc, en->cipher_key, cipher_key_len, "cipher key");
en->iv = alloc_buffer(iv_len);
if (iv_len != 0)
debug_hexdump(tc, en->iv, iv_len, "iv");
en->auth_key = alloc_buffer(auth_key_len);
if (auth_key_len != 0)
debug_hexdump(tc, en->auth_key, auth_key_len, "auth key");
en->cipher_algorithm = cipher_alg;
en->cipher_key_len = cipher_key_len;
en->iv_len = iv_len;
en->auth_algorithm = auth_alg;
en->auth_key_len = auth_key_len;
en->tls_vmajor = TLS_MAJOR_VER_ONE;
en->tls_vminor = minor;
be64enc(en->rec_seq, seqno);
debug(tc, "seqno: %ju\n", (uintmax_t)seqno);
}
static void
free_tls_enable(struct tls_enable *en)
{
free(__DECONST(void *, en->cipher_key));
free(__DECONST(void *, en->iv));
free(__DECONST(void *, en->auth_key));
}
static const EVP_CIPHER *
tls_EVP_CIPHER(const struct tls_enable *en)
{
switch (en->cipher_algorithm) {
case CRYPTO_AES_CBC:
switch (en->cipher_key_len) {
case 128 / 8:
return (EVP_aes_128_cbc());
case 256 / 8:
return (EVP_aes_256_cbc());
default:
return (NULL);
}
break;
case CRYPTO_AES_NIST_GCM_16:
switch (en->cipher_key_len) {
case 128 / 8:
return (EVP_aes_128_gcm());
case 256 / 8:
return (EVP_aes_256_gcm());
default:
return (NULL);
}
break;
case CRYPTO_CHACHA20_POLY1305:
return (EVP_chacha20_poly1305());
default:
return (NULL);
}
}
static const EVP_MD *
tls_EVP_MD(const struct tls_enable *en)
{
switch (en->auth_algorithm) {
case CRYPTO_SHA1_HMAC:
return (EVP_sha1());
case CRYPTO_SHA2_256_HMAC:
return (EVP_sha256());
case CRYPTO_SHA2_384_HMAC:
return (EVP_sha384());
default:
return (NULL);
}
}
static size_t
tls_header_len(struct tls_enable *en)
{
size_t len;
len = sizeof(struct tls_record_layer);
switch (en->cipher_algorithm) {
case CRYPTO_AES_CBC:
if (en->tls_vminor != TLS_MINOR_VER_ZERO)
len += AES_BLOCK_LEN;
return (len);
case CRYPTO_AES_NIST_GCM_16:
if (en->tls_vminor == TLS_MINOR_VER_TWO)
len += sizeof(uint64_t);
return (len);
case CRYPTO_CHACHA20_POLY1305:
return (len);
default:
return (0);
}
}
static size_t
tls_mac_len(struct tls_enable *en)
{
switch (en->cipher_algorithm) {
case CRYPTO_AES_CBC:
switch (en->auth_algorithm) {
case CRYPTO_SHA1_HMAC:
return (SHA1_HASH_LEN);
case CRYPTO_SHA2_256_HMAC:
return (SHA2_256_HASH_LEN);
case CRYPTO_SHA2_384_HMAC:
return (SHA2_384_HASH_LEN);
default:
return (0);
}
case CRYPTO_AES_NIST_GCM_16:
return (AES_GMAC_HASH_LEN);
case CRYPTO_CHACHA20_POLY1305:
return (POLY1305_HASH_LEN);
default:
return (0);
}
}
/* Includes maximum padding for MTE. */
static size_t
tls_trailer_len(struct tls_enable *en)
{
size_t len;
len = tls_mac_len(en);
if (en->cipher_algorithm == CRYPTO_AES_CBC)
len += AES_BLOCK_LEN;
if (en->tls_vminor == TLS_MINOR_VER_THREE)
len++;
return (len);
}
/* Minimum valid record payload size for a given cipher suite. */
static size_t
tls_minimum_record_payload(struct tls_enable *en)
{
size_t len;
len = tls_header_len(en);
if (en->cipher_algorithm == CRYPTO_AES_CBC)
len += roundup2(tls_mac_len(en) + 1, AES_BLOCK_LEN);
else
len += tls_mac_len(en);
if (en->tls_vminor == TLS_MINOR_VER_THREE)
len++;
return (len - sizeof(struct tls_record_layer));
}
/* 'len' is the length of the payload application data. */
static void
tls_mte_aad(struct tls_enable *en, size_t len,
const struct tls_record_layer *hdr, uint64_t seqno, struct tls_mac_data *ad)
{
ad->seq = htobe64(seqno);
ad->type = hdr->tls_type;
ad->tls_vmajor = hdr->tls_vmajor;
ad->tls_vminor = hdr->tls_vminor;
ad->tls_length = htons(len);
}
static void
tls_12_aead_aad(struct tls_enable *en, size_t len,
const struct tls_record_layer *hdr, uint64_t seqno,
struct tls_aead_data *ad)
{
ad->seq = htobe64(seqno);
ad->type = hdr->tls_type;
ad->tls_vmajor = hdr->tls_vmajor;
ad->tls_vminor = hdr->tls_vminor;
ad->tls_length = htons(len);
}
static void
tls_13_aad(struct tls_enable *en, const struct tls_record_layer *hdr,
uint64_t seqno, struct tls_aead_data_13 *ad)
{
ad->type = hdr->tls_type;
ad->tls_vmajor = hdr->tls_vmajor;
ad->tls_vminor = hdr->tls_vminor;
ad->tls_length = hdr->tls_length;
}
static void
tls_12_gcm_nonce(struct tls_enable *en, const struct tls_record_layer *hdr,
char *nonce)
{
memcpy(nonce, en->iv, TLS_AEAD_GCM_LEN);
memcpy(nonce + TLS_AEAD_GCM_LEN, hdr + 1, sizeof(uint64_t));
}
static void
tls_13_nonce(struct tls_enable *en, uint64_t seqno, char *nonce)
{
static_assert(TLS_1_3_GCM_IV_LEN == TLS_CHACHA20_IV_LEN,
"TLS 1.3 nonce length mismatch");
memcpy(nonce, en->iv, TLS_1_3_GCM_IV_LEN);
*(uint64_t *)(nonce + 4) ^= htobe64(seqno);
}
/*
* Decrypt a TLS record 'len' bytes long at 'src' and store the result at
* 'dst'. If the TLS record header length doesn't match or 'dst' doesn't
* have sufficient room ('avail'), fail the test.
*/
static size_t
decrypt_tls_aes_cbc_mte(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, const void *src, size_t len, void *dst, size_t avail,
uint8_t *record_type)
{
const struct tls_record_layer *hdr;
struct tls_mac_data aad;
const char *iv;
char *buf;
size_t hdr_len, mac_len, payload_len;
int padding;
hdr = src;
hdr_len = tls_header_len(en);
mac_len = tls_mac_len(en);
ATF_REQUIRE_INTEQ(TLS_MAJOR_VER_ONE, hdr->tls_vmajor);
ATF_REQUIRE_INTEQ(en->tls_vminor, hdr->tls_vminor);
debug(tc, "decrypting MTE record seqno %ju:\n", (uintmax_t)seqno);
debug_hexdump(tc, src, len, NULL);
/* First, decrypt the outer payload into a temporary buffer. */
payload_len = len - hdr_len;
buf = malloc(payload_len);
if (en->tls_vminor == TLS_MINOR_VER_ZERO)
iv = en->iv;
else
iv = (void *)(hdr + 1);
debug_hexdump(tc, iv, AES_BLOCK_LEN, "iv");
ATF_REQUIRE(cbc_decrypt(tls_EVP_CIPHER(en), en->cipher_key, iv,
(const u_char *)src + hdr_len, buf, payload_len));
debug_hexdump(tc, buf, payload_len, "decrypted buffer");
/*
* Copy the last encrypted block to use as the IV for the next
* record for TLS 1.0.
*/
if (en->tls_vminor == TLS_MINOR_VER_ZERO)
memcpy(__DECONST(uint8_t *, en->iv), (const u_char *)src +
(len - AES_BLOCK_LEN), AES_BLOCK_LEN);
/*
* Verify trailing padding and strip.
*
* The kernel always generates the smallest amount of padding.
*/
padding = buf[payload_len - 1] + 1;
ATF_REQUIRE_MSG(padding > 0 && padding <= AES_BLOCK_LEN,
"invalid padding %d", padding);
ATF_REQUIRE_MSG(payload_len >= mac_len + padding,
"payload_len (%zu) < mac_len (%zu) + padding (%d)", payload_len,
mac_len, padding);
payload_len -= padding;
/* Verify HMAC. */
payload_len -= mac_len;
tls_mte_aad(en, payload_len, hdr, seqno, &aad);
debug_hexdump(tc, &aad, sizeof(aad), "aad");
ATF_REQUIRE(verify_hash(tls_EVP_MD(en), en->auth_key, en->auth_key_len,
&aad, sizeof(aad), buf, payload_len, buf + payload_len));
ATF_REQUIRE_MSG(payload_len <= avail, "payload_len (%zu) < avail (%zu)",
payload_len, avail);
memcpy(dst, buf, payload_len);
*record_type = hdr->tls_type;
return (payload_len);
}
static size_t
decrypt_tls_12_aead(const atf_tc_t *tc, struct tls_enable *en, uint64_t seqno,
const void *src, size_t len, void *dst, uint8_t *record_type)
{
const struct tls_record_layer *hdr;
struct tls_aead_data aad;
char nonce[12];
size_t hdr_len, mac_len, payload_len;
hdr = src;
hdr_len = tls_header_len(en);
mac_len = tls_mac_len(en);
payload_len = len - (hdr_len + mac_len);
ATF_REQUIRE_INTEQ(TLS_MAJOR_VER_ONE, hdr->tls_vmajor);
ATF_REQUIRE_INTEQ(TLS_MINOR_VER_TWO, hdr->tls_vminor);
debug(tc, "decrypting TLS 1.2 record seqno %ju:\n", (uintmax_t)seqno);
debug_hexdump(tc, src, len, NULL);
tls_12_aead_aad(en, payload_len, hdr, seqno, &aad);
debug_hexdump(tc, &aad, sizeof(aad), "aad");
if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16)
tls_12_gcm_nonce(en, hdr, nonce);
else
tls_13_nonce(en, seqno, nonce);
debug_hexdump(tc, nonce, sizeof(nonce), "nonce");
ATF_REQUIRE(aead_decrypt(tls_EVP_CIPHER(en), en->cipher_key, nonce,
&aad, sizeof(aad), (const char *)src + hdr_len, dst, payload_len,
(const char *)src + hdr_len + payload_len, mac_len));
*record_type = hdr->tls_type;
return (payload_len);
}
static size_t
decrypt_tls_13_aead(const atf_tc_t *tc, struct tls_enable *en, uint64_t seqno,
const void *src, size_t len, void *dst, uint8_t *record_type)
{
const struct tls_record_layer *hdr;
struct tls_aead_data_13 aad;
char nonce[12];
char *buf;
size_t hdr_len, mac_len, payload_len;
hdr = src;
hdr_len = tls_header_len(en);
mac_len = tls_mac_len(en);
payload_len = len - (hdr_len + mac_len);
ATF_REQUIRE_MSG(payload_len >= 1,
"payload_len (%zu) too short: len %zu hdr_len %zu mac_len %zu",
payload_len, len, hdr_len, mac_len);
ATF_REQUIRE_INTEQ(TLS_RLTYPE_APP, hdr->tls_type);
ATF_REQUIRE_INTEQ(TLS_MAJOR_VER_ONE, hdr->tls_vmajor);
ATF_REQUIRE_INTEQ(TLS_MINOR_VER_TWO, hdr->tls_vminor);
debug(tc, "decrypting TLS 1.3 record seqno %ju:\n", (uintmax_t)seqno);
debug_hexdump(tc, src, len, NULL);
tls_13_aad(en, hdr, seqno, &aad);
debug_hexdump(tc, &aad, sizeof(aad), "aad");
tls_13_nonce(en, seqno, nonce);
debug_hexdump(tc, nonce, sizeof(nonce), "nonce");
/*
* Have to use a temporary buffer for the output due to the
* record type as the last byte of the trailer.
*/
buf = malloc(payload_len);
ATF_REQUIRE(aead_decrypt(tls_EVP_CIPHER(en), en->cipher_key, nonce,
&aad, sizeof(aad), (const char *)src + hdr_len, buf, payload_len,
(const char *)src + hdr_len + payload_len, mac_len));
debug_hexdump(tc, buf, payload_len, "decrypted buffer");
/* Trim record type. */
*record_type = buf[payload_len - 1];
payload_len--;
memcpy(dst, buf, payload_len);
free(buf);
return (payload_len);
}
static size_t
decrypt_tls_aead(const atf_tc_t *tc, struct tls_enable *en, uint64_t seqno,
const void *src, size_t len, void *dst, size_t avail, uint8_t *record_type)
{
const struct tls_record_layer *hdr;
size_t payload_len;
hdr = src;
ATF_REQUIRE_INTEQ(len, ntohs(hdr->tls_length) + sizeof(*hdr));
payload_len = len - (tls_header_len(en) + tls_trailer_len(en));
ATF_REQUIRE_MSG(payload_len <= avail, "payload_len (%zu) > avail (%zu)",
payload_len, avail);
if (en->tls_vminor == TLS_MINOR_VER_TWO) {
ATF_REQUIRE_INTEQ(payload_len, decrypt_tls_12_aead(tc, en,
seqno, src, len, dst, record_type));
} else {
ATF_REQUIRE_INTEQ(payload_len, decrypt_tls_13_aead(tc, en,
seqno, src, len, dst, record_type));
}
return (payload_len);
}
static size_t
decrypt_tls_record(const atf_tc_t *tc, struct tls_enable *en, uint64_t seqno,
const void *src, size_t len, void *dst, size_t avail, uint8_t *record_type)
{
if (en->cipher_algorithm == CRYPTO_AES_CBC)
return (decrypt_tls_aes_cbc_mte(tc, en, seqno, src, len, dst,
avail, record_type));
else
return (decrypt_tls_aead(tc, en, seqno, src, len, dst, avail,
record_type));
}
/*
* Encrypt a TLS record of type 'record_type' with payload 'len' bytes
* long at 'src' and store the result at 'dst'. If 'dst' doesn't have
* sufficient room ('avail'), fail the test. 'padding' is the amount
* of additional padding to include beyond any amount mandated by the
* cipher suite.
*/
static size_t
encrypt_tls_aes_cbc_mte(const atf_tc_t *tc, struct tls_enable *en,
uint8_t record_type, uint64_t seqno, const void *src, size_t len, void *dst,
size_t avail, size_t padding)
{
struct tls_record_layer *hdr;
struct tls_mac_data aad;
char *buf, *iv;
size_t hdr_len, mac_len, record_len;
u_int digest_len, i;
ATF_REQUIRE_INTEQ(0, padding % 16);
hdr = dst;
buf = dst;
debug(tc, "encrypting MTE record seqno %ju:\n", (uintmax_t)seqno);
hdr_len = tls_header_len(en);
mac_len = tls_mac_len(en);
padding += (AES_BLOCK_LEN - (len + mac_len) % AES_BLOCK_LEN);
ATF_REQUIRE_MSG(padding > 0 && padding <= 255, "invalid padding (%zu)",
padding);
record_len = hdr_len + len + mac_len + padding;
ATF_REQUIRE_MSG(record_len <= avail, "record_len (%zu) > avail (%zu): "
"hdr_len %zu, len %zu, mac_len %zu, padding %zu", record_len,
avail, hdr_len, len, mac_len, padding);
hdr->tls_type = record_type;
hdr->tls_vmajor = TLS_MAJOR_VER_ONE;
hdr->tls_vminor = en->tls_vminor;
hdr->tls_length = htons(record_len - sizeof(*hdr));
iv = (char *)(hdr + 1);
for (i = 0; i < AES_BLOCK_LEN; i++)
iv[i] = rdigit();
debug_hexdump(tc, iv, AES_BLOCK_LEN, "explicit IV");
/* Copy plaintext to ciphertext region. */
memcpy(buf + hdr_len, src, len);
/* Compute HMAC. */
tls_mte_aad(en, len, hdr, seqno, &aad);
debug_hexdump(tc, &aad, sizeof(aad), "aad");
debug_hexdump(tc, src, len, "plaintext");
ATF_REQUIRE(compute_hash(tls_EVP_MD(en), en->auth_key, en->auth_key_len,
&aad, sizeof(aad), src, len, buf + hdr_len + len, &digest_len));
ATF_REQUIRE_INTEQ(mac_len, digest_len);
/* Store padding. */
for (i = 0; i < padding; i++)
buf[hdr_len + len + mac_len + i] = padding - 1;
debug_hexdump(tc, buf + hdr_len + len, mac_len + padding,
"MAC and padding");
/* Encrypt the record. */
ATF_REQUIRE(cbc_encrypt(tls_EVP_CIPHER(en), en->cipher_key, iv,
buf + hdr_len, buf + hdr_len, len + mac_len + padding));
debug_hexdump(tc, dst, record_len, "encrypted record");
return (record_len);
}
static size_t
encrypt_tls_12_aead(const atf_tc_t *tc, struct tls_enable *en,
uint8_t record_type, uint64_t seqno, const void *src, size_t len, void *dst)
{
struct tls_record_layer *hdr;
struct tls_aead_data aad;
char nonce[12];
size_t hdr_len, mac_len, record_len;
hdr = dst;
debug(tc, "encrypting TLS 1.2 record seqno %ju:\n", (uintmax_t)seqno);
hdr_len = tls_header_len(en);
mac_len = tls_mac_len(en);
record_len = hdr_len + len + mac_len;
hdr->tls_type = record_type;
hdr->tls_vmajor = TLS_MAJOR_VER_ONE;
hdr->tls_vminor = TLS_MINOR_VER_TWO;
hdr->tls_length = htons(record_len - sizeof(*hdr));
if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16)
memcpy(hdr + 1, &seqno, sizeof(seqno));
tls_12_aead_aad(en, len, hdr, seqno, &aad);
debug_hexdump(tc, &aad, sizeof(aad), "aad");
if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16)
tls_12_gcm_nonce(en, hdr, nonce);
else
tls_13_nonce(en, seqno, nonce);
debug_hexdump(tc, nonce, sizeof(nonce), "nonce");
debug_hexdump(tc, src, len, "plaintext");
ATF_REQUIRE(aead_encrypt(tls_EVP_CIPHER(en), en->cipher_key, nonce,
&aad, sizeof(aad), src, (char *)dst + hdr_len, len,
(char *)dst + hdr_len + len, mac_len));
debug_hexdump(tc, dst, record_len, "encrypted record");
return (record_len);
}
static size_t
encrypt_tls_13_aead(const atf_tc_t *tc, struct tls_enable *en,
uint8_t record_type, uint64_t seqno, const void *src, size_t len, void *dst,
size_t padding)
{
struct tls_record_layer *hdr;
struct tls_aead_data_13 aad;
char nonce[12];
char *buf;
size_t hdr_len, mac_len, record_len;
hdr = dst;
debug(tc, "encrypting TLS 1.3 record seqno %ju:\n", (uintmax_t)seqno);
hdr_len = tls_header_len(en);
mac_len = tls_mac_len(en);
record_len = hdr_len + len + 1 + padding + mac_len;
hdr->tls_type = TLS_RLTYPE_APP;
hdr->tls_vmajor = TLS_MAJOR_VER_ONE;
hdr->tls_vminor = TLS_MINOR_VER_TWO;
hdr->tls_length = htons(record_len - sizeof(*hdr));
tls_13_aad(en, hdr, seqno, &aad);
debug_hexdump(tc, &aad, sizeof(aad), "aad");
tls_13_nonce(en, seqno, nonce);
debug_hexdump(tc, nonce, sizeof(nonce), "nonce");
/*
* Have to use a temporary buffer for the input so that the record
* type can be appended.
*/
buf = malloc(len + 1 + padding);
memcpy(buf, src, len);
buf[len] = record_type;
memset(buf + len + 1, 0, padding);
debug_hexdump(tc, buf, len + 1 + padding, "plaintext + type + padding");
ATF_REQUIRE(aead_encrypt(tls_EVP_CIPHER(en), en->cipher_key, nonce,
&aad, sizeof(aad), buf, (char *)dst + hdr_len, len + 1 + padding,
(char *)dst + hdr_len + len + 1 + padding, mac_len));
debug_hexdump(tc, dst, record_len, "encrypted record");
free(buf);
return (record_len);
}
static size_t
encrypt_tls_aead(const atf_tc_t *tc, struct tls_enable *en,
uint8_t record_type, uint64_t seqno, const void *src, size_t len, void *dst,
size_t avail, size_t padding)
{
size_t record_len;
record_len = tls_header_len(en) + len + padding + tls_trailer_len(en);
ATF_REQUIRE_MSG(record_len <= avail, "record_len (%zu) > avail (%zu): "
"header %zu len %zu padding %zu trailer %zu", record_len, avail,
tls_header_len(en), len, padding, tls_trailer_len(en));
if (en->tls_vminor == TLS_MINOR_VER_TWO) {
ATF_REQUIRE_INTEQ(0, padding);
ATF_REQUIRE_INTEQ(record_len, encrypt_tls_12_aead(tc, en,
record_type, seqno, src, len, dst));
} else
ATF_REQUIRE_INTEQ(record_len, encrypt_tls_13_aead(tc, en,
record_type, seqno, src, len, dst, padding));
return (record_len);
}
static size_t
encrypt_tls_record(const atf_tc_t *tc, struct tls_enable *en,
uint8_t record_type, uint64_t seqno, const void *src, size_t len, void *dst,
size_t avail, size_t padding)
{
if (en->cipher_algorithm == CRYPTO_AES_CBC)
return (encrypt_tls_aes_cbc_mte(tc, en, record_type, seqno, src,
len, dst, avail, padding));
else
return (encrypt_tls_aead(tc, en, record_type, seqno, src, len,
dst, avail, padding));
}
static void
test_ktls_transmit_app_data(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len)
{
struct kevent ev;
struct tls_record_layer *hdr;
char *plaintext, *decrypted, *outbuf;
size_t decrypted_len, outbuf_len, outbuf_cap, record_len, written;
ssize_t rv;
int kq, sockets[2];
uint8_t record_type;
plaintext = alloc_buffer(len);
debug_hexdump(tc, plaintext, len, "plaintext");
decrypted = malloc(len);
outbuf_cap = tls_header_len(en) + TLS_MAX_MSG_SIZE_V10_2 +
tls_trailer_len(en);
outbuf = malloc(outbuf_cap);
hdr = (struct tls_record_layer *)outbuf;
ATF_REQUIRE((kq = kqueue()) != -1);
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE(setsockopt(sockets[1], IPPROTO_TCP, TCP_TXTLS_ENABLE, en,
sizeof(*en)) == 0);
check_tls_mode(tc, sockets[1], TCP_TXTLS_MODE);
EV_SET(&ev, sockets[0], EVFILT_READ, EV_ADD, 0, 0, NULL);
ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0, NULL) == 0);
EV_SET(&ev, sockets[1], EVFILT_WRITE, EV_ADD, 0, 0, NULL);
ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0, NULL) == 0);
decrypted_len = 0;
outbuf_len = 0;
written = 0;
while (decrypted_len != len) {
ATF_REQUIRE(kevent(kq, NULL, 0, &ev, 1, NULL) == 1);
switch (ev.filter) {
case EVFILT_WRITE:
/* Try to write any remaining data. */
rv = write(ev.ident, plaintext + written,
len - written);
ATF_REQUIRE_MSG(rv > 0,
"failed to write to socket");
written += rv;
if (written == len) {
ev.flags = EV_DISABLE;
ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0,
NULL) == 0);
}
break;
case EVFILT_READ:
ATF_REQUIRE((ev.flags & EV_EOF) == 0);
/*
* Try to read data for the next TLS record
* into outbuf. Start by reading the header
* to determine how much additional data to
* read.
*/
if (outbuf_len < sizeof(struct tls_record_layer)) {
rv = read(ev.ident, outbuf + outbuf_len,
sizeof(struct tls_record_layer) -
outbuf_len);
ATF_REQUIRE_MSG(rv > 0,
"failed to read from socket");
outbuf_len += rv;
if (outbuf_len ==
sizeof(struct tls_record_layer)) {
debug(tc, "TLS header for seqno %ju:\n",
(uintmax_t)seqno);
debug_hexdump(tc, outbuf, outbuf_len,
NULL);
}
}
if (outbuf_len < sizeof(struct tls_record_layer))
break;
record_len = sizeof(struct tls_record_layer) +
ntohs(hdr->tls_length);
debug(tc, "record_len %zu outbuf_cap %zu\n",
record_len, outbuf_cap);
ATF_REQUIRE(record_len <= outbuf_cap);
ATF_REQUIRE(record_len > outbuf_len);
rv = read(ev.ident, outbuf + outbuf_len,
record_len - outbuf_len);
if (rv == -1 && errno == EAGAIN)
break;
ATF_REQUIRE_MSG(rv > 0,
"failed to read from socket: %s", strerror(errno));
outbuf_len += rv;
if (outbuf_len == record_len) {
decrypted_len += decrypt_tls_record(tc, en,
seqno, outbuf, outbuf_len,
decrypted + decrypted_len,
len - decrypted_len, &record_type);
ATF_REQUIRE_INTEQ(TLS_RLTYPE_APP, record_type);
seqno++;
outbuf_len = 0;
}
break;
}
}
ATF_REQUIRE_MSG(written == decrypted_len,
"read %zu decrypted bytes, but wrote %zu", decrypted_len, written);
ATF_REQUIRE(memcmp(plaintext, decrypted, len) == 0);
free(outbuf);
free(decrypted);
free(plaintext);
close_sockets(sockets);
ATF_REQUIRE(close(kq) == 0);
}
static void
ktls_send_control_message(int fd, uint8_t type, void *data, size_t len)
{
struct msghdr msg;
struct cmsghdr *cmsg;
char cbuf[CMSG_SPACE(sizeof(type))];
struct iovec iov;
memset(&msg, 0, sizeof(msg));
msg.msg_control = cbuf;
msg.msg_controllen = sizeof(cbuf);
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = IPPROTO_TCP;
cmsg->cmsg_type = TLS_SET_RECORD_TYPE;
cmsg->cmsg_len = CMSG_LEN(sizeof(type));
*(uint8_t *)CMSG_DATA(cmsg) = type;
iov.iov_base = data;
iov.iov_len = len;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
ATF_REQUIRE_INTEQ((ssize_t)len, sendmsg(fd, &msg, 0));
}
static void
test_ktls_transmit_control(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, uint8_t type, size_t len)
{
struct tls_record_layer *hdr;
char *plaintext, *decrypted, *outbuf;
size_t outbuf_cap, payload_len, record_len;
ssize_t rv;
int sockets[2];
uint8_t record_type;
ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
plaintext = alloc_buffer(len);
decrypted = malloc(len);
outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
outbuf = malloc(outbuf_cap);
hdr = (struct tls_record_layer *)outbuf;
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE(setsockopt(sockets[1], IPPROTO_TCP, TCP_TXTLS_ENABLE, en,
sizeof(*en)) == 0);
check_tls_mode(tc, sockets[1], TCP_TXTLS_MODE);
fd_set_blocking(sockets[0]);
fd_set_blocking(sockets[1]);
ktls_send_control_message(sockets[1], type, plaintext, len);
/*
* First read the header to determine how much additional data
* to read.
*/
rv = read(sockets[0], outbuf, sizeof(struct tls_record_layer));
ATF_REQUIRE_INTEQ(sizeof(struct tls_record_layer), rv);
payload_len = ntohs(hdr->tls_length);
record_len = payload_len + sizeof(struct tls_record_layer);
ATF_REQUIRE_MSG(record_len <= outbuf_cap,
"record_len (%zu) > outbuf_cap (%zu)", record_len, outbuf_cap);
rv = read(sockets[0], outbuf + sizeof(struct tls_record_layer),
payload_len);
ATF_REQUIRE_INTEQ((ssize_t)payload_len, rv);
rv = decrypt_tls_record(tc, en, seqno, outbuf, record_len, decrypted,
len, &record_type);
ATF_REQUIRE_MSG((ssize_t)len == rv,
"read %zd decrypted bytes, but wrote %zu", rv, len);
ATF_REQUIRE_INTEQ(type, record_type);
ATF_REQUIRE(memcmp(plaintext, decrypted, len) == 0);
free(outbuf);
free(decrypted);
free(plaintext);
close_sockets(sockets);
}
static void
test_ktls_transmit_empty_fragment(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno)
{
struct tls_record_layer *hdr;
char *outbuf;
size_t outbuf_cap, payload_len, record_len;
ssize_t rv;
int sockets[2];
uint8_t record_type;
outbuf_cap = tls_header_len(en) + tls_trailer_len(en);
outbuf = malloc(outbuf_cap);
hdr = (struct tls_record_layer *)outbuf;
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE(setsockopt(sockets[1], IPPROTO_TCP, TCP_TXTLS_ENABLE, en,
sizeof(*en)) == 0);
check_tls_mode(tc, sockets[1], TCP_TXTLS_MODE);
fd_set_blocking(sockets[0]);
fd_set_blocking(sockets[1]);
/*
* A write of zero bytes should send an empty fragment only for
* TLS 1.0, otherwise an error should be raised.
*/
rv = write(sockets[1], NULL, 0);
if (rv == 0) {
ATF_REQUIRE_INTEQ(CRYPTO_AES_CBC, en->cipher_algorithm);
ATF_REQUIRE_INTEQ(TLS_MINOR_VER_ZERO, en->tls_vminor);
} else {
ATF_REQUIRE_INTEQ(-1, rv);
ATF_REQUIRE_ERRNO(EINVAL, true);
goto out;
}
/*
* First read the header to determine how much additional data
* to read.
*/
rv = read(sockets[0], outbuf, sizeof(struct tls_record_layer));
ATF_REQUIRE_INTEQ(sizeof(struct tls_record_layer), rv);
payload_len = ntohs(hdr->tls_length);
record_len = payload_len + sizeof(struct tls_record_layer);
ATF_REQUIRE_MSG(record_len <= outbuf_cap,
"record_len (%zu) > outbuf_cap (%zu)", record_len, outbuf_cap);
rv = read(sockets[0], outbuf + sizeof(struct tls_record_layer),
payload_len);
ATF_REQUIRE_INTEQ((ssize_t)payload_len, rv);
rv = decrypt_tls_record(tc, en, seqno, outbuf, record_len, NULL, 0,
&record_type);
ATF_REQUIRE_MSG(rv == 0,
"read %zd decrypted bytes for an empty fragment", rv);
ATF_REQUIRE_INTEQ(TLS_RLTYPE_APP, record_type);
out:
free(outbuf);
close_sockets(sockets);
}
static size_t
ktls_receive_tls_record(struct tls_enable *en, int fd, uint8_t record_type,
void *data, size_t len)
{
struct msghdr msg;
struct cmsghdr *cmsg;
struct tls_get_record *tgr;
char cbuf[CMSG_SPACE(sizeof(*tgr))];
struct iovec iov;
ssize_t rv;
memset(&msg, 0, sizeof(msg));
msg.msg_control = cbuf;
msg.msg_controllen = sizeof(cbuf);
iov.iov_base = data;
iov.iov_len = len;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
ATF_REQUIRE((rv = recvmsg(fd, &msg, 0)) > 0);
ATF_REQUIRE((msg.msg_flags & (MSG_EOR | MSG_CTRUNC)) == MSG_EOR);
cmsg = CMSG_FIRSTHDR(&msg);
ATF_REQUIRE(cmsg != NULL);
ATF_REQUIRE_INTEQ(IPPROTO_TCP, cmsg->cmsg_level);
ATF_REQUIRE_INTEQ(TLS_GET_RECORD, cmsg->cmsg_type);
ATF_REQUIRE_INTEQ(CMSG_LEN(sizeof(*tgr)), cmsg->cmsg_len);
tgr = (struct tls_get_record *)CMSG_DATA(cmsg);
ATF_REQUIRE_INTEQ(record_type, tgr->tls_type);
ATF_REQUIRE_INTEQ(en->tls_vmajor, tgr->tls_vmajor);
/* XXX: Not sure if this is what OpenSSL expects? */
if (en->tls_vminor == TLS_MINOR_VER_THREE)
ATF_REQUIRE_INTEQ(TLS_MINOR_VER_TWO, tgr->tls_vminor);
else
ATF_REQUIRE_INTEQ(en->tls_vminor, tgr->tls_vminor);
ATF_REQUIRE_INTEQ(htons(rv), tgr->tls_length);
return (rv);
}
static void
test_ktls_receive_app_data(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len, size_t padding)
{
struct kevent ev;
char *plaintext, *received, *outbuf;
size_t outbuf_cap, outbuf_len, outbuf_sent, received_len, todo, written;
ssize_t rv;
int kq, sockets[2];
plaintext = alloc_buffer(len);
received = malloc(len);
outbuf_cap = tls_header_len(en) + TLS_MAX_MSG_SIZE_V10_2 +
tls_trailer_len(en);
outbuf = malloc(outbuf_cap);
ATF_REQUIRE((kq = kqueue()) != -1);
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
sizeof(*en)) == 0);
check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
EV_SET(&ev, sockets[0], EVFILT_READ, EV_ADD, 0, 0, NULL);
ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0, NULL) == 0);
EV_SET(&ev, sockets[1], EVFILT_WRITE, EV_ADD, 0, 0, NULL);
ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0, NULL) == 0);
received_len = 0;
outbuf_len = 0;
written = 0;
while (received_len != len) {
ATF_REQUIRE(kevent(kq, NULL, 0, &ev, 1, NULL) == 1);
switch (ev.filter) {
case EVFILT_WRITE:
/*
* Compose the next TLS record to send.
*/
if (outbuf_len == 0) {
ATF_REQUIRE(written < len);
todo = len - written;
if (todo > TLS_MAX_MSG_SIZE_V10_2 - padding)
todo = TLS_MAX_MSG_SIZE_V10_2 - padding;
outbuf_len = encrypt_tls_record(tc, en,
TLS_RLTYPE_APP, seqno, plaintext + written,
todo, outbuf, outbuf_cap, padding);
outbuf_sent = 0;
written += todo;
seqno++;
}
/*
* Try to write the remainder of the current
* TLS record.
*/
rv = write(ev.ident, outbuf + outbuf_sent,
outbuf_len - outbuf_sent);
ATF_REQUIRE_MSG(rv > 0,
"failed to write to socket: %s", strerror(errno));
outbuf_sent += rv;
if (outbuf_sent == outbuf_len) {
outbuf_len = 0;
if (written == len) {
ev.flags = EV_DISABLE;
ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0,
NULL) == 0);
}
}
break;
case EVFILT_READ:
ATF_REQUIRE((ev.flags & EV_EOF) == 0);
rv = ktls_receive_tls_record(en, ev.ident,
TLS_RLTYPE_APP, received + received_len,
len - received_len);
received_len += rv;
break;
}
}
ATF_REQUIRE_MSG(written == received_len,
"read %zu decrypted bytes, but wrote %zu", received_len, written);
ATF_REQUIRE(memcmp(plaintext, received, len) == 0);
free(outbuf);
free(received);
free(plaintext);
close_sockets(sockets);
ATF_REQUIRE(close(kq) == 0);
}
static void
ktls_receive_tls_error(int fd, int expected_error)
{
struct msghdr msg;
struct tls_get_record *tgr;
char cbuf[CMSG_SPACE(sizeof(*tgr))];
char buf[64];
struct iovec iov;
memset(&msg, 0, sizeof(msg));
msg.msg_control = cbuf;
msg.msg_controllen = sizeof(cbuf);
iov.iov_base = buf;
iov.iov_len = sizeof(buf);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
ATF_REQUIRE(recvmsg(fd, &msg, 0) == -1);
if (expected_error != 0)
ATF_REQUIRE_ERRNO(expected_error, true);
}
static void
test_ktls_receive_corrupted_record(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len, ssize_t offset)
{
char *plaintext, *outbuf;
size_t outbuf_cap, outbuf_len;
ssize_t rv;
int sockets[2];
ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
plaintext = alloc_buffer(len);
outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
outbuf = malloc(outbuf_cap);
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
sizeof(*en)) == 0);
check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
fd_set_blocking(sockets[0]);
fd_set_blocking(sockets[1]);
outbuf_len = encrypt_tls_record(tc, en, TLS_RLTYPE_APP, seqno,
plaintext, len, outbuf, outbuf_cap, 0);
/* A negative offset is an offset from the end. */
if (offset < 0)
offset += outbuf_len;
outbuf[offset] ^= 0x01;
rv = write(sockets[1], outbuf, outbuf_len);
ATF_REQUIRE_INTEQ((ssize_t)outbuf_len, rv);
ktls_receive_tls_error(sockets[0], EBADMSG);
free(outbuf);
free(plaintext);
close_sockets_ignore_errors(sockets);
}
static void
test_ktls_receive_corrupted_iv(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len)
{
ATF_REQUIRE(tls_header_len(en) > sizeof(struct tls_record_layer));
/* Corrupt the first byte of the explicit IV after the header. */
test_ktls_receive_corrupted_record(tc, en, seqno, len,
sizeof(struct tls_record_layer));
}
static void
test_ktls_receive_corrupted_data(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len)
{
ATF_REQUIRE(len > 0);
/* Corrupt the first ciphertext byte after the header. */
test_ktls_receive_corrupted_record(tc, en, seqno, len,
tls_header_len(en));
}
static void
test_ktls_receive_corrupted_mac(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len)
{
size_t offset;
/* Corrupt the first byte of the MAC. */
if (en->cipher_algorithm == CRYPTO_AES_CBC)
offset = tls_header_len(en) + len;
else
offset = -tls_mac_len(en);
test_ktls_receive_corrupted_record(tc, en, seqno, len, offset);
}
static void
test_ktls_receive_corrupted_padding(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len)
{
ATF_REQUIRE_INTEQ(CRYPTO_AES_CBC, en->cipher_algorithm);
/* Corrupt the last byte of the padding. */
test_ktls_receive_corrupted_record(tc, en, seqno, len, -1);
}
static void
test_ktls_receive_truncated_record(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len)
{
char *plaintext, *outbuf;
size_t outbuf_cap, outbuf_len;
ssize_t rv;
int sockets[2];
ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
plaintext = alloc_buffer(len);
outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
outbuf = malloc(outbuf_cap);
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
sizeof(*en)) == 0);
check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
fd_set_blocking(sockets[0]);
fd_set_blocking(sockets[1]);
outbuf_len = encrypt_tls_record(tc, en, TLS_RLTYPE_APP, seqno,
plaintext, len, outbuf, outbuf_cap, 0);
rv = write(sockets[1], outbuf, outbuf_len / 2);
ATF_REQUIRE_INTEQ((ssize_t)(outbuf_len / 2), rv);
ATF_REQUIRE(shutdown(sockets[1], SHUT_WR) == 0);
ktls_receive_tls_error(sockets[0], EMSGSIZE);
free(outbuf);
free(plaintext);
close_sockets_ignore_errors(sockets);
}
static void
test_ktls_receive_bad_major(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len)
{
struct tls_record_layer *hdr;
char *plaintext, *outbuf;
size_t outbuf_cap, outbuf_len;
ssize_t rv;
int sockets[2];
ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
plaintext = alloc_buffer(len);
outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
outbuf = malloc(outbuf_cap);
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
sizeof(*en)) == 0);
check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
fd_set_blocking(sockets[0]);
fd_set_blocking(sockets[1]);
outbuf_len = encrypt_tls_record(tc, en, TLS_RLTYPE_APP, seqno,
plaintext, len, outbuf, outbuf_cap, 0);
hdr = (void *)outbuf;
hdr->tls_vmajor++;
rv = write(sockets[1], outbuf, outbuf_len);
ATF_REQUIRE_INTEQ((ssize_t)outbuf_len, rv);
ktls_receive_tls_error(sockets[0], EINVAL);
free(outbuf);
free(plaintext);
close_sockets_ignore_errors(sockets);
}
static void
test_ktls_receive_bad_minor(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len)
{
struct tls_record_layer *hdr;
char *plaintext, *outbuf;
size_t outbuf_cap, outbuf_len;
ssize_t rv;
int sockets[2];
ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
plaintext = alloc_buffer(len);
outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
outbuf = malloc(outbuf_cap);
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
sizeof(*en)) == 0);
check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
fd_set_blocking(sockets[0]);
fd_set_blocking(sockets[1]);
outbuf_len = encrypt_tls_record(tc, en, TLS_RLTYPE_APP, seqno,
plaintext, len, outbuf, outbuf_cap, 0);
hdr = (void *)outbuf;
hdr->tls_vminor++;
rv = write(sockets[1], outbuf, outbuf_len);
ATF_REQUIRE_INTEQ((ssize_t)outbuf_len, rv);
ktls_receive_tls_error(sockets[0], EINVAL);
free(outbuf);
free(plaintext);
close_sockets_ignore_errors(sockets);
}
static void
test_ktls_receive_bad_type(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len)
{
struct tls_record_layer *hdr;
char *plaintext, *outbuf;
size_t outbuf_cap, outbuf_len;
ssize_t rv;
int sockets[2];
ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
ATF_REQUIRE_INTEQ(TLS_MINOR_VER_THREE, en->tls_vminor);
plaintext = alloc_buffer(len);
outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
outbuf = malloc(outbuf_cap);
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
sizeof(*en)) == 0);
check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
fd_set_blocking(sockets[0]);
fd_set_blocking(sockets[1]);
outbuf_len = encrypt_tls_record(tc, en, 0x21 /* Alert */, seqno,
plaintext, len, outbuf, outbuf_cap, 0);
hdr = (void *)outbuf;
hdr->tls_type = TLS_RLTYPE_APP + 1;
rv = write(sockets[1], outbuf, outbuf_len);
ATF_REQUIRE_INTEQ((ssize_t)outbuf_len, rv);
ktls_receive_tls_error(sockets[0], EINVAL);
free(outbuf);
free(plaintext);
close_sockets_ignore_errors(sockets);
}
static void
test_ktls_receive_bad_size(const atf_tc_t *tc, struct tls_enable *en,
uint64_t seqno, size_t len)
{
struct tls_record_layer *hdr;
char *outbuf;
size_t outbuf_len;
ssize_t rv;
int sockets[2];
outbuf_len = sizeof(*hdr) + len;
outbuf = calloc(1, outbuf_len);
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
sizeof(*en)) == 0);
check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
fd_set_blocking(sockets[0]);
fd_set_blocking(sockets[1]);
hdr = (void *)outbuf;
hdr->tls_vmajor = en->tls_vmajor;
if (en->tls_vminor == TLS_MINOR_VER_THREE)
hdr->tls_vminor = TLS_MINOR_VER_TWO;
else
hdr->tls_vminor = en->tls_vminor;
hdr->tls_type = TLS_RLTYPE_APP;
hdr->tls_length = htons(len);
rv = write(sockets[1], outbuf, outbuf_len);
ATF_REQUIRE_INTEQ((ssize_t)outbuf_len, rv);
/*
* The other end may notice the error and drop the connection
* before this executes resulting in shutdown() failing with
* either ENOTCONN or ECONNRESET. Ignore this error if it
* occurs.
*/
if (shutdown(sockets[1], SHUT_WR) != 0) {
ATF_REQUIRE_MSG(errno == ENOTCONN || errno == ECONNRESET,
"shutdown() failed: %s", strerror(errno));
}
ktls_receive_tls_error(sockets[0], EMSGSIZE);
free(outbuf);
close_sockets_ignore_errors(sockets);
}
#define TLS_10_TESTS(M) \
M(aes128_cbc_1_0_sha1, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA1_HMAC, TLS_MINOR_VER_ZERO) \
M(aes256_cbc_1_0_sha1, CRYPTO_AES_CBC, 256 / 8, \
CRYPTO_SHA1_HMAC, TLS_MINOR_VER_ZERO)
#define TLS_13_TESTS(M) \
M(aes128_gcm_1_3, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0, \
TLS_MINOR_VER_THREE) \
M(aes256_gcm_1_3, CRYPTO_AES_NIST_GCM_16, 256 / 8, 0, \
TLS_MINOR_VER_THREE) \
M(chacha20_poly1305_1_3, CRYPTO_CHACHA20_POLY1305, 256 / 8, 0, \
TLS_MINOR_VER_THREE)
#define AES_CBC_NONZERO_TESTS(M) \
M(aes128_cbc_1_1_sha1, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA1_HMAC, TLS_MINOR_VER_ONE) \
M(aes256_cbc_1_1_sha1, CRYPTO_AES_CBC, 256 / 8, \
CRYPTO_SHA1_HMAC, TLS_MINOR_VER_ONE) \
M(aes128_cbc_1_2_sha1, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA1_HMAC, TLS_MINOR_VER_TWO) \
M(aes256_cbc_1_2_sha1, CRYPTO_AES_CBC, 256 / 8, \
CRYPTO_SHA1_HMAC, TLS_MINOR_VER_TWO) \
M(aes128_cbc_1_2_sha256, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA2_256_HMAC, TLS_MINOR_VER_TWO) \
M(aes256_cbc_1_2_sha256, CRYPTO_AES_CBC, 256 / 8, \
CRYPTO_SHA2_256_HMAC, TLS_MINOR_VER_TWO) \
M(aes128_cbc_1_2_sha384, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA2_384_HMAC, TLS_MINOR_VER_TWO) \
M(aes256_cbc_1_2_sha384, CRYPTO_AES_CBC, 256 / 8, \
CRYPTO_SHA2_384_HMAC, TLS_MINOR_VER_TWO) \
#define AES_CBC_TESTS(M) \
TLS_10_TESTS(M) \
AES_CBC_NONZERO_TESTS(M)
#define AES_GCM_12_TESTS(M) \
M(aes128_gcm_1_2, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0, \
TLS_MINOR_VER_TWO) \
M(aes256_gcm_1_2, CRYPTO_AES_NIST_GCM_16, 256 / 8, 0, \
TLS_MINOR_VER_TWO)
#define AES_GCM_TESTS(M) \
AES_GCM_12_TESTS(M) \
M(aes128_gcm_1_3, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0, \
TLS_MINOR_VER_THREE) \
M(aes256_gcm_1_3, CRYPTO_AES_NIST_GCM_16, 256 / 8, 0, \
TLS_MINOR_VER_THREE)
#define CHACHA20_TESTS(M) \
M(chacha20_poly1305_1_2, CRYPTO_CHACHA20_POLY1305, 256 / 8, 0, \
TLS_MINOR_VER_TWO) \
M(chacha20_poly1305_1_3, CRYPTO_CHACHA20_POLY1305, 256 / 8, 0, \
TLS_MINOR_VER_THREE)
#define GEN_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, name, len) \
ATF_TC_WITHOUT_HEAD(ktls_transmit_##cipher_name##_##name); \
ATF_TC_BODY(ktls_transmit_##cipher_name##_##name, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_transmit_app_data(tc, &en, seqno, len); \
free_tls_enable(&en); \
}
#define ADD_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, name) \
ATF_TP_ADD_TC(tp, ktls_transmit_##cipher_name##_##name);
#define GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, name, type, len) \
ATF_TC_WITHOUT_HEAD(ktls_transmit_##cipher_name##_##name); \
ATF_TC_BODY(ktls_transmit_##cipher_name##_##name, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_transmit_control(tc, &en, seqno, type, len); \
free_tls_enable(&en); \
}
#define ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, name) \
ATF_TP_ADD_TC(tp, ktls_transmit_##cipher_name##_##name);
#define GEN_TRANSMIT_EMPTY_FRAGMENT_TEST(cipher_name, cipher_alg, \
key_size, auth_alg, minor) \
ATF_TC_WITHOUT_HEAD(ktls_transmit_##cipher_name##_empty_fragment); \
ATF_TC_BODY(ktls_transmit_##cipher_name##_empty_fragment, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_transmit_empty_fragment(tc, &en, seqno); \
free_tls_enable(&en); \
}
#define ADD_TRANSMIT_EMPTY_FRAGMENT_TEST(cipher_name, cipher_alg, \
key_size, auth_alg, minor) \
ATF_TP_ADD_TC(tp, ktls_transmit_##cipher_name##_empty_fragment);
#define GEN_TRANSMIT_TESTS(cipher_name, cipher_alg, key_size, auth_alg, \
minor) \
GEN_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, short, 64) \
GEN_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, long, 64 * 1024) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, control, 0x21 /* Alert */, 32)
#define ADD_TRANSMIT_TESTS(cipher_name, cipher_alg, key_size, auth_alg, \
minor) \
ADD_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, short) \
ADD_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, long) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, control)
/*
* For each supported cipher suite, run three transmit tests:
*
* - a short test which sends 64 bytes of application data (likely as
* a single TLS record)
*
* - a long test which sends 64KB of application data (split across
* multiple TLS records)
*
* - a control test which sends a single record with a specific
* content type via sendmsg()
*/
AES_CBC_TESTS(GEN_TRANSMIT_TESTS);
AES_GCM_TESTS(GEN_TRANSMIT_TESTS);
CHACHA20_TESTS(GEN_TRANSMIT_TESTS);
#define GEN_TRANSMIT_PADDING_TESTS(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_1, 0x21 /* Alert */, 1) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_2, 0x21 /* Alert */, 2) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_3, 0x21 /* Alert */, 3) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_4, 0x21 /* Alert */, 4) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_5, 0x21 /* Alert */, 5) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_6, 0x21 /* Alert */, 6) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_7, 0x21 /* Alert */, 7) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_8, 0x21 /* Alert */, 8) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_9, 0x21 /* Alert */, 9) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_10, 0x21 /* Alert */, 10) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_11, 0x21 /* Alert */, 11) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_12, 0x21 /* Alert */, 12) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_13, 0x21 /* Alert */, 13) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_14, 0x21 /* Alert */, 14) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_15, 0x21 /* Alert */, 15) \
GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_16, 0x21 /* Alert */, 16)
#define ADD_TRANSMIT_PADDING_TESTS(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_1) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_2) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_3) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_4) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_5) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_6) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_7) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_8) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_9) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_10) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_11) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_12) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_13) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_14) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_15) \
ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_16)
/*
* For AES-CBC MTE cipher suites using padding, add tests of messages
* with each possible padding size. Note that the padding_<N> tests
* do not necessarily test <N> bytes of padding as the padding is a
* function of the cipher suite's MAC length. However, cycling
* through all of the payload sizes from 1 to 16 should exercise all
* of the possible padding lengths for each suite.
*/
AES_CBC_TESTS(GEN_TRANSMIT_PADDING_TESTS);
/*
* Test "empty fragments" which are TLS records with no payload that
* OpenSSL can send for TLS 1.0 connections.
*/
AES_CBC_TESTS(GEN_TRANSMIT_EMPTY_FRAGMENT_TEST);
AES_GCM_TESTS(GEN_TRANSMIT_EMPTY_FRAGMENT_TEST);
CHACHA20_TESTS(GEN_TRANSMIT_EMPTY_FRAGMENT_TEST);
static void
test_ktls_invalid_transmit_cipher_suite(const atf_tc_t *tc,
struct tls_enable *en)
{
int sockets[2];
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE_ERRNO(EINVAL, setsockopt(sockets[1], IPPROTO_TCP,
TCP_TXTLS_ENABLE, en, sizeof(*en)) == -1);
close_sockets(sockets);
}
#define GEN_INVALID_TRANSMIT_TEST(name, cipher_alg, key_size, auth_alg, \
minor) \
ATF_TC_WITHOUT_HEAD(ktls_transmit_invalid_##name); \
ATF_TC_BODY(ktls_transmit_invalid_##name, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_invalid_transmit_cipher_suite(tc, &en); \
free_tls_enable(&en); \
}
#define ADD_INVALID_TRANSMIT_TEST(name, cipher_alg, key_size, auth_alg, \
minor) \
ATF_TP_ADD_TC(tp, ktls_transmit_invalid_##name);
#define INVALID_CIPHER_SUITES(M) \
M(aes128_cbc_1_0_sha256, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA2_256_HMAC, TLS_MINOR_VER_ZERO) \
M(aes128_cbc_1_0_sha384, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA2_384_HMAC, TLS_MINOR_VER_ZERO) \
M(aes128_gcm_1_0, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0, \
TLS_MINOR_VER_ZERO) \
M(chacha20_poly1305_1_0, CRYPTO_CHACHA20_POLY1305, 256 / 8, 0, \
TLS_MINOR_VER_ZERO) \
M(aes128_cbc_1_1_sha256, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA2_256_HMAC, TLS_MINOR_VER_ONE) \
M(aes128_cbc_1_1_sha384, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA2_384_HMAC, TLS_MINOR_VER_ONE) \
M(aes128_gcm_1_1, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0, \
TLS_MINOR_VER_ONE) \
M(chacha20_poly1305_1_1, CRYPTO_CHACHA20_POLY1305, 256 / 8, 0, \
TLS_MINOR_VER_ONE) \
M(aes128_cbc_1_3_sha1, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA1_HMAC, TLS_MINOR_VER_THREE) \
M(aes128_cbc_1_3_sha256, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA2_256_HMAC, TLS_MINOR_VER_THREE) \
M(aes128_cbc_1_3_sha384, CRYPTO_AES_CBC, 128 / 8, \
CRYPTO_SHA2_384_HMAC, TLS_MINOR_VER_THREE)
/*
* Ensure that invalid cipher suites are rejected for transmit.
*/
INVALID_CIPHER_SUITES(GEN_INVALID_TRANSMIT_TEST);
#define GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, name, len, padding) \
ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_##name); \
ATF_TC_BODY(ktls_receive_##cipher_name##_##name, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_receive_app_data(tc, &en, seqno, len, padding); \
free_tls_enable(&en); \
}
#define ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, name) \
ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_##name);
#define GEN_RECEIVE_BAD_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, len) \
ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_data); \
ATF_TC_BODY(ktls_receive_##cipher_name##_bad_data, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_receive_corrupted_data(tc, &en, seqno, len); \
free_tls_enable(&en); \
}
#define ADD_RECEIVE_BAD_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_data);
#define GEN_RECEIVE_BAD_MAC_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, len) \
ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_mac); \
ATF_TC_BODY(ktls_receive_##cipher_name##_bad_mac, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_receive_corrupted_mac(tc, &en, seqno, len); \
free_tls_enable(&en); \
}
#define ADD_RECEIVE_BAD_MAC_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_mac);
#define GEN_RECEIVE_TRUNCATED_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, len) \
ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_truncated_record); \
ATF_TC_BODY(ktls_receive_##cipher_name##_truncated_record, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_receive_truncated_record(tc, &en, seqno, len); \
free_tls_enable(&en); \
}
#define ADD_RECEIVE_TRUNCATED_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_truncated_record);
#define GEN_RECEIVE_BAD_MAJOR_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, len) \
ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_major); \
ATF_TC_BODY(ktls_receive_##cipher_name##_bad_major, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_receive_bad_major(tc, &en, seqno, len); \
free_tls_enable(&en); \
}
#define ADD_RECEIVE_BAD_MAJOR_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_major);
#define GEN_RECEIVE_BAD_MINOR_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, len) \
ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_minor); \
ATF_TC_BODY(ktls_receive_##cipher_name##_bad_minor, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_receive_bad_minor(tc, &en, seqno, len); \
free_tls_enable(&en); \
}
#define ADD_RECEIVE_BAD_MINOR_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_minor);
#define GEN_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, name, len) \
ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_##name); \
ATF_TC_BODY(ktls_receive_##cipher_name##_##name, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_receive_bad_size(tc, &en, seqno, (len)); \
free_tls_enable(&en); \
}
#define ADD_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, name) \
ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_##name);
#define GEN_RECEIVE_TESTS(cipher_name, cipher_alg, key_size, auth_alg, \
minor) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, short, 64, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, long, 64 * 1024, 0) \
GEN_RECEIVE_BAD_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, 64) \
GEN_RECEIVE_BAD_MAC_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, 64) \
GEN_RECEIVE_TRUNCATED_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, 64) \
GEN_RECEIVE_BAD_MAJOR_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, 64) \
GEN_RECEIVE_BAD_MINOR_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, 64) \
GEN_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, small_record, \
tls_minimum_record_payload(&en) - 1) \
GEN_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, oversized_record, \
TLS_MAX_MSG_SIZE_V10_2 * 2)
#define ADD_RECEIVE_TESTS(cipher_name, cipher_alg, key_size, auth_alg, \
minor) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, short) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, long) \
ADD_RECEIVE_BAD_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ADD_RECEIVE_BAD_MAC_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ADD_RECEIVE_TRUNCATED_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ADD_RECEIVE_BAD_MAJOR_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ADD_RECEIVE_BAD_MINOR_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ADD_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, small_record) \
ADD_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, oversized_record)
/*
* For each supported cipher suite, run several receive tests:
*
* - a short test which sends 64 bytes of application data (likely as
* a single TLS record)
*
* - a long test which sends 64KB of application data (split across
* multiple TLS records)
*
* - a test with corrupted payload data in a single TLS record
*
* - a test with a corrupted MAC in a single TLS record
*
* - a test with a truncated TLS record
*
* - tests with invalid TLS major and minor versions
*
* - a tests with a record whose is one less than the smallest valid
* size
*
* - a test with an oversized TLS record
*/
AES_CBC_NONZERO_TESTS(GEN_RECEIVE_TESTS);
AES_GCM_TESTS(GEN_RECEIVE_TESTS);
CHACHA20_TESTS(GEN_RECEIVE_TESTS);
#define GEN_RECEIVE_MTE_PADDING_TESTS(cipher_name, cipher_alg, \
key_size, auth_alg, minor) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_1, 1, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_2, 2, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_3, 3, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_4, 4, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_5, 5, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_6, 6, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_7, 7, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_8, 8, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_9, 9, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_10, 10, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_11, 11, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_12, 12, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_13, 13, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_14, 14, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_15, 15, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_16, 16, 0) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_16_extra, 16, 16) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_32_extra, 16, 32)
#define ADD_RECEIVE_MTE_PADDING_TESTS(cipher_name, cipher_alg, \
key_size, auth_alg, minor) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_1) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_2) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_3) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_4) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_5) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_6) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_7) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_8) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_9) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_10) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_11) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_12) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_13) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_14) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_15) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_16) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_16_extra) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, padding_32_extra)
#define GEN_RECEIVE_BAD_PADDING_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, len) \
ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_padding); \
ATF_TC_BODY(ktls_receive_##cipher_name##_bad_padding, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_receive_corrupted_padding(tc, &en, seqno, len); \
free_tls_enable(&en); \
}
#define ADD_RECEIVE_BAD_PADDING_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_padding);
#define GEN_RECEIVE_MTE_TESTS(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
GEN_RECEIVE_MTE_PADDING_TESTS(cipher_name, cipher_alg, \
key_size, auth_alg, minor) \
GEN_RECEIVE_BAD_PADDING_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, 64) \
GEN_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, non_block_size, \
tls_minimum_record_payload(&en) + 1)
#define ADD_RECEIVE_MTE_TESTS(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ADD_RECEIVE_MTE_PADDING_TESTS(cipher_name, cipher_alg, \
key_size, auth_alg, minor) \
ADD_RECEIVE_BAD_PADDING_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ADD_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, non_block_size)
/*
* For AES-CBC MTE cipher suites using padding, add tests of messages
* with each possible padding size. Note that the padding_<N> tests
* do not necessarily test <N> bytes of padding as the padding is a
* function of the cipher suite's MAC length. However, cycling
* through all of the payload sizes from 1 to 16 should exercise all
* of the possible padding lengths for each suite.
*
* Two additional tests check for additional padding with an extra
* 16 or 32 bytes beyond the normal padding.
*
* Another test checks for corrupted padding.
*
* Another test checks for a record whose payload is not a multiple of
* the AES block size.
*/
AES_CBC_NONZERO_TESTS(GEN_RECEIVE_MTE_TESTS);
#define GEN_RECEIVE_BAD_IV_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_iv); \
ATF_TC_BODY(ktls_receive_##cipher_name##_bad_iv, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_receive_corrupted_iv(tc, &en, seqno, 64); \
free_tls_enable(&en); \
}
#define ADD_RECEIVE_BAD_IV_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_iv);
#define GEN_RECEIVE_EXPLICIT_IV_TESTS(cipher_name, cipher_alg, \
key_size, auth_alg, minor) \
GEN_RECEIVE_BAD_IV_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
GEN_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, short_header, \
sizeof(struct tls_record_layer) + 1)
#define ADD_RECEIVE_EXPLICIT_IV_TESTS(cipher_name, cipher_alg, \
key_size, auth_alg, minor) \
ADD_RECEIVE_BAD_IV_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ADD_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, short_header)
/*
* For cipher suites with an explicit IV, run a receive test where the
* explicit IV has been corrupted. Also run a receive test that sends
* a short record without a complete IV.
*/
AES_CBC_NONZERO_TESTS(GEN_RECEIVE_EXPLICIT_IV_TESTS);
AES_GCM_12_TESTS(GEN_RECEIVE_EXPLICIT_IV_TESTS);
#define GEN_RECEIVE_BAD_TYPE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, len) \
ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_type); \
ATF_TC_BODY(ktls_receive_##cipher_name##_bad_type, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_receive_bad_type(tc, &en, seqno, len); \
free_tls_enable(&en); \
}
#define ADD_RECEIVE_BAD_TYPE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_type);
#define GEN_RECEIVE_TLS13_TESTS(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, short_padded, 64, 16) \
GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, long_padded, 64 * 1024, 15) \
GEN_RECEIVE_BAD_TYPE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, 64)
#define ADD_RECEIVE_TLS13_TESTS(cipher_name, cipher_alg, key_size, \
auth_alg, minor) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, short_padded) \
ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor, long_padded) \
ADD_RECEIVE_BAD_TYPE_TEST(cipher_name, cipher_alg, key_size, \
auth_alg, minor)
/*
* For TLS 1.3 cipher suites, run two additional receive tests which
* use add padding to each record. Also run a test that uses an
* invalid "outer" record type.
*/
TLS_13_TESTS(GEN_RECEIVE_TLS13_TESTS);
static void
test_ktls_invalid_receive_cipher_suite(const atf_tc_t *tc,
struct tls_enable *en)
{
int sockets[2];
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE_ERRNO(EINVAL, setsockopt(sockets[1], IPPROTO_TCP,
TCP_RXTLS_ENABLE, en, sizeof(*en)) == -1);
close_sockets(sockets);
}
#define GEN_INVALID_RECEIVE_TEST(name, cipher_alg, key_size, auth_alg, \
minor) \
ATF_TC_WITHOUT_HEAD(ktls_receive_invalid_##name); \
ATF_TC_BODY(ktls_receive_invalid_##name, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_invalid_receive_cipher_suite(tc, &en); \
free_tls_enable(&en); \
}
#define ADD_INVALID_RECEIVE_TEST(name, cipher_alg, key_size, auth_alg, \
minor) \
ATF_TP_ADD_TC(tp, ktls_receive_invalid_##name);
/*
* Ensure that invalid cipher suites are rejected for receive.
*/
INVALID_CIPHER_SUITES(GEN_INVALID_RECEIVE_TEST);
static void
test_ktls_unsupported_receive_cipher_suite(const atf_tc_t *tc,
struct tls_enable *en)
{
int sockets[2];
ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
ATF_REQUIRE_ERRNO(EPROTONOSUPPORT, setsockopt(sockets[1], IPPROTO_TCP,
TCP_RXTLS_ENABLE, en, sizeof(*en)) == -1);
close_sockets(sockets);
}
#define GEN_UNSUPPORTED_RECEIVE_TEST(name, cipher_alg, key_size, \
auth_alg, minor) \
ATF_TC_WITHOUT_HEAD(ktls_receive_unsupported_##name); \
ATF_TC_BODY(ktls_receive_unsupported_##name, tc) \
{ \
struct tls_enable en; \
uint64_t seqno; \
\
ATF_REQUIRE_KTLS(); \
seqno = random(); \
build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor, \
seqno, &en); \
test_ktls_unsupported_receive_cipher_suite(tc, &en); \
free_tls_enable(&en); \
}
#define ADD_UNSUPPORTED_RECEIVE_TEST(name, cipher_alg, key_size, \
auth_alg, minor) \
ATF_TP_ADD_TC(tp, ktls_receive_unsupported_##name);
/*
* Ensure that valid cipher suites not supported for receive are
* rejected.
*/
TLS_10_TESTS(GEN_UNSUPPORTED_RECEIVE_TEST);
/*
* Try to perform an invalid sendto(2) on a TXTLS-enabled socket, to exercise
* KTLS error handling in the socket layer.
*/
ATF_TC_WITHOUT_HEAD(ktls_sendto_baddst);
ATF_TC_BODY(ktls_sendto_baddst, tc)
{
char buf[32];
struct sockaddr_in dst;
struct tls_enable en;
ssize_t n;
int s;
ATF_REQUIRE_KTLS();
s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
ATF_REQUIRE(s >= 0);
build_tls_enable(tc, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,
TLS_MINOR_VER_THREE, (uint64_t)random(), &en);
ATF_REQUIRE(setsockopt(s, IPPROTO_TCP, TCP_TXTLS_ENABLE, &en,
sizeof(en)) == 0);
memset(&dst, 0, sizeof(dst));
dst.sin_family = AF_INET;
dst.sin_len = sizeof(dst);
dst.sin_addr.s_addr = htonl(INADDR_BROADCAST);
dst.sin_port = htons(12345);
memset(buf, 0, sizeof(buf));
n = sendto(s, buf, sizeof(buf), 0, (struct sockaddr *)&dst,
sizeof(dst));
/* Can't transmit to the broadcast address over TCP. */
ATF_REQUIRE_ERRNO(EACCES, n == -1);
ATF_REQUIRE(close(s) == 0);
}
/*
* Make sure that listen(2) returns an error for KTLS-enabled sockets, and
* verify that an attempt to enable KTLS on a listening socket fails.
*/
ATF_TC_WITHOUT_HEAD(ktls_listening_socket);
ATF_TC_BODY(ktls_listening_socket, tc)
{
struct tls_enable en;
struct sockaddr_in sin;
int s;
ATF_REQUIRE_KTLS();
s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
ATF_REQUIRE(s >= 0);
build_tls_enable(tc, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,
TLS_MINOR_VER_THREE, (uint64_t)random(), &en);
ATF_REQUIRE(setsockopt(s, IPPROTO_TCP, TCP_TXTLS_ENABLE, &en,
sizeof(en)) == 0);
ATF_REQUIRE_ERRNO(EINVAL, listen(s, 1) == -1);
ATF_REQUIRE(close(s) == 0);
s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
ATF_REQUIRE(s >= 0);
build_tls_enable(tc, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,
TLS_MINOR_VER_THREE, (uint64_t)random(), &en);
ATF_REQUIRE(setsockopt(s, IPPROTO_TCP, TCP_RXTLS_ENABLE, &en,
sizeof(en)) == 0);
ATF_REQUIRE_ERRNO(EINVAL, listen(s, 1) == -1);
ATF_REQUIRE(close(s) == 0);
s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
ATF_REQUIRE(s >= 0);
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
ATF_REQUIRE(bind(s, (struct sockaddr *)&sin, sizeof(sin)) == 0);
ATF_REQUIRE(listen(s, 1) == 0);
build_tls_enable(tc, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,
TLS_MINOR_VER_THREE, (uint64_t)random(), &en);
ATF_REQUIRE_ERRNO(ENOTCONN,
setsockopt(s, IPPROTO_TCP, TCP_TXTLS_ENABLE, &en, sizeof(en)) != 0);
ATF_REQUIRE_ERRNO(EINVAL,
setsockopt(s, IPPROTO_TCP, TCP_RXTLS_ENABLE, &en, sizeof(en)) != 0);
ATF_REQUIRE(close(s) == 0);
}
ATF_TP_ADD_TCS(tp)
{
/* Transmit tests */
AES_CBC_TESTS(ADD_TRANSMIT_TESTS);
AES_GCM_TESTS(ADD_TRANSMIT_TESTS);
CHACHA20_TESTS(ADD_TRANSMIT_TESTS);
AES_CBC_TESTS(ADD_TRANSMIT_PADDING_TESTS);
AES_CBC_TESTS(ADD_TRANSMIT_EMPTY_FRAGMENT_TEST);
AES_GCM_TESTS(ADD_TRANSMIT_EMPTY_FRAGMENT_TEST);
CHACHA20_TESTS(ADD_TRANSMIT_EMPTY_FRAGMENT_TEST);
INVALID_CIPHER_SUITES(ADD_INVALID_TRANSMIT_TEST);
/* Receive tests */
TLS_10_TESTS(ADD_UNSUPPORTED_RECEIVE_TEST);
AES_CBC_NONZERO_TESTS(ADD_RECEIVE_TESTS);
AES_GCM_TESTS(ADD_RECEIVE_TESTS);
CHACHA20_TESTS(ADD_RECEIVE_TESTS);
AES_CBC_NONZERO_TESTS(ADD_RECEIVE_MTE_TESTS);
AES_CBC_NONZERO_TESTS(ADD_RECEIVE_EXPLICIT_IV_TESTS);
AES_GCM_12_TESTS(ADD_RECEIVE_EXPLICIT_IV_TESTS);
TLS_13_TESTS(ADD_RECEIVE_TLS13_TESTS);
INVALID_CIPHER_SUITES(ADD_INVALID_RECEIVE_TEST);
/* Miscellaneous */
ATF_TP_ADD_TC(tp, ktls_sendto_baddst);
ATF_TP_ADD_TC(tp, ktls_listening_socket);
return (atf_no_error());
}