freebsd-src/tests/sys/fifo/fifo_io.c
Warner Losh b3e7694832 Remove $FreeBSD$: two-line .h pattern
Remove /^\s*\*\n \*\s+\$FreeBSD\$$\n/
2023-08-16 11:54:16 -06:00

1398 lines
34 KiB
C

/*-
* Copyright (c) 2005 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <sys/event.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <poll.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
/*
* Regression test to exercise POSIX fifo I/O.
*
* We test a number of aspect of behavior, including:
*
* - If there's no data to read, then for blocking fifos, we block, and for
* non-blocking, we return EAGAIN.
*
* - If we write ten bytes, ten bytes can be read, and they're the same
* bytes, in the same order.
*
* - If we write two batches of five bytes, we can read the same ten bytes in
* one read of ten bytes.
*
* - If we write ten bytes, we can read the same ten bytes in two reads of
* five bytes each.
*
* - If we over-fill a buffer (by writing 512k, which we take to be a large
* number above default buffer sizes), we block if there is no reader.
*
* - That once 512k (ish) is read from the other end, the blocked writer
* wakes up.
*
* - When a fifo is empty, poll, select, kqueue, and fionread report it is
* writable but not readable.
*
* - When a fifo has data in it, poll, select, and kqueue report that it is
* writable.
*
* - XXX: blocked reader semantics?
*
* - XXX: event behavior on remote close?
*
* Although behavior of O_RDWR isn't defined for fifos by POSIX, we expect
* "reasonable" behavior, and run some additional tests relating to event
* management on O_RDWR fifo descriptors.
*/
#define KQUEUE_MAX_EVENT 8
/*
* All activity occurs within a temporary directory created early in the
* test.
*/
static char temp_dir[PATH_MAX];
static void __unused
atexit_temp_dir(void)
{
rmdir(temp_dir);
}
static void
makefifo(const char *fifoname, const char *testname)
{
if (mkfifo(fifoname, 0700) < 0)
err(-1, "%s: makefifo: mkfifo: %s", testname, fifoname);
}
static void
cleanfifo2(const char *fifoname, int fd1, int fd2)
{
if (fd1 != -1)
close(fd1);
if (fd2 != -1)
close(fd2);
(void)unlink(fifoname);
}
static void
cleanfifo3(const char *fifoname, int fd1, int fd2, int fd3)
{
if (fd3 != -1)
close(fd3);
cleanfifo2(fifoname, fd1, fd2);
}
/*
* Open two different file descriptors for a fifo: one read, one write. Do
* so using non-blocking opens in order to avoid deadlocking the process.
*/
static int
openfifo(const char *fifoname, int *reader_fdp, int *writer_fdp)
{
int error, fd1, fd2;
fd1 = open(fifoname, O_RDONLY | O_NONBLOCK);
if (fd1 < 0)
return (-1);
fd2 = open(fifoname, O_WRONLY | O_NONBLOCK);
if (fd2 < 0) {
error = errno;
close(fd1);
errno = error;
return (-1);
}
*reader_fdp = fd1;
*writer_fdp = fd2;
return (0);
}
/*
* Open one file descriptor for the fifo, supporting both read and write.
*/
static int
openfifo_rw(const char *fifoname, int *fdp)
{
int fd;
fd = open(fifoname, O_RDWR);
if (fd < 0)
return (-1);
*fdp = fd;
return (0);
}
static int
set_nonblocking(int fd, const char *testname)
{
int flags;
flags = fcntl(fd, F_GETFL);
if (flags < 0) {
warn("%s: fcntl(fd, F_GETFL)", testname);
return(-1);
}
flags |= O_NONBLOCK;
if (fcntl(fd, F_SETFL, flags) < 0) {
warn("%s: fcntl(fd, 0x%x)", testname, flags);
return (-1);
}
return (0);
}
static int
set_blocking(int fd, const char *testname)
{
int flags;
flags = fcntl(fd, F_GETFL);
if (flags < 0) {
warn("%s: fcntl(fd, F_GETFL)", testname);
return(-1);
}
flags &= ~O_NONBLOCK;
if (fcntl(fd, F_SETFL, flags) < 0) {
warn("%s: fcntl(fd, 0x%x)", testname, flags);
return (-1);
}
return (0);
}
/*
* Drain a file descriptor (fifo) of any readable data. Note: resets the
* blocking state.
*/
static int
drain_fd(int fd, const char *testname)
{
ssize_t len;
u_char ch;
if (set_nonblocking(fd, testname) < 0)
return (-1);
while ((len = read(fd, &ch, sizeof(ch))) > 0);
if (len < 0) {
switch (errno) {
case EAGAIN:
return (0);
default:
warn("%s: drain_fd: read", testname);
return (-1);
}
}
warn("%s: drain_fd: read: returned 0 bytes", testname);
return (-1);
}
/*
* Simple I/O test: write ten integers, and make sure we get back the same
* integers in the same order. This assumes a minimum fifo buffer > 10
* bytes in order to not block and deadlock.
*/
static void
test_simpleio(void)
{
int i, reader_fd, writer_fd;
u_char buffer[10];
ssize_t len;
makefifo("testfifo", __func__);
if (openfifo("testfifo", &reader_fd, &writer_fd)
< 0) {
warn("test_simpleio: openfifo: testfifo");
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
for (i = 0; i < 10; i++)
buffer[i] = i;
len = write(writer_fd, (char *)buffer, sizeof(buffer));
if (len < 0) {
warn("test_simpleio: write");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != sizeof(buffer)) {
warnx("test_simplio: tried %zu but wrote %zd", sizeof(buffer),
len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
len = read(reader_fd, (char *)buffer, sizeof(buffer));
if (len < 0) {
warn("test_simpleio: read");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != sizeof(buffer)) {
warnx("test_simpleio: tried %zu but read %zd", sizeof(buffer),
len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
for (i = 0; i < 10; i++) {
if (buffer[i] == i)
continue;
warnx("test_simpleio: write byte %d as 0x%02x, but read "
"0x%02x", i, i, buffer[i]);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
cleanfifo2("testfifo", reader_fd, writer_fd);
}
static volatile int alarm_fired;
/*
* Non-destructive SIGALRM handler.
*/
static void
sigalarm(int signum __unused)
{
alarm_fired = 1;
}
/*
* Wrapper function for write, which uses a timer to interrupt any blocking.
* Because we can't reliably detect EINTR for blocking I/O, we also track
* whether or not our timeout fired.
*/
static int __unused
timed_write(int fd, void *data, size_t len, ssize_t *written_lenp,
int timeout, int *timedoutp, const char *testname)
{
struct sigaction act, oact;
ssize_t written_len;
int error;
alarm_fired = 0;
bzero(&act, sizeof(oact));
act.sa_handler = sigalarm;
if (sigaction(SIGALRM, &act, &oact) < 0) {
warn("%s: timed_write: sigaction", testname);
return (-1);
}
alarm(timeout);
written_len = write(fd, data, len);
error = errno;
alarm(0);
if (sigaction(SIGALRM, &oact, NULL) < 0) {
warn("%s: timed_write: sigaction", testname);
return (-1);
}
if (alarm_fired)
*timedoutp = 1;
else
*timedoutp = 0;
errno = error;
if (written_len < 0)
return (-1);
*written_lenp = written_len;
return (0);
}
/*
* Wrapper function for read, which uses a timer to interrupt any blocking.
* Because we can't reliably detect EINTR for blocking I/O, we also track
* whether or not our timeout fired.
*/
static int
timed_read(int fd, void *data, size_t len, ssize_t *read_lenp,
int timeout, int *timedoutp, const char *testname)
{
struct sigaction act, oact;
ssize_t read_len;
int error;
alarm_fired = 0;
bzero(&act, sizeof(oact));
act.sa_handler = sigalarm;
if (sigaction(SIGALRM, &act, &oact) < 0) {
warn("%s: timed_write: sigaction", testname);
return (-1);
}
alarm(timeout);
read_len = read(fd, data, len);
error = errno;
alarm(0);
if (sigaction(SIGALRM, &oact, NULL) < 0) {
warn("%s: timed_write: sigaction", testname);
return (-1);
}
if (alarm_fired)
*timedoutp = 1;
else
*timedoutp = 0;
errno = error;
if (read_len < 0)
return (-1);
*read_lenp = read_len;
return (0);
}
/*
* This test operates on blocking and non-blocking fifo file descriptors, in
* order to determine whether they block at good moments or not. By good we
* mean: don't block for non-blocking sockets, and do block for blocking
* ones, assuming there isn't I/O buffer to satisfy the request.
*
* We use a timeout of 5 seconds, concluding that in 5 seconds either all I/O
* that can take place will, and that if we reach the end of the timeout,
* then blocking has occurred.
*
* We assume that the buffer size on a fifo is <512K, and as such, that
* writing that much data without an active reader will result in blocking.
*/
static void
test_blocking_read_empty(void)
{
int reader_fd, ret, timedout, writer_fd;
ssize_t len;
u_char ch;
makefifo("testfifo", __func__);
if (openfifo("testfifo", &reader_fd, &writer_fd)
< 0) {
warn("test_blocking_read_empty: openfifo: testfifo");
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
/*
* Read one byte from an empty blocking fifo, block as there is no
* data.
*/
if (set_blocking(reader_fd, __func__) < 0) {
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
ret = timed_read(reader_fd, &ch, sizeof(ch), &len, 5, &timedout,
__func__);
if (ret != -1) {
warnx("test_blocking_read_empty: timed_read: returned "
"success");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (errno != EINTR) {
warn("test_blocking_read_empty: timed_read");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
/*
* Read one byte from an empty non-blocking fifo, return EAGAIN as
* there is no data.
*/
if (set_nonblocking(reader_fd, __func__) < 0) {
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
ret = timed_read(reader_fd, &ch, sizeof(ch), &len, 5, &timedout,
__func__);
if (ret != -1) {
warnx("test_blocking_read_empty: timed_read: returned "
"success");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (errno != EAGAIN) {
warn("test_blocking_read_empty: timed_read");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
cleanfifo2("testfifo", reader_fd, writer_fd);
}
/*
* Write one byte to an empty fifo, then try to read one byte and make sure
* we don't block in either the write or the read. This tests both for
* improper blocking in the send and receive code.
*/
static void
test_blocking_one_byte(void)
{
int reader_fd, ret, timedout, writer_fd;
ssize_t len;
u_char ch;
makefifo("testfifo", __func__);
if (openfifo("testfifo", &reader_fd, &writer_fd) < 0) {
warn("test_blocking: openfifo: testfifo");
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
if (set_blocking(writer_fd, __func__) < 0) {
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (set_blocking(reader_fd, __func__) < 0) {
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
ch = 0xfe;
ret = timed_write(writer_fd, &ch, sizeof(ch), &len, 5, &timedout,
__func__);
if (ret < 0) {
warn("test_blocking_one_byte: timed_write");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != sizeof(ch)) {
warnx("test_blocking_one_byte: timed_write: tried to write "
"%zu, wrote %zd", sizeof(ch), len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
ch = 0xab;
ret = timed_read(reader_fd, &ch, sizeof(ch), &len, 5, &timedout,
__func__);
if (ret < 0) {
warn("test_blocking_one_byte: timed_read");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != sizeof(ch)) {
warnx("test_blocking_one_byte: timed_read: wanted %zu, "
"read %zd", sizeof(ch), len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (ch != 0xfe) {
warnx("test_blocking_one_byte: timed_read: expected to read "
"0x%02x, read 0x%02x", 0xfe, ch);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
cleanfifo2("testfifo", reader_fd, writer_fd);
}
/*
* Write one byte to an empty fifo, then try to read one byte and make sure
* we don't get back EAGAIN.
*/
static void
test_nonblocking_one_byte(void)
{
int reader_fd, ret, timedout, writer_fd;
ssize_t len;
u_char ch;
makefifo("testfifo", __func__);
if (openfifo("testfifo", &reader_fd, &writer_fd) < 0) {
warn("test_nonblocking: openfifo: testfifo");
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
if (set_nonblocking(reader_fd, __func__) < 0) {
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
ch = 0xfe;
ret = timed_write(writer_fd, &ch, sizeof(ch), &len, 5, &timedout,
__func__);
if (ret < 0) {
warn("test_nonblocking_one_byte: timed_write");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != sizeof(ch)) {
warnx("test_nonblocking_one_byte: timed_write: tried to write "
"%zu, wrote %zd", sizeof(ch), len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
ch = 0xab;
ret = timed_read(reader_fd, &ch, sizeof(ch), &len, 5, &timedout,
__func__);
if (ret < 0) {
warn("test_nonblocking_one_byte: timed_read");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != sizeof(ch)) {
warnx("test_nonblocking_one_byte: timed_read: wanted %zu, read "
"%zd", sizeof(ch), len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (ch != 0xfe) {
warnx("test_nonblocking_one_byte: timed_read: expected to read "
"0x%02x, read 0x%02x", 0xfe, ch);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
cleanfifo2("testfifo", reader_fd, writer_fd);
}
/*
* First of two test cases involving a 512K buffer: write the buffer into a
* blocking file descriptor. We'd like to know it blocks, but the closest we
* can get is to see if SIGALRM fired during the I/O resulting in a partial
* write.
*/
static void
test_blocking_partial_write(void)
{
int reader_fd, ret, timedout, writer_fd;
u_char *buffer;
ssize_t len;
makefifo("testfifo", __func__);
if (openfifo("testfifo", &reader_fd, &writer_fd) < 0) {
warn("test_blocking_partial_write: openfifo: testfifo");
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
if (set_blocking(writer_fd, __func__) < 0) {
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
buffer = malloc(512*1024);
if (buffer == NULL) {
warn("test_blocking_partial_write: malloc");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
bzero(buffer, 512*1024);
ret = timed_write(writer_fd, buffer, 512*1024, &len, 5, &timedout,
__func__);
if (ret < 0) {
warn("test_blocking_partial_write: timed_write");
free(buffer);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (!timedout) {
warnx("test_blocking_partial_write: timed_write: blocking "
"socket didn't time out");
free(buffer);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
free(buffer);
if (drain_fd(reader_fd, __func__) < 0) {
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
cleanfifo2("testfifo", reader_fd, writer_fd);
}
/*
* Write a 512K buffer to an empty fifo using a non-blocking file descriptor,
* and make sure it doesn't block.
*/
static void
test_nonblocking_partial_write(void)
{
int reader_fd, ret, timedout, writer_fd;
u_char *buffer;
ssize_t len;
makefifo("testfifo", __func__);
if (openfifo("testfifo", &reader_fd, &writer_fd) < 0) {
warn("test_blocking_partial_write: openfifo: testfifo");
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
if (set_nonblocking(writer_fd, __func__) < 0) {
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
buffer = malloc(512*1024);
if (buffer == NULL) {
warn("test_blocking_partial_write: malloc");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
bzero(buffer, 512*1024);
ret = timed_write(writer_fd, buffer, 512*1024, &len, 5, &timedout,
__func__);
if (ret < 0) {
warn("test_blocking_partial_write: timed_write");
free(buffer);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (timedout) {
warnx("test_blocking_partial_write: timed_write: "
"non-blocking socket timed out");
free(buffer);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len == 0 || len >= 512*1024) {
warnx("test_blocking_partial_write: timed_write: requested "
"%d, sent %zd", 512*1024, len);
free(buffer);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
free(buffer);
if (drain_fd(reader_fd, __func__) < 0) {
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
cleanfifo2("testfifo", reader_fd, writer_fd);
}
/*
* test_coalesce_big_read() verifies that data mingles in the fifo across
* message boundaries by performing two small writes, then a bigger read
* that should return data from both writes.
*/
static void
test_coalesce_big_read(void)
{
int i, reader_fd, writer_fd;
u_char buffer[10];
ssize_t len;
makefifo("testfifo", __func__);
if (openfifo("testfifo", &reader_fd, &writer_fd) < 0) {
warn("test_coalesce_big_read: openfifo: testfifo");
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
/* Write five, write five, read ten. */
for (i = 0; i < 10; i++)
buffer[i] = i;
len = write(writer_fd, buffer, 5);
if (len < 0) {
warn("test_coalesce_big_read: write 5");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != 5) {
warnx("test_coalesce_big_read: write 5 wrote %zd", len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
len = write(writer_fd, buffer + 5, 5);
if (len < 0) {
warn("test_coalesce_big_read: write 5");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != 5) {
warnx("test_coalesce_big_read: write 5 wrote %zd", len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
len = read(reader_fd, buffer, 10);
if (len < 0) {
warn("test_coalesce_big_read: read 10");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != 10) {
warnx("test_coalesce_big_read: read 10 read %zd", len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
for (i = 0; i < 10; i++) {
if (buffer[i] == i)
continue;
warnx("test_coalesce_big_read: expected to read 0x%02x, "
"read 0x%02x", i, buffer[i]);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
cleanfifo2("testfifo", -1, -1);
}
/*
* test_coalesce_big_write() verifies that data mingles in the fifo across
* message boundaries by performing one big write, then two smaller reads
* that should return sequential elements of data from the write.
*/
static void
test_coalesce_big_write(void)
{
int i, reader_fd, writer_fd;
u_char buffer[10];
ssize_t len;
makefifo("testfifo", __func__);
if (openfifo("testfifo", &reader_fd, &writer_fd) < 0) {
warn("test_coalesce_big_write: openfifo: testfifo");
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
/* Write ten, read five, read five. */
for (i = 0; i < 10; i++)
buffer[i] = i;
len = write(writer_fd, buffer, 10);
if (len < 0) {
warn("test_coalesce_big_write: write 10");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != 10) {
warnx("test_coalesce_big_write: write 10 wrote %zd", len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
len = read(reader_fd, buffer, 5);
if (len < 0) {
warn("test_coalesce_big_write: read 5");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != 5) {
warnx("test_coalesce_big_write: read 5 read %zd", len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
len = read(reader_fd, buffer + 5, 5);
if (len < 0) {
warn("test_coalesce_big_write: read 5");
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (len != 5) {
warnx("test_coalesce_big_write: read 5 read %zd", len);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
for (i = 0; i < 10; i++) {
if (buffer[i] == i)
continue;
warnx("test_coalesce_big_write: expected to read 0x%02x, "
"read 0x%02x", i, buffer[i]);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
cleanfifo2("testfifo", -1, -1);
}
static int
poll_status(int fd, int *readable, int *writable, int *exception,
const char *testname)
{
struct pollfd fds[1];
fds[0].fd = fd;
fds[0].events = POLLIN | POLLOUT | POLLERR;
fds[0].revents = 0;
if (poll(fds, 1, 0) < 0) {
warn("%s: poll", testname);
return (-1);
}
*readable = (fds[0].revents & POLLIN) ? 1 : 0;
*writable = (fds[0].revents & POLLOUT) ? 1 : 0;
*exception = (fds[0].revents & POLLERR) ? 1 : 0;
return (0);
}
static int
select_status(int fd, int *readable, int *writable, int *exception,
const char *testname)
{
struct fd_set readfds, writefds, exceptfds;
struct timeval timeout;
FD_ZERO(&readfds);
FD_ZERO(&writefds);
FD_ZERO(&exceptfds);
FD_SET(fd, &readfds);
FD_SET(fd, &writefds);
FD_SET(fd, &exceptfds);
timeout.tv_sec = 0;
timeout.tv_usec = 0;
if (select(fd+1, &readfds, &writefds, &exceptfds, &timeout) < 0) {
warn("%s: select", testname);
return (-1);
}
*readable = FD_ISSET(fd, &readfds) ? 1 : 0;
*writable = FD_ISSET(fd, &writefds) ? 1 : 0;
*exception = FD_ISSET(fd, &exceptfds) ? 1 : 0;
return (0);
}
/*
* Given an existing kqueue, set up read and write event filters for the
* passed file descriptor. Typically called once for the read endpoint, and
* once for the write endpoint.
*/
static int
kqueue_setup(int kqueue_fd, int fd, const char *testname)
{
struct kevent kevent_changelist[2];
struct kevent kevent_eventlist[KQUEUE_MAX_EVENT], *kp;
struct timespec timeout;
int i, ret;
timeout.tv_sec = 0;
timeout.tv_nsec = 0;
bzero(&kevent_changelist, sizeof(kevent_changelist));
EV_SET(&kevent_changelist[0], fd, EVFILT_READ, EV_ADD, 0, 0, 0);
EV_SET(&kevent_changelist[1], fd, EVFILT_WRITE, EV_ADD, 0, 0, 0);
bzero(&kevent_eventlist, sizeof(kevent_eventlist));
ret = kevent(kqueue_fd, kevent_changelist, 2, kevent_eventlist,
KQUEUE_MAX_EVENT, &timeout);
if (ret < 0) {
warn("%s:%s: kevent initial register", testname, __func__);
return (-1);
}
/*
* Verify that the events registered alright.
*/
for (i = 0; i < ret; i++) {
kp = &kevent_eventlist[i];
if (kp->flags != EV_ERROR)
continue;
errno = kp->data;
warn("%s:%s: kevent register index %d", testname, __func__,
i);
return (-1);
}
return (0);
}
static int
kqueue_status(int kqueue_fd, int fd, int *readable, int *writable,
int *exception, const char *testname)
{
struct kevent kevent_eventlist[KQUEUE_MAX_EVENT], *kp;
struct timespec timeout;
int i, ret;
timeout.tv_sec = 0;
timeout.tv_nsec = 0;
ret = kevent(kqueue_fd, NULL, 0, kevent_eventlist, KQUEUE_MAX_EVENT,
&timeout);
if (ret < 0) {
warn("%s: %s: kevent", testname, __func__);
return (-1);
}
*readable = *writable = *exception = 0;
for (i = 0; i < ret; i++) {
kp = &kevent_eventlist[i];
if (kp->ident != (u_int)fd)
continue;
if (kp->filter == EVFILT_READ)
*readable = 1;
if (kp->filter == EVFILT_WRITE)
*writable = 1;
}
return (0);
}
static int
fionread_status(int fd, int *readable, const char *testname)
{
int i;
if (ioctl(fd, FIONREAD, &i) < 0) {
warn("%s: ioctl(FIONREAD)", testname);
return (-1);
}
if (i > 0)
*readable = 1;
else
*readable = 0;
return (0);
}
#define READABLE 1
#define WRITABLE 1
#define EXCEPTION 1
#define NOT_READABLE 0
#define NOT_WRITABLE 0
#define NOT_EXCEPTION 0
static int
assert_status(int fd, int kqueue_fd, int assert_readable,
int assert_writable, int assert_exception, const char *testname,
const char *conditionname, const char *fdname)
{
int readable, writable, exception;
if (poll_status(fd, &readable, &writable, &exception, testname) < 0)
return (-1);
if (readable != assert_readable || writable != assert_writable ||
exception != assert_exception) {
warnx("%s: %s polls r:%d, w:%d, e:%d on %s", testname,
fdname, readable, writable, exception, conditionname);
return (-1);
}
if (select_status(fd, &readable, &writable, &exception, testname) < 0)
return (-1);
if (readable != assert_readable || writable != assert_writable ||
exception != assert_exception) {
warnx("%s: %s selects r:%d, w:%d, e:%d on %s", testname,
fdname, readable, writable, exception, conditionname);
return (-1);
}
if (kqueue_status(kqueue_fd, fd, &readable, &writable, &exception,
testname) < 0)
return (-1);
if (readable != assert_readable || writable != assert_writable ||
exception != assert_exception) {
warnx("%s: %s kevent r:%d, w:%d, e:%d on %s", testname,
fdname, readable, writable, exception, conditionname);
return (-1);
}
if (fionread_status(fd, &readable, __func__) < 0)
return (-1);
if (readable != assert_readable) {
warnx("%s: %s fionread r:%d on %s", testname, fdname,
readable, conditionname);
return (-1);
}
return (0);
}
/*
* test_events() uses poll(), select(), and kevent() to query the status of
* fifo file descriptors and determine whether they match expected state
* based on earlier semantic tests: specifically, whether or not poll/select/
* kevent will correctly inform on readable/writable state following I/O.
*
* It would be nice to also test status changes as a result of closing of one
* or another fifo endpoint.
*/
static void
test_events_outofbox(void)
{
int kqueue_fd, reader_fd, writer_fd;
makefifo("testfifo", __func__);
if (openfifo("testfifo", &reader_fd, &writer_fd) < 0) {
warn("test_events_outofbox: openfifo: testfifo");
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
kqueue_fd = kqueue();
if (kqueue_fd < 0) {
warn("%s: kqueue", __func__);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (kqueue_setup(kqueue_fd, reader_fd, __func__) < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
if (kqueue_setup(kqueue_fd, writer_fd, __func__) < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
/*
* Make sure that fresh, out-of-the-box fifo file descriptors have
* good initial states. The reader_fd should have no active state,
* since it will not be readable (no data in pipe), writable (it's
* a read-only descriptor), and there's no reason for error yet.
*/
if (assert_status(reader_fd, kqueue_fd, NOT_READABLE, NOT_WRITABLE,
NOT_EXCEPTION, __func__, "create", "reader_fd") < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
/*
* Make sure that fresh, out-of-the-box fifo file descriptors have
* good initial states. The writer_fd should be ready to write.
*/
if (assert_status(writer_fd, kqueue_fd, NOT_READABLE, WRITABLE,
NOT_EXCEPTION, __func__, "create", "writer_fd") < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
}
static void
test_events_write_read_byte(void)
{
int kqueue_fd, reader_fd, writer_fd;
ssize_t len;
u_char ch;
makefifo("testfifo", __func__);
if (openfifo("testfifo", &reader_fd, &writer_fd) < 0) {
warn("test_events_write_read_byte: openfifo: testfifo");
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
kqueue_fd = kqueue();
if (kqueue_fd < 0) {
warn("%s: kqueue", __func__);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (kqueue_setup(kqueue_fd, reader_fd, __func__) < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
if (kqueue_setup(kqueue_fd, writer_fd, __func__) < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
/*
* Write a byte to the fifo, and make sure that the read end becomes
* readable, and that the write end remains writable (small write).
*/
ch = 0x00;
len = write(writer_fd, &ch, sizeof(ch));
if (len < 0) {
warn("%s: write", __func__);
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
if (assert_status(reader_fd, kqueue_fd, READABLE, NOT_WRITABLE,
NOT_EXCEPTION, __func__, "write", "reader_fd") < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
/*
* the writer_fd should remain writable.
*/
if (assert_status(writer_fd, kqueue_fd, NOT_READABLE, WRITABLE,
NOT_EXCEPTION, __func__, "write", "writer_fd") < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
/*
* Read the byte from the reader_fd, and now confirm that the fifo
* becomes unreadable.
*/
len = read(reader_fd, &ch, sizeof(ch));
if (len < 0) {
warn("%s: read", __func__);
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
if (assert_status(reader_fd, kqueue_fd, NOT_READABLE, NOT_WRITABLE,
NOT_EXCEPTION, __func__, "write+read", "reader_fd") < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
/*
* The writer_fd should remain writable.
*/
if (assert_status(writer_fd, kqueue_fd, NOT_READABLE, WRITABLE,
NOT_EXCEPTION, __func__, "write+read", "writer_fd") < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
}
/*
* Write a 512k buffer to the fifo in non-blocking mode, and make sure that
* the write end becomes un-writable as a result of a partial write that
* fills the fifo buffer.
*/
static void
test_events_partial_write(void)
{
int kqueue_fd, reader_fd, writer_fd;
u_char *buffer;
ssize_t len;
makefifo("testfifo", __func__);
if (openfifo("testfifo", &reader_fd, &writer_fd) < 0) {
warn("test_events_partial_write: openfifo: testfifo");
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
kqueue_fd = kqueue();
if (kqueue_fd < 0) {
warn("%s: kqueue", __func__);
cleanfifo2("testfifo", reader_fd, writer_fd);
exit(-1);
}
if (kqueue_setup(kqueue_fd, reader_fd, __func__) < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
if (kqueue_setup(kqueue_fd, writer_fd, __func__) < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
if (set_nonblocking(writer_fd, "test_events") < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
buffer = malloc(512*1024);
if (buffer == NULL) {
warn("test_events_partial_write: malloc");
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
bzero(buffer, 512*1024);
len = write(writer_fd, buffer, 512*1024);
if (len < 0) {
warn("test_events_partial_write: write");
free(buffer);
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
free(buffer);
if (assert_status(writer_fd, kqueue_fd, NOT_READABLE, NOT_WRITABLE,
NOT_EXCEPTION, __func__, "big write", "writer_fd") < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
if (drain_fd(reader_fd, "test_events") < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
/*
* Test that the writer_fd has been restored to writable state after
* draining.
*/
if (assert_status(writer_fd, kqueue_fd, NOT_READABLE, WRITABLE,
NOT_EXCEPTION, __func__, "big write + drain", "writer_fd") < 0) {
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
exit(-1);
}
cleanfifo3("testfifo", reader_fd, writer_fd, kqueue_fd);
}
/*
* We don't comprehensively test O_RDWR file descriptors, but do run a couple
* of event tests to make sure that the fifo implementation doesn't mixed up
* status checks. In particular, at least one past FreeBSD bug exists in
* which the FIONREAD test was performed on the wrong socket implementing the
* fifo, resulting in the fifo never returning readable.
*/
static void
test_events_rdwr(void)
{
int fd, kqueue_fd;
ssize_t len;
char ch;
makefifo("testfifo", __func__);
if (openfifo_rw("testfifo", &fd) < 0) {
warn("%s: openfifo_rw: testfifo", __func__);
cleanfifo2("testfifo", -1, -1);
exit(-1);
}
kqueue_fd = kqueue();
if (kqueue_fd < 0) {
warn("%s: kqueue", __func__);
cleanfifo2("testifo", fd, -1);
exit(-1);
}
if (kqueue_setup(kqueue_fd, fd, __func__) < 0) {
cleanfifo2("testfifo", fd, kqueue_fd);
exit(-1);
}
/*
* On first creation, the O_RDWR descriptor should be writable but
* not readable.
*/
if (assert_status(fd, kqueue_fd, NOT_READABLE, WRITABLE,
NOT_EXCEPTION, __func__, "create", "fd") < 0) {
cleanfifo2("testfifo", fd, kqueue_fd);
exit(-1);
}
/*
* Write a byte, which should cause the file descriptor to become
* readable and writable.
*/
ch = 0x00;
len = write(fd, &ch, sizeof(ch));
if (len < 0) {
warn("%s: write", __func__);
cleanfifo2("testfifo", fd, kqueue_fd);
exit(-1);
}
if (assert_status(fd, kqueue_fd, READABLE, WRITABLE, NOT_EXCEPTION,
__func__, "write", "fd") < 0) {
cleanfifo2("testfifo", fd, kqueue_fd);
exit(-1);
}
/*
* Read a byte, which should cause the file descriptor to return to
* simply being writable.
*/
len = read(fd, &ch, sizeof(ch));
if (len < 0) {
warn("%s: read", __func__);
cleanfifo2("testfifo", fd, kqueue_fd);
exit(-1);
}
if (assert_status(fd, kqueue_fd, NOT_READABLE, WRITABLE,
NOT_EXCEPTION, __func__, "write+read", "fd") < 0) {
cleanfifo2("testfifo", fd, kqueue_fd);
exit(-1);
}
cleanfifo2("testfifo", fd, kqueue_fd);
}
int
main(void)
{
strcpy(temp_dir, "fifo_io.XXXXXXXXXXX");
if (mkdtemp(temp_dir) == NULL)
err(-1, "mkdtemp");
atexit(atexit_temp_dir);
if (chdir(temp_dir) < 0)
err(-1, "chdir %s", temp_dir);
test_simpleio();
test_blocking_read_empty();
test_blocking_one_byte();
test_nonblocking_one_byte();
test_blocking_partial_write();
test_nonblocking_partial_write();
test_coalesce_big_read();
test_coalesce_big_write();
test_events_outofbox();
test_events_write_read_byte();
test_events_partial_write();
test_events_rdwr();
return (0);
}