freebsd-src/sys/dev/ti/if_ti.c
Pyun YongHyeon b7c2632d6a Overhaul bus_dma(9) usage in driver:
- Don't use a single big DMA block for all rings. Create separate
   DMA area for each ring instead.  Currently the following DMA
   areas are created:
	Event ring, standard RX ring, jumbo RX ring, RX return ring,
	hardware MAC statistics and producer/consumer status area.
   For Tigon II, mini RX ring and TX ring are additionally created.
 - Added missing bus_dmamap_sync(9) in various TX/RX paths.
 - TX ring is no longer created for Tigon 1 such that it saves more
   resources on Tigon 1.
 - Data sheet is not clear about alignment requirement of each ring
   so use 32 bytes alignment for normal DMA area but use 64 bytes
   alignment for jumbo RX ring where the extended RX descriptor
   size is 64 bytes.
 - For each TX/RX buffers use separate DMA tag(e.g. the size of a
   DMA segment, total size of DMA segments etc).
 - Tigon allows separate DMA area for event producer, RX return
   producer and TX consumer which is really cool feature.  This
   means TX and RX path could be independently run in parallel.
   However ti(4) uses a single driver lock so it's meaningless
   to have separate DMA area for these producer/consumer such that
   this change creates a single status DMA area.
 - It seems Tigon has no limits on DMA address space and I also
   don't see any problem with that but old comments in driver
   indicates there could be issues on descriptors being located in
   64bit region.  Introduce a tunable, dev.ti.%d.dac, to disable
   using 64bit DMA in driver. The default is 0 which means it would
   use full 64bit DMA.  If there are DMA issues, users can disable
   it by setting the tunable to 0.
 - Do not increase watchdog timer in ti_txeof(). Previously driver
   increased the watchdog timer whenever there are queued TX frames.
 - When stat ticks is set to 0, skip processing ti_stats_update(),
   avoiding bus_dmamap_sync(9) and updating if_collisions counter.
 - MTU does not include FCS bytes, replace it with
   ETHER_VLAN_ENCAP_LEN.

With these changes, ti(4) should work on PAE environments.
Many thanks to Jay Borkenhagen for remote hardware access.
2011-11-14 20:38:14 +00:00

4066 lines
109 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
* Manuals, sample driver and firmware source kits are available
* from http://www.alteon.com/support/openkits.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Alteon Networks Tigon chip contains an embedded R4000 CPU,
* gigabit MAC, dual DMA channels and a PCI interface unit. NICs
* using the Tigon may have anywhere from 512K to 2MB of SRAM. The
* Tigon supports hardware IP, TCP and UCP checksumming, multicast
* filtering and jumbo (9014 byte) frames. The hardware is largely
* controlled by firmware, which must be loaded into the NIC during
* initialization.
*
* The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
* revision, which supports new features such as extended commands,
* extended jumbo receive ring desciptors and a mini receive ring.
*
* Alteon Networks is to be commended for releasing such a vast amount
* of development material for the Tigon NIC without requiring an NDA
* (although they really should have done it a long time ago). With
* any luck, the other vendors will finally wise up and follow Alteon's
* stellar example.
*
* The firmware for the Tigon 1 and 2 NICs is compiled directly into
* this driver by #including it as a C header file. This bloats the
* driver somewhat, but it's the easiest method considering that the
* driver code and firmware code need to be kept in sync. The source
* for the firmware is not provided with the FreeBSD distribution since
* compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
*
* The following people deserve special thanks:
* - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
* for testing
* - Raymond Lee of Netgear, for providing a pair of Netgear
* GA620 Tigon 2 boards for testing
* - Ulf Zimmermann, for bringing the GA260 to my attention and
* convincing me to write this driver.
* - Andrew Gallatin for providing FreeBSD/Alpha support.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ti.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <sys/conf.h>
#include <sys/sf_buf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#ifdef TI_SF_BUF_JUMBO
#include <vm/vm.h>
#include <vm/vm_page.h>
#endif
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <sys/tiio.h>
#include <dev/ti/if_tireg.h>
#include <dev/ti/ti_fw.h>
#include <dev/ti/ti_fw2.h>
#include <sys/sysctl.h>
#define TI_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
/*
* We can only turn on header splitting if we're using extended receive
* BDs.
*/
#if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
#error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
#endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
typedef enum {
TI_SWAP_HTON,
TI_SWAP_NTOH
} ti_swap_type;
/*
* Various supported device vendors/types and their names.
*/
static const struct ti_type const ti_devs[] = {
{ ALT_VENDORID, ALT_DEVICEID_ACENIC,
"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
{ ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER,
"Alteon AceNIC 1000baseT Gigabit Ethernet" },
{ TC_VENDORID, TC_DEVICEID_3C985,
"3Com 3c985-SX Gigabit Ethernet" },
{ NG_VENDORID, NG_DEVICEID_GA620,
"Netgear GA620 1000baseSX Gigabit Ethernet" },
{ NG_VENDORID, NG_DEVICEID_GA620T,
"Netgear GA620 1000baseT Gigabit Ethernet" },
{ SGI_VENDORID, SGI_DEVICEID_TIGON,
"Silicon Graphics Gigabit Ethernet" },
{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
"Farallon PN9000SX Gigabit Ethernet" },
{ 0, 0, NULL }
};
static d_open_t ti_open;
static d_close_t ti_close;
static d_ioctl_t ti_ioctl2;
static struct cdevsw ti_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = ti_open,
.d_close = ti_close,
.d_ioctl = ti_ioctl2,
.d_name = "ti",
};
static int ti_probe(device_t);
static int ti_attach(device_t);
static int ti_detach(device_t);
static void ti_txeof(struct ti_softc *);
static void ti_rxeof(struct ti_softc *);
static void ti_stats_update(struct ti_softc *);
static int ti_encap(struct ti_softc *, struct mbuf **);
static void ti_intr(void *);
static void ti_start(struct ifnet *);
static void ti_start_locked(struct ifnet *);
static int ti_ioctl(struct ifnet *, u_long, caddr_t);
static void ti_init(void *);
static void ti_init_locked(void *);
static void ti_init2(struct ti_softc *);
static void ti_stop(struct ti_softc *);
static void ti_watchdog(void *);
static int ti_shutdown(device_t);
static int ti_ifmedia_upd(struct ifnet *);
static int ti_ifmedia_upd_locked(struct ti_softc *);
static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
static uint8_t ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
static void ti_setmulti(struct ti_softc *);
static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
int);
static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
int, int, int);
static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
static void ti_loadfw(struct ti_softc *);
static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
static void ti_handle_events(struct ti_softc *);
static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int ti_dma_alloc(struct ti_softc *);
static void ti_dma_free(struct ti_softc *);
static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
bus_dmamap_t *);
static int ti_newbuf_std(struct ti_softc *, int);
static int ti_newbuf_mini(struct ti_softc *, int);
static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
static int ti_init_rx_ring_std(struct ti_softc *);
static void ti_free_rx_ring_std(struct ti_softc *);
static int ti_init_rx_ring_jumbo(struct ti_softc *);
static void ti_free_rx_ring_jumbo(struct ti_softc *);
static int ti_init_rx_ring_mini(struct ti_softc *);
static void ti_free_rx_ring_mini(struct ti_softc *);
static void ti_free_tx_ring(struct ti_softc *);
static int ti_init_tx_ring(struct ti_softc *);
static void ti_discard_std(struct ti_softc *, int);
#ifndef TI_SF_BUF_JUMBO
static void ti_discard_jumbo(struct ti_softc *, int);
#endif
static void ti_discard_mini(struct ti_softc *, int);
static int ti_64bitslot_war(struct ti_softc *);
static int ti_chipinit(struct ti_softc *);
static int ti_gibinit(struct ti_softc *);
#ifdef TI_JUMBO_HDRSPLIT
static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
int idx);
#endif /* TI_JUMBO_HDRSPLIT */
static void ti_sysctl_node(struct ti_softc *);
static device_method_t ti_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ti_probe),
DEVMETHOD(device_attach, ti_attach),
DEVMETHOD(device_detach, ti_detach),
DEVMETHOD(device_shutdown, ti_shutdown),
{ 0, 0 }
};
static driver_t ti_driver = {
"ti",
ti_methods,
sizeof(struct ti_softc)
};
static devclass_t ti_devclass;
DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
MODULE_DEPEND(ti, pci, 1, 1, 1);
MODULE_DEPEND(ti, ether, 1, 1, 1);
/*
* Send an instruction or address to the EEPROM, check for ACK.
*/
static uint32_t
ti_eeprom_putbyte(struct ti_softc *sc, int byte)
{
int i, ack = 0;
/*
* Make sure we're in TX mode.
*/
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x80; i; i >>= 1) {
if (byte & i) {
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
} else {
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
}
DELAY(1);
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
}
/*
* Turn off TX mode.
*/
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
/*
* Check for ack.
*/
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
return (ack);
}
/*
* Read a byte of data stored in the EEPROM at address 'addr.'
* We have to send two address bytes since the EEPROM can hold
* more than 256 bytes of data.
*/
static uint8_t
ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
{
int i;
uint8_t byte = 0;
EEPROM_START;
/*
* Send write control code to EEPROM.
*/
if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
device_printf(sc->ti_dev,
"failed to send write command, status: %x\n",
CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
/*
* Send first byte of address of byte we want to read.
*/
if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
device_printf(sc->ti_dev, "failed to send address, status: %x\n",
CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
/*
* Send second byte address of byte we want to read.
*/
if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
device_printf(sc->ti_dev, "failed to send address, status: %x\n",
CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
EEPROM_STOP;
EEPROM_START;
/*
* Send read control code to EEPROM.
*/
if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
device_printf(sc->ti_dev,
"failed to send read command, status: %x\n",
CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
/*
* Start reading bits from EEPROM.
*/
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
for (i = 0x80; i; i >>= 1) {
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
byte |= i;
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
}
EEPROM_STOP;
/*
* No ACK generated for read, so just return byte.
*/
*dest = byte;
return (0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
static int
ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
{
int err = 0, i;
uint8_t byte = 0;
for (i = 0; i < cnt; i++) {
err = ti_eeprom_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return (err ? 1 : 0);
}
/*
* NIC memory read function.
* Can be used to copy data from NIC local memory.
*/
static void
ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
{
int segptr, segsize, cnt;
char *ptr;
segptr = addr;
cnt = len;
ptr = buf;
while (cnt) {
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
segsize / 4);
ptr += segsize;
segptr += segsize;
cnt -= segsize;
}
}
/*
* NIC memory write function.
* Can be used to copy data into NIC local memory.
*/
static void
ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
{
int segptr, segsize, cnt;
char *ptr;
segptr = addr;
cnt = len;
ptr = buf;
while (cnt) {
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
segsize / 4);
ptr += segsize;
segptr += segsize;
cnt -= segsize;
}
}
/*
* NIC memory read function.
* Can be used to clear a section of NIC local memory.
*/
static void
ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
{
int segptr, segsize, cnt;
segptr = addr;
cnt = len;
while (cnt) {
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
segptr += segsize;
cnt -= segsize;
}
}
static int
ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
caddr_t buf, int useraddr, int readdata)
{
int segptr, segsize, cnt;
caddr_t ptr;
uint32_t origwin;
int resid, segresid;
int first_pass;
TI_LOCK_ASSERT(sc);
/*
* At the moment, we don't handle non-aligned cases, we just bail.
* If this proves to be a problem, it will be fixed.
*/
if (readdata == 0 && (tigon_addr & 0x3) != 0) {
device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
"word-aligned\n", __func__, tigon_addr);
device_printf(sc->ti_dev, "%s: unaligned writes aren't "
"yet supported\n", __func__);
return (EINVAL);
}
segptr = tigon_addr & ~0x3;
segresid = tigon_addr - segptr;
/*
* This is the non-aligned amount left over that we'll need to
* copy.
*/
resid = len & 0x3;
/* Add in the left over amount at the front of the buffer */
resid += segresid;
cnt = len & ~0x3;
/*
* If resid + segresid is >= 4, add multiples of 4 to the count and
* decrease the residual by that much.
*/
cnt += resid & ~0x3;
resid -= resid & ~0x3;
ptr = buf;
first_pass = 1;
/*
* Save the old window base value.
*/
origwin = CSR_READ_4(sc, TI_WINBASE);
while (cnt) {
bus_size_t ti_offset;
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
if (readdata) {
bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
if (useraddr) {
/*
* Yeah, this is a little on the kludgy
* side, but at least this code is only
* used for debugging.
*/
ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
segsize, TI_SWAP_NTOH);
TI_UNLOCK(sc);
if (first_pass) {
copyout(&sc->ti_membuf2[segresid], ptr,
segsize - segresid);
first_pass = 0;
} else
copyout(sc->ti_membuf2, ptr, segsize);
TI_LOCK(sc);
} else {
if (first_pass) {
ti_bcopy_swap(sc->ti_membuf,
sc->ti_membuf2, segsize,
TI_SWAP_NTOH);
TI_UNLOCK(sc);
bcopy(&sc->ti_membuf2[segresid], ptr,
segsize - segresid);
TI_LOCK(sc);
first_pass = 0;
} else
ti_bcopy_swap(sc->ti_membuf, ptr,
segsize, TI_SWAP_NTOH);
}
} else {
if (useraddr) {
TI_UNLOCK(sc);
copyin(ptr, sc->ti_membuf2, segsize);
TI_LOCK(sc);
ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
segsize, TI_SWAP_HTON);
} else
ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
TI_SWAP_HTON);
bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
}
segptr += segsize;
ptr += segsize;
cnt -= segsize;
}
/*
* Handle leftover, non-word-aligned bytes.
*/
if (resid != 0) {
uint32_t tmpval, tmpval2;
bus_size_t ti_offset;
/*
* Set the segment pointer.
*/
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
/*
* First, grab whatever is in our source/destination.
* We'll obviously need this for reads, but also for
* writes, since we'll be doing read/modify/write.
*/
bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
ti_offset, &tmpval, 1);
/*
* Next, translate this from little-endian to big-endian
* (at least on i386 boxes).
*/
tmpval2 = ntohl(tmpval);
if (readdata) {
/*
* If we're reading, just copy the leftover number
* of bytes from the host byte order buffer to
* the user's buffer.
*/
if (useraddr) {
TI_UNLOCK(sc);
copyout(&tmpval2, ptr, resid);
TI_LOCK(sc);
} else
bcopy(&tmpval2, ptr, resid);
} else {
/*
* If we're writing, first copy the bytes to be
* written into the network byte order buffer,
* leaving the rest of the buffer with whatever was
* originally in there. Then, swap the bytes
* around into host order and write them out.
*
* XXX KDM the read side of this has been verified
* to work, but the write side of it has not been
* verified. So user beware.
*/
if (useraddr) {
TI_UNLOCK(sc);
copyin(ptr, &tmpval2, resid);
TI_LOCK(sc);
} else
bcopy(ptr, &tmpval2, resid);
tmpval = htonl(tmpval2);
bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
ti_offset, &tmpval, 1);
}
}
CSR_WRITE_4(sc, TI_WINBASE, origwin);
return (0);
}
static int
ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
caddr_t buf, int useraddr, int readdata, int cpu)
{
uint32_t segptr;
int cnt;
uint32_t tmpval, tmpval2;
caddr_t ptr;
TI_LOCK_ASSERT(sc);
/*
* At the moment, we don't handle non-aligned cases, we just bail.
* If this proves to be a problem, it will be fixed.
*/
if (tigon_addr & 0x3) {
device_printf(sc->ti_dev, "%s: tigon address %#x "
"isn't word-aligned\n", __func__, tigon_addr);
return (EINVAL);
}
if (len & 0x3) {
device_printf(sc->ti_dev, "%s: transfer length %d "
"isn't word-aligned\n", __func__, len);
return (EINVAL);
}
segptr = tigon_addr;
cnt = len;
ptr = buf;
while (cnt) {
CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
if (readdata) {
tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
tmpval = ntohl(tmpval2);
/*
* Note: I've used this debugging interface
* extensively with Alteon's 12.3.15 firmware,
* compiled with GCC 2.7.2.1 and binutils 2.9.1.
*
* When you compile the firmware without
* optimization, which is necessary sometimes in
* order to properly step through it, you sometimes
* read out a bogus value of 0xc0017c instead of
* whatever was supposed to be in that scratchpad
* location. That value is on the stack somewhere,
* but I've never been able to figure out what was
* causing the problem.
*
* The address seems to pop up in random places,
* often not in the same place on two subsequent
* reads.
*
* In any case, the underlying data doesn't seem
* to be affected, just the value read out.
*
* KDM, 3/7/2000
*/
if (tmpval2 == 0xc0017c)
device_printf(sc->ti_dev, "found 0xc0017c at "
"%#x (tmpval2)\n", segptr);
if (tmpval == 0xc0017c)
device_printf(sc->ti_dev, "found 0xc0017c at "
"%#x (tmpval)\n", segptr);
if (useraddr)
copyout(&tmpval, ptr, 4);
else
bcopy(&tmpval, ptr, 4);
} else {
if (useraddr)
copyin(ptr, &tmpval2, 4);
else
bcopy(ptr, &tmpval2, 4);
tmpval = htonl(tmpval2);
CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
}
cnt -= 4;
segptr += 4;
ptr += 4;
}
return (0);
}
static int
ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
{
const uint8_t *tmpsrc;
uint8_t *tmpdst;
size_t tmplen;
if (len & 0x3) {
printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
return (-1);
}
tmpsrc = src;
tmpdst = dst;
tmplen = len;
while (tmplen) {
if (swap_type == TI_SWAP_NTOH)
*(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
else
*(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
tmpsrc += 4;
tmpdst += 4;
tmplen -= 4;
}
return (0);
}
/*
* Load firmware image into the NIC. Check that the firmware revision
* is acceptable and see if we want the firmware for the Tigon 1 or
* Tigon 2.
*/
static void
ti_loadfw(struct ti_softc *sc)
{
TI_LOCK_ASSERT(sc);
switch (sc->ti_hwrev) {
case TI_HWREV_TIGON:
if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
tigonFwReleaseFix != TI_FIRMWARE_FIX) {
device_printf(sc->ti_dev, "firmware revision mismatch; "
"want %d.%d.%d, got %d.%d.%d\n",
TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
TI_FIRMWARE_FIX, tigonFwReleaseMajor,
tigonFwReleaseMinor, tigonFwReleaseFix);
return;
}
ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
tigonFwRodata);
ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
break;
case TI_HWREV_TIGON_II:
if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
device_printf(sc->ti_dev, "firmware revision mismatch; "
"want %d.%d.%d, got %d.%d.%d\n",
TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
tigon2FwReleaseMinor, tigon2FwReleaseFix);
return;
}
ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
tigon2FwText);
ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
tigon2FwData);
ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
tigon2FwRodata);
ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
break;
default:
device_printf(sc->ti_dev,
"can't load firmware: unknown hardware rev\n");
break;
}
}
/*
* Send the NIC a command via the command ring.
*/
static void
ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
{
int index;
index = sc->ti_cmd_saved_prodidx;
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
TI_INC(index, TI_CMD_RING_CNT);
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
sc->ti_cmd_saved_prodidx = index;
}
/*
* Send the NIC an extended command. The 'len' parameter specifies the
* number of command slots to include after the initial command.
*/
static void
ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
{
int index;
int i;
index = sc->ti_cmd_saved_prodidx;
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
TI_INC(index, TI_CMD_RING_CNT);
for (i = 0; i < len; i++) {
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
*(uint32_t *)(&arg[i * 4]));
TI_INC(index, TI_CMD_RING_CNT);
}
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
sc->ti_cmd_saved_prodidx = index;
}
/*
* Handle events that have triggered interrupts.
*/
static void
ti_handle_events(struct ti_softc *sc)
{
struct ti_event_desc *e;
if (sc->ti_rdata.ti_event_ring == NULL)
return;
bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
switch (TI_EVENT_EVENT(e)) {
case TI_EV_LINKSTAT_CHANGED:
sc->ti_linkstat = TI_EVENT_CODE(e);
if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
sc->ti_ifp->if_baudrate = IF_Mbps(100);
if (bootverbose)
device_printf(sc->ti_dev,
"10/100 link up\n");
} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
if (bootverbose)
device_printf(sc->ti_dev,
"gigabit link up\n");
} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
if_link_state_change(sc->ti_ifp,
LINK_STATE_DOWN);
sc->ti_ifp->if_baudrate = 0;
if (bootverbose)
device_printf(sc->ti_dev,
"link down\n");
}
break;
case TI_EV_ERROR:
if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
device_printf(sc->ti_dev, "invalid command\n");
else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
device_printf(sc->ti_dev, "unknown command\n");
else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
device_printf(sc->ti_dev, "bad config data\n");
break;
case TI_EV_FIRMWARE_UP:
ti_init2(sc);
break;
case TI_EV_STATS_UPDATED:
ti_stats_update(sc);
break;
case TI_EV_RESET_JUMBO_RING:
case TI_EV_MCAST_UPDATED:
/* Who cares. */
break;
default:
device_printf(sc->ti_dev, "unknown event: %d\n",
TI_EVENT_EVENT(e));
break;
}
/* Advance the consumer index. */
TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
}
bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
}
struct ti_dmamap_arg {
bus_addr_t ti_busaddr;
};
static void
ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct ti_dmamap_arg *ctx;
if (error)
return;
KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
ctx = arg;
ctx->ti_busaddr = segs->ds_addr;
}
static int
ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
const char *msg)
{
struct ti_dmamap_arg ctx;
int error;
error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
if (error != 0) {
device_printf(sc->ti_dev,
"could not create %s dma tag\n", msg);
return (error);
}
/* Allocate DMA'able memory for ring. */
error = bus_dmamem_alloc(*tag, (void **)ring,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
if (error != 0) {
device_printf(sc->ti_dev,
"could not allocate DMA'able memory for %s\n", msg);
return (error);
}
/* Load the address of the ring. */
ctx.ti_busaddr = 0;
error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
&ctx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->ti_dev,
"could not load DMA'able memory for %s\n", msg);
return (error);
}
*paddr = ctx.ti_busaddr;
return (0);
}
static void
ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
bus_dmamap_t *map)
{
if (*map != NULL)
bus_dmamap_unload(*tag, *map);
if (*map != NULL && *ring != NULL) {
bus_dmamem_free(*tag, *ring, *map);
*ring = NULL;
*map = NULL;
}
if (*tag) {
bus_dma_tag_destroy(*tag);
*tag = NULL;
}
}
static int
ti_dma_alloc(struct ti_softc *sc)
{
bus_addr_t lowaddr;
int i, error;
lowaddr = BUS_SPACE_MAXADDR;
if (sc->ti_dac == 0)
lowaddr = BUS_SPACE_MAXADDR_32BIT;
error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
&sc->ti_cdata.ti_parent_tag);
if (error != 0) {
device_printf(sc->ti_dev,
"could not allocate parent dma tag\n");
return (ENOMEM);
}
error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
&sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
&sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
if (error)
return (error);
/* Producer/consumer status */
error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
&sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
&sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
"event ring");
if (error)
return (error);
/* Event ring */
error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
&sc->ti_cdata.ti_event_ring_tag,
(uint8_t **)&sc->ti_rdata.ti_event_ring,
&sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
"event ring");
if (error)
return (error);
/* Command ring lives in shared memory so no need to create DMA area. */
/* Standard RX ring */
error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
&sc->ti_cdata.ti_rx_std_ring_tag,
(uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
&sc->ti_cdata.ti_rx_std_ring_map,
&sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
if (error)
return (error);
/* Jumbo RX ring */
error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
&sc->ti_cdata.ti_rx_jumbo_ring_tag,
(uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
&sc->ti_cdata.ti_rx_jumbo_ring_map,
&sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
if (error)
return (error);
/* RX return ring */
error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
&sc->ti_cdata.ti_rx_return_ring_tag,
(uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
&sc->ti_cdata.ti_rx_return_ring_map,
&sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
if (error)
return (error);
/* Create DMA tag for standard RX mbufs. */
error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
if (error) {
device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
return (error);
}
/* Create DMA tag for jumbo RX mbufs. */
#ifdef TI_SF_BUF_JUMBO
/*
* The VM system will take care of providing aligned pages. Alignment
* is set to 1 here so that busdma resources won't be wasted.
*/
error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
#else
error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
#endif
if (error) {
device_printf(sc->ti_dev,
"could not allocate jumbo RX dma tag\n");
return (error);
}
/* Create DMA tag for TX mbufs. */
error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
&sc->ti_cdata.ti_tx_tag);
if (error) {
device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
return (ENOMEM);
}
/* Create DMA maps for RX buffers. */
for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
&sc->ti_cdata.ti_rx_std_maps[i]);
if (error) {
device_printf(sc->ti_dev,
"could not create DMA map for RX\n");
return (error);
}
}
error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
&sc->ti_cdata.ti_rx_std_sparemap);
if (error) {
device_printf(sc->ti_dev,
"could not create spare DMA map for RX\n");
return (error);
}
/* Create DMA maps for jumbo RX buffers. */
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
&sc->ti_cdata.ti_rx_jumbo_maps[i]);
if (error) {
device_printf(sc->ti_dev,
"could not create DMA map for jumbo RX\n");
return (error);
}
}
error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
&sc->ti_cdata.ti_rx_jumbo_sparemap);
if (error) {
device_printf(sc->ti_dev,
"could not create spare DMA map for jumbo RX\n");
return (error);
}
/* Create DMA maps for TX buffers. */
for (i = 0; i < TI_TX_RING_CNT; i++) {
error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
&sc->ti_cdata.ti_txdesc[i].tx_dmamap);
if (error) {
device_printf(sc->ti_dev,
"could not create DMA map for TX\n");
return (ENOMEM);
}
}
/* Mini ring and TX ring is not available on Tigon 1. */
if (sc->ti_hwrev == TI_HWREV_TIGON)
return (0);
/* TX ring */
error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
&sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
&sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
"TX ring");
if (error)
return (error);
/* Mini RX ring */
error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
&sc->ti_cdata.ti_rx_mini_ring_tag,
(uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
&sc->ti_cdata.ti_rx_mini_ring_map,
&sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
if (error)
return (error);
/* Create DMA tag for mini RX mbufs. */
error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
if (error) {
device_printf(sc->ti_dev,
"could not allocate mini RX dma tag\n");
return (error);
}
/* Create DMA maps for mini RX buffers. */
for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
&sc->ti_cdata.ti_rx_mini_maps[i]);
if (error) {
device_printf(sc->ti_dev,
"could not create DMA map for mini RX\n");
return (error);
}
}
error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
&sc->ti_cdata.ti_rx_mini_sparemap);
if (error) {
device_printf(sc->ti_dev,
"could not create spare DMA map for mini RX\n");
return (error);
}
return (0);
}
static void
ti_dma_free(struct ti_softc *sc)
{
int i;
/* Destroy DMA maps for RX buffers. */
for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_std_maps[i]) {
bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
sc->ti_cdata.ti_rx_std_maps[i]);
sc->ti_cdata.ti_rx_std_maps[i] = NULL;
}
}
if (sc->ti_cdata.ti_rx_std_sparemap) {
bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
sc->ti_cdata.ti_rx_std_sparemap);
sc->ti_cdata.ti_rx_std_sparemap = NULL;
}
if (sc->ti_cdata.ti_rx_std_tag) {
bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
sc->ti_cdata.ti_rx_std_tag = NULL;
}
/* Destroy DMA maps for jumbo RX buffers. */
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
sc->ti_cdata.ti_rx_jumbo_maps[i]);
sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
}
}
if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
sc->ti_cdata.ti_rx_jumbo_sparemap);
sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
}
if (sc->ti_cdata.ti_rx_jumbo_tag) {
bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
sc->ti_cdata.ti_rx_jumbo_tag = NULL;
}
/* Destroy DMA maps for mini RX buffers. */
for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_mini_maps[i]) {
bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
sc->ti_cdata.ti_rx_mini_maps[i]);
sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
}
}
if (sc->ti_cdata.ti_rx_mini_sparemap) {
bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
sc->ti_cdata.ti_rx_mini_sparemap);
sc->ti_cdata.ti_rx_mini_sparemap = NULL;
}
if (sc->ti_cdata.ti_rx_mini_tag) {
bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
sc->ti_cdata.ti_rx_mini_tag = NULL;
}
/* Destroy DMA maps for TX buffers. */
for (i = 0; i < TI_TX_RING_CNT; i++) {
if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
sc->ti_cdata.ti_txdesc[i].tx_dmamap);
sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
}
}
if (sc->ti_cdata.ti_tx_tag) {
bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
sc->ti_cdata.ti_tx_tag = NULL;
}
/* Destroy standard RX ring. */
ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
(void *)&sc->ti_rdata.ti_rx_std_ring,
&sc->ti_cdata.ti_rx_std_ring_map);
/* Destroy jumbo RX ring. */
ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
(void *)&sc->ti_rdata.ti_rx_jumbo_ring,
&sc->ti_cdata.ti_rx_jumbo_ring_map);
/* Destroy mini RX ring. */
ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
(void *)&sc->ti_rdata.ti_rx_mini_ring,
&sc->ti_cdata.ti_rx_mini_ring_map);
/* Destroy RX return ring. */
ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
(void *)&sc->ti_rdata.ti_rx_return_ring,
&sc->ti_cdata.ti_rx_return_ring_map);
/* Destroy TX ring. */
ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
(void *)&sc->ti_rdata.ti_tx_ring, &sc->ti_cdata.ti_tx_ring_map);
/* Destroy status block. */
ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
(void *)&sc->ti_rdata.ti_status, &sc->ti_cdata.ti_status_map);
/* Destroy event ring. */
ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
(void *)&sc->ti_rdata.ti_event_ring,
&sc->ti_cdata.ti_event_ring_map);
/* Destroy GIB */
ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
(void *)&sc->ti_rdata.ti_info, &sc->ti_cdata.ti_gib_map);
/* Destroy the parent tag. */
if (sc->ti_cdata.ti_parent_tag) {
bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
sc->ti_cdata.ti_parent_tag = NULL;
}
}
/*
* Intialize a standard receive ring descriptor.
*/
static int
ti_newbuf_std(struct ti_softc *sc, int i)
{
bus_dmamap_t map;
bus_dma_segment_t segs[1];
struct mbuf *m;
struct ti_rx_desc *r;
int error, nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
if (error != 0) {
m_freem(m);
return (error);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
sc->ti_cdata.ti_rx_std_maps[i]);
}
map = sc->ti_cdata.ti_rx_std_maps[i];
sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
sc->ti_cdata.ti_rx_std_sparemap = map;
sc->ti_cdata.ti_rx_std_chain[i] = m;
r = &sc->ti_rdata.ti_rx_std_ring[i];
ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
r->ti_len = segs[0].ds_len;
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = 0;
r->ti_vlan_tag = 0;
r->ti_tcp_udp_cksum = 0;
if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_idx = i;
bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
return (0);
}
/*
* Intialize a mini receive ring descriptor. This only applies to
* the Tigon 2.
*/
static int
ti_newbuf_mini(struct ti_softc *sc, int i)
{
bus_dmamap_t map;
bus_dma_segment_t segs[1];
struct mbuf *m;
struct ti_rx_desc *r;
int error, nsegs;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MHLEN;
m_adj(m, ETHER_ALIGN);
error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
if (error != 0) {
m_freem(m);
return (error);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
sc->ti_cdata.ti_rx_mini_maps[i]);
}
map = sc->ti_cdata.ti_rx_mini_maps[i];
sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
sc->ti_cdata.ti_rx_mini_sparemap = map;
sc->ti_cdata.ti_rx_mini_chain[i] = m;
r = &sc->ti_rdata.ti_rx_mini_ring[i];
ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
r->ti_len = segs[0].ds_len;
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = TI_BDFLAG_MINI_RING;
r->ti_vlan_tag = 0;
r->ti_tcp_udp_cksum = 0;
if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_idx = i;
bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
return (0);
}
#ifndef TI_SF_BUF_JUMBO
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int
ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
{
bus_dmamap_t map;
bus_dma_segment_t segs[1];
struct mbuf *m;
struct ti_rx_desc *r;
int error, nsegs;
(void)dummy;
m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MJUM9BYTES;
m_adj(m, ETHER_ALIGN);
error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
if (error != 0) {
m_freem(m);
return (error);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
sc->ti_cdata.ti_rx_jumbo_maps[i]);
}
map = sc->ti_cdata.ti_rx_jumbo_maps[i];
sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
sc->ti_cdata.ti_rx_jumbo_sparemap = map;
sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
r->ti_len = segs[0].ds_len;
r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
r->ti_flags = TI_BDFLAG_JUMBO_RING;
r->ti_vlan_tag = 0;
r->ti_tcp_udp_cksum = 0;
if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_idx = i;
bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
return (0);
}
#else
#if (PAGE_SIZE == 4096)
#define NPAYLOAD 2
#else
#define NPAYLOAD 1
#endif
#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
#define NFS_HDR_LEN (UDP_HDR_LEN)
static int HDR_LEN = TCP_HDR_LEN;
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int
ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
{
bus_dmamap_t map;
struct mbuf *cur, *m_new = NULL;
struct mbuf *m[3] = {NULL, NULL, NULL};
struct ti_rx_desc_ext *r;
vm_page_t frame;
static int color;
/* 1 extra buf to make nobufs easy*/
struct sf_buf *sf[3] = {NULL, NULL, NULL};
int i;
bus_dma_segment_t segs[4];
int nsegs;
if (m_old != NULL) {
m_new = m_old;
cur = m_old->m_next;
for (i = 0; i <= NPAYLOAD; i++){
m[i] = cur;
cur = cur->m_next;
}
} else {
/* Allocate the mbufs. */
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
device_printf(sc->ti_dev, "mbuf allocation failed "
"-- packet dropped!\n");
goto nobufs;
}
MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
if (m[NPAYLOAD] == NULL) {
device_printf(sc->ti_dev, "cluster mbuf allocation "
"failed -- packet dropped!\n");
goto nobufs;
}
MCLGET(m[NPAYLOAD], M_DONTWAIT);
if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
device_printf(sc->ti_dev, "mbuf allocation failed "
"-- packet dropped!\n");
goto nobufs;
}
m[NPAYLOAD]->m_len = MCLBYTES;
for (i = 0; i < NPAYLOAD; i++){
MGET(m[i], M_DONTWAIT, MT_DATA);
if (m[i] == NULL) {
device_printf(sc->ti_dev, "mbuf allocation "
"failed -- packet dropped!\n");
goto nobufs;
}
frame = vm_page_alloc(NULL, color++,
VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED);
if (frame == NULL) {
device_printf(sc->ti_dev, "buffer allocation "
"failed -- packet dropped!\n");
printf(" index %d page %d\n", idx, i);
goto nobufs;
}
sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
if (sf[i] == NULL) {
vm_page_unwire(frame, 0);
vm_page_free(frame);
device_printf(sc->ti_dev, "buffer allocation "
"failed -- packet dropped!\n");
printf(" index %d page %d\n", idx, i);
goto nobufs;
}
}
for (i = 0; i < NPAYLOAD; i++){
/* Attach the buffer to the mbuf. */
m[i]->m_data = (void *)sf_buf_kva(sf[i]);
m[i]->m_len = PAGE_SIZE;
MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
0, EXT_DISPOSABLE);
m[i]->m_next = m[i+1];
}
/* link the buffers to the header */
m_new->m_next = m[0];
m_new->m_data += ETHER_ALIGN;
if (sc->ti_hdrsplit)
m_new->m_len = MHLEN - ETHER_ALIGN;
else
m_new->m_len = HDR_LEN;
m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
}
/* Set up the descriptor. */
r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
map = sc->ti_cdata.ti_rx_jumbo_maps[i];
if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
segs, &nsegs, 0))
return (ENOBUFS);
if ((nsegs < 1) || (nsegs > 4))
return (ENOBUFS);
ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
r->ti_len0 = m_new->m_len;
ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
r->ti_len1 = PAGE_SIZE;
ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
if (PAGE_SIZE == 4096) {
ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
r->ti_len3 = MCLBYTES;
} else {
r->ti_len3 = 0;
}
r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
r->ti_idx = idx;
bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
return (0);
nobufs:
/*
* Warning! :
* This can only be called before the mbufs are strung together.
* If the mbufs are strung together, m_freem() will free the chain,
* so that the later mbufs will be freed multiple times.
*/
if (m_new)
m_freem(m_new);
for (i = 0; i < 3; i++) {
if (m[i])
m_freem(m[i]);
if (sf[i])
sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
}
return (ENOBUFS);
}
#endif
/*
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
* that's 1MB or memory, which is a lot. For now, we fill only the first
* 256 ring entries and hope that our CPU is fast enough to keep up with
* the NIC.
*/
static int
ti_init_rx_ring_std(struct ti_softc *sc)
{
int i;
struct ti_cmd_desc cmd;
for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
if (ti_newbuf_std(sc, i) != 0)
return (ENOBUFS);
};
sc->ti_std = TI_STD_RX_RING_CNT - 1;
TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
return (0);
}
static void
ti_free_rx_ring_std(struct ti_softc *sc)
{
bus_dmamap_t map;
int i;
for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
map = sc->ti_cdata.ti_rx_std_maps[i];
bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
sc->ti_cdata.ti_rx_std_chain[i] = NULL;
}
}
bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
}
static int
ti_init_rx_ring_jumbo(struct ti_softc *sc)
{
struct ti_cmd_desc cmd;
int i;
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
if (ti_newbuf_jumbo(sc, i, NULL) != 0)
return (ENOBUFS);
};
sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
return (0);
}
static void
ti_free_rx_ring_jumbo(struct ti_softc *sc)
{
bus_dmamap_t map;
int i;
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
map = sc->ti_cdata.ti_rx_jumbo_maps[i];
bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
}
}
bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
}
static int
ti_init_rx_ring_mini(struct ti_softc *sc)
{
int i;
for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
if (ti_newbuf_mini(sc, i) != 0)
return (ENOBUFS);
};
sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
return (0);
}
static void
ti_free_rx_ring_mini(struct ti_softc *sc)
{
bus_dmamap_t map;
int i;
if (sc->ti_rdata.ti_rx_mini_ring == NULL)
return;
for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
map = sc->ti_cdata.ti_rx_mini_maps[i];
bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
}
}
bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
}
static void
ti_free_tx_ring(struct ti_softc *sc)
{
struct ti_txdesc *txd;
int i;
if (sc->ti_rdata.ti_tx_ring == NULL)
return;
for (i = 0; i < TI_TX_RING_CNT; i++) {
txd = &sc->ti_cdata.ti_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
}
static int
ti_init_tx_ring(struct ti_softc *sc)
{
struct ti_txdesc *txd;
int i;
STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
for (i = 0; i < TI_TX_RING_CNT; i++) {
txd = &sc->ti_cdata.ti_txdesc[i];
STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
}
sc->ti_txcnt = 0;
sc->ti_tx_saved_considx = 0;
sc->ti_tx_saved_prodidx = 0;
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
return (0);
}
/*
* The Tigon 2 firmware has a new way to add/delete multicast addresses,
* but we have to support the old way too so that Tigon 1 cards will
* work.
*/
static void
ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
{
struct ti_cmd_desc cmd;
uint16_t *m;
uint32_t ext[2] = {0, 0};
m = (uint16_t *)&addr->octet[0];
switch (sc->ti_hwrev) {
case TI_HWREV_TIGON:
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
break;
case TI_HWREV_TIGON_II:
ext[0] = htons(m[0]);
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
break;
default:
device_printf(sc->ti_dev, "unknown hwrev\n");
break;
}
}
static void
ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
{
struct ti_cmd_desc cmd;
uint16_t *m;
uint32_t ext[2] = {0, 0};
m = (uint16_t *)&addr->octet[0];
switch (sc->ti_hwrev) {
case TI_HWREV_TIGON:
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
break;
case TI_HWREV_TIGON_II:
ext[0] = htons(m[0]);
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
break;
default:
device_printf(sc->ti_dev, "unknown hwrev\n");
break;
}
}
/*
* Configure the Tigon's multicast address filter.
*
* The actual multicast table management is a bit of a pain, thanks to
* slight brain damage on the part of both Alteon and us. With our
* multicast code, we are only alerted when the multicast address table
* changes and at that point we only have the current list of addresses:
* we only know the current state, not the previous state, so we don't
* actually know what addresses were removed or added. The firmware has
* state, but we can't get our grubby mits on it, and there is no 'delete
* all multicast addresses' command. Hence, we have to maintain our own
* state so we know what addresses have been programmed into the NIC at
* any given time.
*/
static void
ti_setmulti(struct ti_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
struct ti_cmd_desc cmd;
struct ti_mc_entry *mc;
uint32_t intrs;
TI_LOCK_ASSERT(sc);
ifp = sc->ti_ifp;
if (ifp->if_flags & IFF_ALLMULTI) {
TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
return;
} else {
TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
}
/* Disable interrupts. */
intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/* First, zot all the existing filters. */
while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
mc = SLIST_FIRST(&sc->ti_mc_listhead);
ti_del_mcast(sc, &mc->mc_addr);
SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
free(mc, M_DEVBUF);
}
/* Now program new ones. */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
if (mc == NULL) {
device_printf(sc->ti_dev,
"no memory for mcast filter entry\n");
continue;
}
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
(char *)&mc->mc_addr, ETHER_ADDR_LEN);
SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
ti_add_mcast(sc, &mc->mc_addr);
}
if_maddr_runlock(ifp);
/* Re-enable interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
}
/*
* Check to see if the BIOS has configured us for a 64 bit slot when
* we aren't actually in one. If we detect this condition, we can work
* around it on the Tigon 2 by setting a bit in the PCI state register,
* but for the Tigon 1 we must give up and abort the interface attach.
*/
static int
ti_64bitslot_war(struct ti_softc *sc)
{
if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
CSR_WRITE_4(sc, 0x600, 0);
CSR_WRITE_4(sc, 0x604, 0);
CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
if (sc->ti_hwrev == TI_HWREV_TIGON)
return (EINVAL);
else {
TI_SETBIT(sc, TI_PCI_STATE,
TI_PCISTATE_32BIT_BUS);
return (0);
}
}
}
return (0);
}
/*
* Do endian, PCI and DMA initialization. Also check the on-board ROM
* self-test results.
*/
static int
ti_chipinit(struct ti_softc *sc)
{
uint32_t cacheline;
uint32_t pci_writemax = 0;
uint32_t hdrsplit;
/* Initialize link to down state. */
sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
/* Set endianness before we access any non-PCI registers. */
#if 0 && BYTE_ORDER == BIG_ENDIAN
CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
#else
CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
#endif
/* Check the ROM failed bit to see if self-tests passed. */
if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
return (ENODEV);
}
/* Halt the CPU. */
TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
/* Figure out the hardware revision. */
switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
case TI_REV_TIGON_I:
sc->ti_hwrev = TI_HWREV_TIGON;
break;
case TI_REV_TIGON_II:
sc->ti_hwrev = TI_HWREV_TIGON_II;
break;
default:
device_printf(sc->ti_dev, "unsupported chip revision\n");
return (ENODEV);
}
/* Do special setup for Tigon 2. */
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
}
/*
* We don't have firmware source for the Tigon 1, so Tigon 1 boards
* can't do header splitting.
*/
#ifdef TI_JUMBO_HDRSPLIT
if (sc->ti_hwrev != TI_HWREV_TIGON)
sc->ti_hdrsplit = 1;
else
device_printf(sc->ti_dev,
"can't do header splitting on a Tigon I board\n");
#endif /* TI_JUMBO_HDRSPLIT */
/* Set up the PCI state register. */
CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
}
/* Clear the read/write max DMA parameters. */
TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
TI_PCISTATE_READ_MAXDMA));
/* Get cache line size. */
cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
/*
* If the system has set enabled the PCI memory write
* and invalidate command in the command register, set
* the write max parameter accordingly. This is necessary
* to use MWI with the Tigon 2.
*/
if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
switch (cacheline) {
case 1:
case 4:
case 8:
case 16:
case 32:
case 64:
break;
default:
/* Disable PCI memory write and invalidate. */
if (bootverbose)
device_printf(sc->ti_dev, "cache line size %d"
" not supported; disabling PCI MWI\n",
cacheline);
CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
break;
}
}
TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
/* This sets the min dma param all the way up (0xff). */
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
if (sc->ti_hdrsplit)
hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
else
hdrsplit = 0;
/* Configure DMA variables. */
#if BYTE_ORDER == BIG_ENDIAN
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
#else /* BYTE_ORDER */
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
#endif /* BYTE_ORDER */
/*
* Only allow 1 DMA channel to be active at a time.
* I don't think this is a good idea, but without it
* the firmware racks up lots of nicDmaReadRingFull
* errors. This is not compatible with hardware checksums.
*/
if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
/* Recommended settings from Tigon manual. */
CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
if (ti_64bitslot_war(sc)) {
device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
"but we aren't");
return (EINVAL);
}
return (0);
}
/*
* Initialize the general information block and firmware, and
* start the CPU(s) running.
*/
static int
ti_gibinit(struct ti_softc *sc)
{
struct ifnet *ifp;
struct ti_rcb *rcb;
int i;
TI_LOCK_ASSERT(sc);
ifp = sc->ti_ifp;
/* Disable interrupts for now. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/* Tell the chip where to find the general information block. */
CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
(uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
/* Load the firmware into SRAM. */
ti_loadfw(sc);
/* Set up the contents of the general info and ring control blocks. */
/* Set up the event ring and producer pointer. */
bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
rcb->ti_flags = 0;
ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
sc->ti_rdata.ti_status_paddr +
offsetof(struct ti_status, ti_ev_prodidx_r));
sc->ti_ev_prodidx.ti_idx = 0;
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
sc->ti_ev_saved_considx = 0;
/* Set up the command ring and producer mailbox. */
rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
rcb->ti_flags = 0;
rcb->ti_max_len = 0;
for (i = 0; i < TI_CMD_RING_CNT; i++) {
CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
}
CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
sc->ti_cmd_saved_prodidx = 0;
/*
* Assign the address of the stats refresh buffer.
* We re-use the current stats buffer for this to
* conserve memory.
*/
bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
/* Set up the standard receive ring. */
rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
rcb->ti_max_len = TI_FRAMELEN;
rcb->ti_flags = 0;
if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
/* Set up the jumbo receive ring. */
rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
#ifndef TI_SF_BUF_JUMBO
rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
rcb->ti_flags = 0;
#else
rcb->ti_max_len = PAGE_SIZE;
rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
#endif
if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
/*
* Set up the mini ring. Only activated on the
* Tigon 2 but the slot in the config block is
* still there on the Tigon 1.
*/
rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
rcb->ti_max_len = MHLEN - ETHER_ALIGN;
if (sc->ti_hwrev == TI_HWREV_TIGON)
rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
else
rcb->ti_flags = 0;
if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
/*
* Set up the receive return ring.
*/
rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
rcb->ti_flags = 0;
rcb->ti_max_len = TI_RETURN_RING_CNT;
ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
sc->ti_rdata.ti_status_paddr +
offsetof(struct ti_status, ti_return_prodidx_r));
/*
* Set up the tx ring. Note: for the Tigon 2, we have the option
* of putting the transmit ring in the host's address space and
* letting the chip DMA it instead of leaving the ring in the NIC's
* memory and accessing it through the shared memory region. We
* do this for the Tigon 2, but it doesn't work on the Tigon 1,
* so we have to revert to the shared memory scheme if we detect
* a Tigon 1 chip.
*/
CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
if (sc->ti_rdata.ti_tx_ring != NULL)
bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
if (sc->ti_hwrev == TI_HWREV_TIGON)
rcb->ti_flags = 0;
else
rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
rcb->ti_max_len = TI_TX_RING_CNT;
if (sc->ti_hwrev == TI_HWREV_TIGON)
ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
else
ti_hostaddr64(&rcb->ti_hostaddr,
sc->ti_rdata.ti_tx_ring_paddr);
ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
sc->ti_rdata.ti_status_paddr +
offsetof(struct ti_status, ti_tx_considx_r));
bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
sc->ti_cdata.ti_event_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (sc->ti_rdata.ti_tx_ring != NULL)
bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
/* Set up tunables */
#if 0
if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
(sc->ti_rx_coal_ticks / 10));
else
#endif
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
/* Turn interrupts on. */
CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
/* Start CPU. */
TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
return (0);
}
/*
* Probe for a Tigon chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match.
*/
static int
ti_probe(device_t dev)
{
const struct ti_type *t;
t = ti_devs;
while (t->ti_name != NULL) {
if ((pci_get_vendor(dev) == t->ti_vid) &&
(pci_get_device(dev) == t->ti_did)) {
device_set_desc(dev, t->ti_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
static int
ti_attach(device_t dev)
{
struct ifnet *ifp;
struct ti_softc *sc;
int error = 0, rid;
u_char eaddr[6];
sc = device_get_softc(dev);
sc->ti_dev = dev;
mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = PCIR_BAR(0);
sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->ti_res == NULL) {
device_printf(dev, "couldn't map memory\n");
error = ENXIO;
goto fail;
}
sc->ti_btag = rman_get_bustag(sc->ti_res);
sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
/* Allocate interrupt */
rid = 0;
sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->ti_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
if (ti_chipinit(sc)) {
device_printf(dev, "chip initialization failed\n");
error = ENXIO;
goto fail;
}
/* Zero out the NIC's on-board SRAM. */
ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
/* Init again -- zeroing memory may have clobbered some registers. */
if (ti_chipinit(sc)) {
device_printf(dev, "chip initialization failed\n");
error = ENXIO;
goto fail;
}
/*
* Get station address from the EEPROM. Note: the manual states
* that the MAC address is at offset 0x8c, however the data is
* stored as two longwords (since that's how it's loaded into
* the NIC). This means the MAC address is actually preceded
* by two zero bytes. We need to skip over those.
*/
if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
device_printf(dev, "failed to read station address\n");
error = ENXIO;
goto fail;
}
/* Allocate working area for memory dump. */
sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
M_NOWAIT);
if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
device_printf(dev, "cannot allocate memory buffer\n");
error = ENOMEM;
goto fail;
}
if ((error = ti_dma_alloc(sc)) != 0)
goto fail;
/*
* We really need a better way to tell a 1000baseTX card
* from a 1000baseSX one, since in theory there could be
* OEMed 1000baseTX cards from lame vendors who aren't
* clever enough to change the PCI ID. For the moment
* though, the AceNIC is the only copper card available.
*/
if (pci_get_vendor(dev) == ALT_VENDORID &&
pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
sc->ti_copper = 1;
/* Ok, it's not the only copper card available. */
if (pci_get_vendor(dev) == NG_VENDORID &&
pci_get_device(dev) == NG_DEVICEID_GA620T)
sc->ti_copper = 1;
/* Set default tunable values. */
ti_sysctl_node(sc);
/* Set up ifnet structure */
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ti_ioctl;
ifp->if_start = ti_start;
ifp->if_init = ti_init;
ifp->if_baudrate = IF_Gbps(1UL);
ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
/* Set up ifmedia support. */
if (sc->ti_copper) {
/*
* Copper cards allow manual 10/100 mode selection,
* but not manual 1000baseTX mode selection. Why?
* Becuase currently there's no way to specify the
* master/slave setting through the firmware interface,
* so Alteon decided to just bag it and handle it
* via autonegotiation.
*/
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
} else {
/* Fiber cards don't support 10/100 modes. */
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
}
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
/*
* We're assuming here that card initialization is a sequential
* thing. If it isn't, multiple cards probing at the same time
* could stomp on the list of softcs here.
*/
/* Register the device */
sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
sc->dev->si_drv1 = sc;
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
IFCAP_VLAN_HWTAGGING;
ifp->if_capenable = ifp->if_capabilities;
/* Tell the upper layer we support VLAN over-sized frames. */
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
/* Driver supports link state tracking. */
ifp->if_capabilities |= IFCAP_LINKSTATE;
ifp->if_capenable |= IFCAP_LINKSTATE;
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
NULL, ti_intr, sc, &sc->ti_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
goto fail;
}
fail:
if (error)
ti_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
ti_detach(device_t dev)
{
struct ti_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
if (sc->dev)
destroy_dev(sc->dev);
KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
ifp = sc->ti_ifp;
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
TI_LOCK(sc);
ti_stop(sc);
TI_UNLOCK(sc);
}
/* These should only be active if attach succeeded */
callout_drain(&sc->ti_watchdog);
bus_generic_detach(dev);
ti_dma_free(sc);
ifmedia_removeall(&sc->ifmedia);
if (sc->ti_intrhand)
bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
if (sc->ti_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
if (sc->ti_res) {
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
sc->ti_res);
}
if (ifp)
if_free(ifp);
if (sc->ti_membuf)
free(sc->ti_membuf, M_DEVBUF);
if (sc->ti_membuf2)
free(sc->ti_membuf2, M_DEVBUF);
mtx_destroy(&sc->ti_mtx);
return (0);
}
#ifdef TI_JUMBO_HDRSPLIT
/*
* If hdr_len is 0, that means that header splitting wasn't done on
* this packet for some reason. The two most likely reasons are that
* the protocol isn't a supported protocol for splitting, or this
* packet had a fragment offset that wasn't 0.
*
* The header length, if it is non-zero, will always be the length of
* the headers on the packet, but that length could be longer than the
* first mbuf. So we take the minimum of the two as the actual
* length.
*/
static __inline void
ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
{
int i = 0;
int lengths[4] = {0, 0, 0, 0};
struct mbuf *m, *mp;
if (hdr_len != 0)
top->m_len = min(hdr_len, top->m_len);
pkt_len -= top->m_len;
lengths[i++] = top->m_len;
mp = top;
for (m = top->m_next; m && pkt_len; m = m->m_next) {
m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
pkt_len -= m->m_len;
lengths[i++] = m->m_len;
mp = m;
}
#if 0
if (hdr_len != 0)
printf("got split packet: ");
else
printf("got non-split packet: ");
printf("%d,%d,%d,%d = %d\n", lengths[0],
lengths[1], lengths[2], lengths[3],
lengths[0] + lengths[1] + lengths[2] +
lengths[3]);
#endif
if (pkt_len)
panic("header splitting didn't");
if (m) {
m_freem(m);
mp->m_next = NULL;
}
if (mp->m_next != NULL)
panic("ti_hdr_split: last mbuf in chain should be null");
}
#endif /* TI_JUMBO_HDRSPLIT */
static void
ti_discard_std(struct ti_softc *sc, int i)
{
struct ti_rx_desc *r;
r = &sc->ti_rdata.ti_rx_std_ring[i];
r->ti_len = MCLBYTES - ETHER_ALIGN;
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = 0;
r->ti_vlan_tag = 0;
r->ti_tcp_udp_cksum = 0;
if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_idx = i;
}
static void
ti_discard_mini(struct ti_softc *sc, int i)
{
struct ti_rx_desc *r;
r = &sc->ti_rdata.ti_rx_mini_ring[i];
r->ti_len = MHLEN - ETHER_ALIGN;
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = TI_BDFLAG_MINI_RING;
r->ti_vlan_tag = 0;
r->ti_tcp_udp_cksum = 0;
if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_idx = i;
}
#ifndef TI_SF_BUF_JUMBO
static void
ti_discard_jumbo(struct ti_softc *sc, int i)
{
struct ti_rx_desc *r;
r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
r->ti_len = MJUM9BYTES - ETHER_ALIGN;
r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
r->ti_flags = TI_BDFLAG_JUMBO_RING;
r->ti_vlan_tag = 0;
r->ti_tcp_udp_cksum = 0;
if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_idx = i;
}
#endif
/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle three possibilities here:
* 1) the frame is from the mini receive ring (can only happen)
* on Tigon 2 boards)
* 2) the frame is from the jumbo recieve ring
* 3) the frame is from the standard receive ring
*/
static void
ti_rxeof(struct ti_softc *sc)
{
struct ifnet *ifp;
#ifdef TI_SF_BUF_JUMBO
bus_dmamap_t map;
#endif
struct ti_cmd_desc cmd;
int jumbocnt, minicnt, stdcnt, ti_len;
TI_LOCK_ASSERT(sc);
ifp = sc->ti_ifp;
bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
if (sc->ti_rdata.ti_rx_mini_ring != NULL)
bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
jumbocnt = minicnt = stdcnt = 0;
while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
struct ti_rx_desc *cur_rx;
uint32_t rxidx;
struct mbuf *m = NULL;
uint16_t vlan_tag = 0;
int have_tag = 0;
cur_rx =
&sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
rxidx = cur_rx->ti_idx;
ti_len = cur_rx->ti_len;
TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
have_tag = 1;
vlan_tag = cur_rx->ti_vlan_tag;
}
if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
jumbocnt++;
TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
#ifndef TI_SF_BUF_JUMBO
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_discard_jumbo(sc, rxidx);
continue;
}
if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
ifp->if_iqdrops++;
ti_discard_jumbo(sc, rxidx);
continue;
}
m->m_len = ti_len;
#else /* !TI_SF_BUF_JUMBO */
sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
continue;
}
if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
ifp->if_iqdrops++;
ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
continue;
}
#ifdef TI_JUMBO_HDRSPLIT
if (sc->ti_hdrsplit)
ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
ti_len, rxidx);
else
#endif /* TI_JUMBO_HDRSPLIT */
m_adj(m, ti_len - m->m_pkthdr.len);
#endif /* TI_SF_BUF_JUMBO */
} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
minicnt++;
TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_discard_mini(sc, rxidx);
continue;
}
if (ti_newbuf_mini(sc, rxidx) != 0) {
ifp->if_iqdrops++;
ti_discard_mini(sc, rxidx);
continue;
}
m->m_len = ti_len;
} else {
stdcnt++;
TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_std_chain[rxidx];
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_discard_std(sc, rxidx);
continue;
}
if (ti_newbuf_std(sc, rxidx) != 0) {
ifp->if_iqdrops++;
ti_discard_std(sc, rxidx);
continue;
}
m->m_len = ti_len;
}
m->m_pkthdr.len = ti_len;
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
if (ifp->if_capenable & IFCAP_RXCSUM) {
if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
m->m_pkthdr.csum_data =
cur_rx->ti_tcp_udp_cksum;
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
}
}
/*
* If we received a packet with a vlan tag,
* tag it before passing the packet upward.
*/
if (have_tag) {
m->m_pkthdr.ether_vtag = vlan_tag;
m->m_flags |= M_VLANTAG;
}
TI_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
TI_LOCK(sc);
}
bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
/* Only necessary on the Tigon 1. */
if (sc->ti_hwrev == TI_HWREV_TIGON)
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
sc->ti_rx_saved_considx);
if (stdcnt > 0) {
bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
TI_UPDATE_STDPROD(sc, sc->ti_std);
}
if (minicnt > 0) {
bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
TI_UPDATE_MINIPROD(sc, sc->ti_mini);
}
if (jumbocnt > 0) {
bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
}
}
static void
ti_txeof(struct ti_softc *sc)
{
struct ti_txdesc *txd;
struct ti_tx_desc txdesc;
struct ti_tx_desc *cur_tx = NULL;
struct ifnet *ifp;
int idx;
ifp = sc->ti_ifp;
txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
if (txd == NULL)
return;
if (sc->ti_rdata.ti_tx_ring != NULL)
bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
TI_INC(idx, TI_TX_RING_CNT)) {
if (sc->ti_hwrev == TI_HWREV_TIGON) {
ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
sizeof(txdesc), &txdesc);
cur_tx = &txdesc;
} else
cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
sc->ti_txcnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
continue;
bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
ifp->if_opackets++;
m_freem(txd->tx_m);
txd->tx_m = NULL;
STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
}
sc->ti_tx_saved_considx = idx;
if (sc->ti_txcnt == 0)
sc->ti_timer = 0;
}
static void
ti_intr(void *xsc)
{
struct ti_softc *sc;
struct ifnet *ifp;
sc = xsc;
TI_LOCK(sc);
ifp = sc->ti_ifp;
/* Make sure this is really our interrupt. */
if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
TI_UNLOCK(sc);
return;
}
/* Ack interrupt and stop others from occuring. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
/* Check RX return ring producer/consumer */
ti_rxeof(sc);
/* Check TX ring producer/consumer */
ti_txeof(sc);
bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
}
ti_handle_events(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Re-enable interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ti_start_locked(ifp);
}
TI_UNLOCK(sc);
}
static void
ti_stats_update(struct ti_softc *sc)
{
struct ifnet *ifp;
struct ti_stats *s;
ifp = sc->ti_ifp;
if (sc->ti_stat_ticks == 0)
return;
bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
BUS_DMASYNC_POSTREAD);
s = &sc->ti_rdata.ti_info->ti_stats;
ifp->if_collisions += (s->dot3StatsSingleCollisionFrames +
s->dot3StatsMultipleCollisionFrames +
s->dot3StatsExcessiveCollisions + s->dot3StatsLateCollisions) -
ifp->if_collisions;
bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
BUS_DMASYNC_PREREAD);
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
static int
ti_encap(struct ti_softc *sc, struct mbuf **m_head)
{
struct ti_txdesc *txd;
struct ti_tx_desc *f;
struct ti_tx_desc txdesc;
struct mbuf *m;
bus_dma_segment_t txsegs[TI_MAXTXSEGS];
uint16_t csum_flags;
int error, frag, i, nseg;
if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
return (ENOBUFS);
error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
*m_head, txsegs, &nseg, 0);
if (error == EFBIG) {
m = m_defrag(*m_head, M_DONTWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
if (error) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nseg == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
return (ENOBUFS);
}
bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
m = *m_head;
csum_flags = 0;
if (m->m_pkthdr.csum_flags) {
if (m->m_pkthdr.csum_flags & CSUM_IP)
csum_flags |= TI_BDFLAG_IP_CKSUM;
if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
if (m->m_flags & M_LASTFRAG)
csum_flags |= TI_BDFLAG_IP_FRAG_END;
else if (m->m_flags & M_FRAG)
csum_flags |= TI_BDFLAG_IP_FRAG;
}
frag = sc->ti_tx_saved_prodidx;
for (i = 0; i < nseg; i++) {
if (sc->ti_hwrev == TI_HWREV_TIGON) {
bzero(&txdesc, sizeof(txdesc));
f = &txdesc;
} else
f = &sc->ti_rdata.ti_tx_ring[frag];
ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
f->ti_len = txsegs[i].ds_len;
f->ti_flags = csum_flags;
if (m->m_flags & M_VLANTAG) {
f->ti_flags |= TI_BDFLAG_VLAN_TAG;
f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
} else {
f->ti_vlan_tag = 0;
}
if (sc->ti_hwrev == TI_HWREV_TIGON)
ti_mem_write(sc, TI_TX_RING_BASE + frag *
sizeof(txdesc), sizeof(txdesc), &txdesc);
TI_INC(frag, TI_TX_RING_CNT);
}
sc->ti_tx_saved_prodidx = frag;
/* set TI_BDFLAG_END on the last descriptor */
frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
if (sc->ti_hwrev == TI_HWREV_TIGON) {
txdesc.ti_flags |= TI_BDFLAG_END;
ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
sizeof(txdesc), &txdesc);
} else
sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
txd->tx_m = m;
sc->ti_txcnt += nseg;
return (0);
}
static void
ti_start(struct ifnet *ifp)
{
struct ti_softc *sc;
sc = ifp->if_softc;
TI_LOCK(sc);
ti_start_locked(ifp);
TI_UNLOCK(sc);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void
ti_start_locked(struct ifnet *ifp)
{
struct ti_softc *sc;
struct mbuf *m_head = NULL;
int enq = 0;
sc = ifp->if_softc;
for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* XXX
* safety overkill. If this is a fragmented packet chain
* with delayed TCP/UDP checksums, then only encapsulate
* it if we have enough descriptors to handle the entire
* chain at once.
* (paranoia -- may not actually be needed)
*/
if (m_head->m_flags & M_FIRSTFRAG &&
m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
if ((TI_TX_RING_CNT - sc->ti_txcnt) <
m_head->m_pkthdr.csum_data + 16) {
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
}
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (ti_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
if (sc->ti_rdata.ti_tx_ring != NULL)
bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
/* Transmit */
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->ti_timer = 5;
}
}
static void
ti_init(void *xsc)
{
struct ti_softc *sc;
sc = xsc;
TI_LOCK(sc);
ti_init_locked(sc);
TI_UNLOCK(sc);
}
static void
ti_init_locked(void *xsc)
{
struct ti_softc *sc = xsc;
if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
/* Cancel pending I/O and flush buffers. */
ti_stop(sc);
/* Init the gen info block, ring control blocks and firmware. */
if (ti_gibinit(sc)) {
device_printf(sc->ti_dev, "initialization failure\n");
return;
}
}
static void ti_init2(struct ti_softc *sc)
{
struct ti_cmd_desc cmd;
struct ifnet *ifp;
uint8_t *ea;
struct ifmedia *ifm;
int tmp;
TI_LOCK_ASSERT(sc);
ifp = sc->ti_ifp;
/* Specify MTU and interface index. */
CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
/* Load our MAC address. */
ea = IF_LLADDR(sc->ti_ifp);
CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
CSR_WRITE_4(sc, TI_GCR_PAR1,
(ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
/* Enable or disable promiscuous mode as needed. */
if (ifp->if_flags & IFF_PROMISC) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
} else {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
}
/* Program multicast filter. */
ti_setmulti(sc);
/*
* If this is a Tigon 1, we should tell the
* firmware to use software packet filtering.
*/
if (sc->ti_hwrev == TI_HWREV_TIGON) {
TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
}
/* Init RX ring. */
if (ti_init_rx_ring_std(sc) != 0) {
/* XXX */
device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
return;
}
/* Init jumbo RX ring. */
if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
if (ti_init_rx_ring_jumbo(sc) != 0) {
/* XXX */
device_printf(sc->ti_dev,
"no memory for jumbo Rx buffers.\n");
return;
}
}
/*
* If this is a Tigon 2, we can also configure the
* mini ring.
*/
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
if (ti_init_rx_ring_mini(sc) != 0) {
/* XXX */
device_printf(sc->ti_dev,
"no memory for mini Rx buffers.\n");
return;
}
}
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
sc->ti_rx_saved_considx = 0;
/* Init TX ring. */
ti_init_tx_ring(sc);
/* Tell firmware we're alive. */
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
/* Enable host interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
/*
* Make sure to set media properly. We have to do this
* here since we have to issue commands in order to set
* the link negotiation and we can't issue commands until
* the firmware is running.
*/
ifm = &sc->ifmedia;
tmp = ifm->ifm_media;
ifm->ifm_media = ifm->ifm_cur->ifm_media;
ti_ifmedia_upd_locked(sc);
ifm->ifm_media = tmp;
}
/*
* Set media options.
*/
static int
ti_ifmedia_upd(struct ifnet *ifp)
{
struct ti_softc *sc;
int error;
sc = ifp->if_softc;
TI_LOCK(sc);
error = ti_ifmedia_upd(ifp);
TI_UNLOCK(sc);
return (error);
}
static int
ti_ifmedia_upd_locked(struct ti_softc *sc)
{
struct ifmedia *ifm;
struct ti_cmd_desc cmd;
uint32_t flowctl;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
flowctl = 0;
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
/*
* Transmit flow control doesn't work on the Tigon 1.
*/
flowctl = TI_GLNK_RX_FLOWCTL_Y;
/*
* Transmit flow control can also cause problems on the
* Tigon 2, apparantly with both the copper and fiber
* boards. The symptom is that the interface will just
* hang. This was reproduced with Alteon 180 switches.
*/
#if 0
if (sc->ti_hwrev != TI_HWREV_TIGON)
flowctl |= TI_GLNK_TX_FLOWCTL_Y;
#endif
CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
TI_GLNK_FULL_DUPLEX| flowctl |
TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
flowctl = TI_LNK_RX_FLOWCTL_Y;
#if 0
if (sc->ti_hwrev != TI_HWREV_TIGON)
flowctl |= TI_LNK_TX_FLOWCTL_Y;
#endif
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
TI_LNK_AUTONEGENB|TI_LNK_ENB);
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_BOTH, 0);
break;
case IFM_1000_SX:
case IFM_1000_T:
flowctl = TI_GLNK_RX_FLOWCTL_Y;
#if 0
if (sc->ti_hwrev != TI_HWREV_TIGON)
flowctl |= TI_GLNK_TX_FLOWCTL_Y;
#endif
CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
flowctl |TI_GLNK_ENB);
CSR_WRITE_4(sc, TI_GCR_LINK, 0);
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
}
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
break;
case IFM_100_FX:
case IFM_10_FL:
case IFM_100_TX:
case IFM_10_T:
flowctl = TI_LNK_RX_FLOWCTL_Y;
#if 0
if (sc->ti_hwrev != TI_HWREV_TIGON)
flowctl |= TI_LNK_TX_FLOWCTL_Y;
#endif
CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
} else {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
}
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
} else {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
}
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_10_100, 0);
break;
}
return (0);
}
/*
* Report current media status.
*/
static void
ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ti_softc *sc;
uint32_t media = 0;
sc = ifp->if_softc;
TI_LOCK(sc);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
TI_UNLOCK(sc);
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
if (sc->ti_copper)
ifmr->ifm_active |= IFM_1000_T;
else
ifmr->ifm_active |= IFM_1000_SX;
if (media & TI_GLNK_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
if (sc->ti_copper) {
if (media & TI_LNK_100MB)
ifmr->ifm_active |= IFM_100_TX;
if (media & TI_LNK_10MB)
ifmr->ifm_active |= IFM_10_T;
} else {
if (media & TI_LNK_100MB)
ifmr->ifm_active |= IFM_100_FX;
if (media & TI_LNK_10MB)
ifmr->ifm_active |= IFM_10_FL;
}
if (media & TI_LNK_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
if (media & TI_LNK_HALF_DUPLEX)
ifmr->ifm_active |= IFM_HDX;
}
TI_UNLOCK(sc);
}
static int
ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct ti_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct ti_cmd_desc cmd;
int mask, error = 0;
switch (command) {
case SIOCSIFMTU:
TI_LOCK(sc);
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
error = EINVAL;
else {
ifp->if_mtu = ifr->ifr_mtu;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ti_init_locked(sc);
}
}
TI_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
TI_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
/*
* If only the state of the PROMISC flag changed,
* then just use the 'set promisc mode' command
* instead of reinitializing the entire NIC. Doing
* a full re-init means reloading the firmware and
* waiting for it to start up, which may take a
* second or two.
*/
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->ti_if_flags & IFF_PROMISC)) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
TI_CMD_CODE_PROMISC_ENB, 0);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->ti_if_flags & IFF_PROMISC) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
TI_CMD_CODE_PROMISC_DIS, 0);
} else
ti_init_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ti_stop(sc);
}
}
sc->ti_if_flags = ifp->if_flags;
TI_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
TI_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ti_setmulti(sc);
TI_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
case SIOCSIFCAP:
TI_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= TI_CSUM_FEATURES;
else
ifp->if_hwassist &= ~TI_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0)
ifp->if_capenable ^= IFCAP_RXCSUM;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
IFCAP_VLAN_HWTAGGING)) != 0) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ti_init_locked(sc);
}
}
TI_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static int
ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct ti_softc *sc;
sc = dev->si_drv1;
if (sc == NULL)
return (ENODEV);
TI_LOCK(sc);
sc->ti_flags |= TI_FLAG_DEBUGING;
TI_UNLOCK(sc);
return (0);
}
static int
ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
{
struct ti_softc *sc;
sc = dev->si_drv1;
if (sc == NULL)
return (ENODEV);
TI_LOCK(sc);
sc->ti_flags &= ~TI_FLAG_DEBUGING;
TI_UNLOCK(sc);
return (0);
}
/*
* This ioctl routine goes along with the Tigon character device.
*/
static int
ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
struct thread *td)
{
struct ti_softc *sc;
int error;
sc = dev->si_drv1;
if (sc == NULL)
return (ENODEV);
error = 0;
switch (cmd) {
case TIIOCGETSTATS:
{
struct ti_stats *outstats;
outstats = (struct ti_stats *)addr;
TI_LOCK(sc);
bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
sizeof(struct ti_stats));
TI_UNLOCK(sc);
break;
}
case TIIOCGETPARAMS:
{
struct ti_params *params;
params = (struct ti_params *)addr;
TI_LOCK(sc);
params->ti_stat_ticks = sc->ti_stat_ticks;
params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
params->param_mask = TI_PARAM_ALL;
TI_UNLOCK(sc);
break;
}
case TIIOCSETPARAMS:
{
struct ti_params *params;
params = (struct ti_params *)addr;
TI_LOCK(sc);
if (params->param_mask & TI_PARAM_STAT_TICKS) {
sc->ti_stat_ticks = params->ti_stat_ticks;
CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
}
if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
sc->ti_rx_coal_ticks);
}
if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
sc->ti_tx_coal_ticks);
}
if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
sc->ti_rx_max_coal_bds);
}
if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
sc->ti_tx_max_coal_bds);
}
if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
sc->ti_tx_buf_ratio);
}
TI_UNLOCK(sc);
break;
}
case TIIOCSETTRACE: {
ti_trace_type trace_type;
trace_type = *(ti_trace_type *)addr;
/*
* Set tracing to whatever the user asked for. Setting
* this register to 0 should have the effect of disabling
* tracing.
*/
TI_LOCK(sc);
CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
TI_UNLOCK(sc);
break;
}
case TIIOCGETTRACE: {
struct ti_trace_buf *trace_buf;
uint32_t trace_start, cur_trace_ptr, trace_len;
trace_buf = (struct ti_trace_buf *)addr;
TI_LOCK(sc);
trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
#if 0
if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
"trace_len = %d\n", trace_start,
cur_trace_ptr, trace_len);
if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
trace_buf->buf_len);
#endif
error = ti_copy_mem(sc, trace_start, min(trace_len,
trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
if (error == 0) {
trace_buf->fill_len = min(trace_len,
trace_buf->buf_len);
if (cur_trace_ptr < trace_start)
trace_buf->cur_trace_ptr =
trace_start - cur_trace_ptr;
else
trace_buf->cur_trace_ptr =
cur_trace_ptr - trace_start;
} else
trace_buf->fill_len = 0;
TI_UNLOCK(sc);
break;
}
/*
* For debugging, five ioctls are needed:
* ALT_ATTACH
* ALT_READ_TG_REG
* ALT_WRITE_TG_REG
* ALT_READ_TG_MEM
* ALT_WRITE_TG_MEM
*/
case ALT_ATTACH:
/*
* From what I can tell, Alteon's Solaris Tigon driver
* only has one character device, so you have to attach
* to the Tigon board you're interested in. This seems
* like a not-so-good way to do things, since unless you
* subsequently specify the unit number of the device
* you're interested in every ioctl, you'll only be
* able to debug one board at a time.
*/
break;
case ALT_READ_TG_MEM:
case ALT_WRITE_TG_MEM:
{
struct tg_mem *mem_param;
uint32_t sram_end, scratch_end;
mem_param = (struct tg_mem *)addr;
if (sc->ti_hwrev == TI_HWREV_TIGON) {
sram_end = TI_END_SRAM_I;
scratch_end = TI_END_SCRATCH_I;
} else {
sram_end = TI_END_SRAM_II;
scratch_end = TI_END_SCRATCH_II;
}
/*
* For now, we'll only handle accessing regular SRAM,
* nothing else.
*/
TI_LOCK(sc);
if (mem_param->tgAddr >= TI_BEG_SRAM &&
mem_param->tgAddr + mem_param->len <= sram_end) {
/*
* In this instance, we always copy to/from user
* space, so the user space argument is set to 1.
*/
error = ti_copy_mem(sc, mem_param->tgAddr,
mem_param->len, mem_param->userAddr, 1,
cmd == ALT_READ_TG_MEM ? 1 : 0);
} else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
mem_param->tgAddr <= scratch_end) {
error = ti_copy_scratch(sc, mem_param->tgAddr,
mem_param->len, mem_param->userAddr, 1,
cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_A);
} else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
if (sc->ti_hwrev == TI_HWREV_TIGON) {
if_printf(sc->ti_ifp,
"invalid memory range for Tigon I\n");
error = EINVAL;
break;
}
error = ti_copy_scratch(sc, mem_param->tgAddr -
TI_SCRATCH_DEBUG_OFF, mem_param->len,
mem_param->userAddr, 1,
cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
} else {
if_printf(sc->ti_ifp, "memory address %#x len %d is "
"out of supported range\n",
mem_param->tgAddr, mem_param->len);
error = EINVAL;
}
TI_UNLOCK(sc);
break;
}
case ALT_READ_TG_REG:
case ALT_WRITE_TG_REG:
{
struct tg_reg *regs;
uint32_t tmpval;
regs = (struct tg_reg *)addr;
/*
* Make sure the address in question isn't out of range.
*/
if (regs->addr > TI_REG_MAX) {
error = EINVAL;
break;
}
TI_LOCK(sc);
if (cmd == ALT_READ_TG_REG) {
bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
regs->addr, &tmpval, 1);
regs->data = ntohl(tmpval);
#if 0
if ((regs->addr == TI_CPU_STATE)
|| (regs->addr == TI_CPU_CTL_B)) {
if_printf(sc->ti_ifp, "register %#x = %#x\n",
regs->addr, tmpval);
}
#endif
} else {
tmpval = htonl(regs->data);
bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
regs->addr, &tmpval, 1);
}
TI_UNLOCK(sc);
break;
}
default:
error = ENOTTY;
break;
}
return (error);
}
static void
ti_watchdog(void *arg)
{
struct ti_softc *sc;
struct ifnet *ifp;
sc = arg;
TI_LOCK_ASSERT(sc);
callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
if (sc->ti_timer == 0 || --sc->ti_timer > 0)
return;
/*
* When we're debugging, the chip is often stopped for long periods
* of time, and that would normally cause the watchdog timer to fire.
* Since that impedes debugging, we don't want to do that.
*/
if (sc->ti_flags & TI_FLAG_DEBUGING)
return;
ifp = sc->ti_ifp;
if_printf(ifp, "watchdog timeout -- resetting\n");
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ti_init_locked(sc);
ifp->if_oerrors++;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
ti_stop(struct ti_softc *sc)
{
struct ifnet *ifp;
struct ti_cmd_desc cmd;
TI_LOCK_ASSERT(sc);
ifp = sc->ti_ifp;
/* Disable host interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/*
* Tell firmware we're shutting down.
*/
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
/* Halt and reinitialize. */
if (ti_chipinit(sc) == 0) {
ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
/* XXX ignore init errors. */
ti_chipinit(sc);
}
/* Free the RX lists. */
ti_free_rx_ring_std(sc);
/* Free jumbo RX list. */
ti_free_rx_ring_jumbo(sc);
/* Free mini RX list. */
ti_free_rx_ring_mini(sc);
/* Free TX buffers. */
ti_free_tx_ring(sc);
sc->ti_ev_prodidx.ti_idx = 0;
sc->ti_return_prodidx.ti_idx = 0;
sc->ti_tx_considx.ti_idx = 0;
sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
callout_stop(&sc->ti_watchdog);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
ti_shutdown(device_t dev)
{
struct ti_softc *sc;
sc = device_get_softc(dev);
TI_LOCK(sc);
ti_chipinit(sc);
TI_UNLOCK(sc);
return (0);
}
static void
ti_sysctl_node(struct ti_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child;
char tname[32];
ctx = device_get_sysctl_ctx(sc->ti_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
/* Use DAC */
sc->ti_dac = 1;
snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
device_get_unit(sc->ti_dev));
TUNABLE_INT_FETCH(tname, &sc->ti_dac);
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
&sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
&sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
&sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
&sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
&sc->ti_tx_buf_ratio, 0,
"Ratio of NIC memory devoted to TX buffer");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
&sc->ti_stat_ticks, 0,
"Number of clock ticks for statistics update interval");
/* Pull in device tunables. */
sc->ti_rx_coal_ticks = 170;
resource_int_value(device_get_name(sc->ti_dev),
device_get_unit(sc->ti_dev), "rx_coal_ticks",
&sc->ti_rx_coal_ticks);
sc->ti_rx_max_coal_bds = 64;
resource_int_value(device_get_name(sc->ti_dev),
device_get_unit(sc->ti_dev), "rx_max_coal_bds",
&sc->ti_rx_max_coal_bds);
sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
resource_int_value(device_get_name(sc->ti_dev),
device_get_unit(sc->ti_dev), "tx_coal_ticks",
&sc->ti_tx_coal_ticks);
sc->ti_tx_max_coal_bds = 32;
resource_int_value(device_get_name(sc->ti_dev),
device_get_unit(sc->ti_dev), "tx_max_coal_bds",
&sc->ti_tx_max_coal_bds);
sc->ti_tx_buf_ratio = 21;
resource_int_value(device_get_name(sc->ti_dev),
device_get_unit(sc->ti_dev), "tx_buf_ratio",
&sc->ti_tx_buf_ratio);
sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
resource_int_value(device_get_name(sc->ti_dev),
device_get_unit(sc->ti_dev), "stat_ticks",
&sc->ti_stat_ticks);
}