freebsd-src/sys/kern/sysv_sem.c
Alfred Perlstein 21d56e9c33 Make AIO a loadable module.
Remove the explicit call to aio_proc_rundown() from exit1(), instead AIO
will use at_exit(9).

Add functions at_exec(9), rm_at_exec(9) which function nearly the
same as at_exec(9) and rm_at_exec(9), these functions are called
on behalf of modules at the time of execve(2) after the image
activator has run.

Use a modified version of tegge's suggestion via at_exec(9) to close
an exploitable race in AIO.

Fix SYSCALL_MODULE_HELPER such that it's archetecuterally neutral,
the problem was that one had to pass it a paramater indicating the
number of arguments which were actually the number of "int".  Fix
it by using an inline version of the AS macro against the syscall
arguments.  (AS should be available globally but we'll get to that
later.)

Add a primative system for dynamically adding kqueue ops, it's really
not as sophisticated as it should be, but I'll discuss with jlemon when
he's around.
2001-12-29 07:13:47 +00:00

1218 lines
28 KiB
C

/* $FreeBSD$ */
/*
* Implementation of SVID semaphores
*
* Author: Daniel Boulet
*
* This software is provided ``AS IS'' without any warranties of any kind.
*/
#include "opt_sysvipc.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sem.h>
#include <sys/syscall.h>
#include <sys/sysent.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/jail.h>
static MALLOC_DEFINE(M_SEM, "sem", "SVID compatible semaphores");
static void seminit __P((void));
static int sysvsem_modload __P((struct module *, int, void *));
static int semunload __P((void));
static void semexit_myhook __P((struct proc *p));
static int sysctl_sema __P((SYSCTL_HANDLER_ARGS));
#ifndef _SYS_SYSPROTO_H_
struct __semctl_args;
int __semctl __P((struct thread *td, struct __semctl_args *uap));
struct semget_args;
int semget __P((struct thread *td, struct semget_args *uap));
struct semop_args;
int semop __P((struct thread *td, struct semop_args *uap));
#endif
static struct sem_undo *semu_alloc __P((struct thread *td));
static int semundo_adjust __P((struct thread *td, struct sem_undo **supptr,
int semid, int semnum, int adjval));
static void semundo_clear __P((int semid, int semnum));
/* XXX casting to (sy_call_t *) is bogus, as usual. */
static sy_call_t *semcalls[] = {
(sy_call_t *)__semctl, (sy_call_t *)semget,
(sy_call_t *)semop
};
static int semtot = 0;
static struct semid_ds *sema; /* semaphore id pool */
static struct sem *sem; /* semaphore pool */
static struct sem_undo *semu_list; /* list of active undo structures */
static int *semu; /* undo structure pool */
struct sem {
u_short semval; /* semaphore value */
pid_t sempid; /* pid of last operation */
u_short semncnt; /* # awaiting semval > cval */
u_short semzcnt; /* # awaiting semval = 0 */
};
/*
* Undo structure (one per process)
*/
struct sem_undo {
struct sem_undo *un_next; /* ptr to next active undo structure */
struct proc *un_proc; /* owner of this structure */
short un_cnt; /* # of active entries */
struct undo {
short un_adjval; /* adjust on exit values */
short un_num; /* semaphore # */
int un_id; /* semid */
} un_ent[1]; /* undo entries */
};
/*
* Configuration parameters
*/
#ifndef SEMMNI
#define SEMMNI 10 /* # of semaphore identifiers */
#endif
#ifndef SEMMNS
#define SEMMNS 60 /* # of semaphores in system */
#endif
#ifndef SEMUME
#define SEMUME 10 /* max # of undo entries per process */
#endif
#ifndef SEMMNU
#define SEMMNU 30 /* # of undo structures in system */
#endif
/* shouldn't need tuning */
#ifndef SEMMAP
#define SEMMAP 30 /* # of entries in semaphore map */
#endif
#ifndef SEMMSL
#define SEMMSL SEMMNS /* max # of semaphores per id */
#endif
#ifndef SEMOPM
#define SEMOPM 100 /* max # of operations per semop call */
#endif
#define SEMVMX 32767 /* semaphore maximum value */
#define SEMAEM 16384 /* adjust on exit max value */
/*
* Due to the way semaphore memory is allocated, we have to ensure that
* SEMUSZ is properly aligned.
*/
#define SEM_ALIGN(bytes) (((bytes) + (sizeof(long) - 1)) & ~(sizeof(long) - 1))
/* actual size of an undo structure */
#define SEMUSZ SEM_ALIGN(offsetof(struct sem_undo, un_ent[SEMUME]))
/*
* Macro to find a particular sem_undo vector
*/
#define SEMU(ix) ((struct sem_undo *)(((intptr_t)semu)+ix * seminfo.semusz))
/*
* semaphore info struct
*/
struct seminfo seminfo = {
SEMMAP, /* # of entries in semaphore map */
SEMMNI, /* # of semaphore identifiers */
SEMMNS, /* # of semaphores in system */
SEMMNU, /* # of undo structures in system */
SEMMSL, /* max # of semaphores per id */
SEMOPM, /* max # of operations per semop call */
SEMUME, /* max # of undo entries per process */
SEMUSZ, /* size in bytes of undo structure */
SEMVMX, /* semaphore maximum value */
SEMAEM /* adjust on exit max value */
};
SYSCTL_DECL(_kern_ipc);
SYSCTL_INT(_kern_ipc, OID_AUTO, semmap, CTLFLAG_RW, &seminfo.semmap, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semmni, CTLFLAG_RD, &seminfo.semmni, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semmns, CTLFLAG_RD, &seminfo.semmns, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semmnu, CTLFLAG_RD, &seminfo.semmnu, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semmsl, CTLFLAG_RW, &seminfo.semmsl, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semopm, CTLFLAG_RD, &seminfo.semopm, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semume, CTLFLAG_RD, &seminfo.semume, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semusz, CTLFLAG_RD, &seminfo.semusz, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semvmx, CTLFLAG_RW, &seminfo.semvmx, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semaem, CTLFLAG_RW, &seminfo.semaem, 0, "");
SYSCTL_PROC(_kern_ipc, OID_AUTO, sema, CTLFLAG_RD,
NULL, 0, sysctl_sema, "", "");
#if 0
RO seminfo.semmap /* SEMMAP unused */
RO seminfo.semmni
RO seminfo.semmns
RO seminfo.semmnu /* undo entries per system */
RW seminfo.semmsl
RO seminfo.semopm /* SEMOPM unused */
RO seminfo.semume
RO seminfo.semusz /* param - derived from SEMUME for per-proc sizeof */
RO seminfo.semvmx /* SEMVMX unused - user param */
RO seminfo.semaem /* SEMAEM unused - user param */
#endif
static void
seminit(void)
{
register int i;
TUNABLE_INT_FETCH("kern.ipc.semmap", &seminfo.semmap);
TUNABLE_INT_FETCH("kern.ipc.semmni", &seminfo.semmni);
TUNABLE_INT_FETCH("kern.ipc.semmns", &seminfo.semmns);
TUNABLE_INT_FETCH("kern.ipc.semmnu", &seminfo.semmnu);
TUNABLE_INT_FETCH("kern.ipc.semmsl", &seminfo.semmsl);
TUNABLE_INT_FETCH("kern.ipc.semopm", &seminfo.semopm);
TUNABLE_INT_FETCH("kern.ipc.semume", &seminfo.semume);
TUNABLE_INT_FETCH("kern.ipc.semusz", &seminfo.semusz);
TUNABLE_INT_FETCH("kern.ipc.semvmx", &seminfo.semvmx);
TUNABLE_INT_FETCH("kern.ipc.semaem", &seminfo.semaem);
sem = malloc(sizeof(struct sem) * seminfo.semmns, M_SEM, M_WAITOK);
if (sem == NULL)
panic("sem is NULL");
sema = malloc(sizeof(struct semid_ds) * seminfo.semmni, M_SEM, M_WAITOK);
if (sema == NULL)
panic("sema is NULL");
semu = malloc(seminfo.semmnu * seminfo.semusz, M_SEM, M_WAITOK);
if (semu == NULL)
panic("semu is NULL");
for (i = 0; i < seminfo.semmni; i++) {
sema[i].sem_base = 0;
sema[i].sem_perm.mode = 0;
}
for (i = 0; i < seminfo.semmnu; i++) {
register struct sem_undo *suptr = SEMU(i);
suptr->un_proc = NULL;
}
semu_list = NULL;
semexit_hook = &semexit_myhook;
}
static int
semunload(void)
{
if (semtot != 0)
return (EBUSY);
free(sem, M_SEM);
free(sema, M_SEM);
free(semu, M_SEM);
semexit_hook = NULL;
return (0);
}
static int
sysvsem_modload(struct module *module, int cmd, void *arg)
{
int error = 0;
switch (cmd) {
case MOD_LOAD:
seminit();
break;
case MOD_UNLOAD:
error = semunload();
break;
case MOD_SHUTDOWN:
break;
default:
error = EINVAL;
break;
}
return (error);
}
static moduledata_t sysvsem_mod = {
"sysvsem",
&sysvsem_modload,
NULL
};
SYSCALL_MODULE_HELPER(semsys);
SYSCALL_MODULE_HELPER(__semctl);
SYSCALL_MODULE_HELPER(semget);
SYSCALL_MODULE_HELPER(semop);
DECLARE_MODULE(sysvsem, sysvsem_mod,
SI_SUB_SYSV_SEM, SI_ORDER_FIRST);
MODULE_VERSION(sysvsem, 1);
/*
* Entry point for all SEM calls
*
* MPSAFE
*/
int
semsys(td, uap)
struct thread *td;
/* XXX actually varargs. */
struct semsys_args /* {
u_int which;
int a2;
int a3;
int a4;
int a5;
} */ *uap;
{
int error;
mtx_lock(&Giant);
if (!jail_sysvipc_allowed && jailed(td->td_proc->p_ucred)) {
error = ENOSYS;
goto done2;
}
if (uap->which >= sizeof(semcalls)/sizeof(semcalls[0])) {
error = EINVAL;
goto done2;
}
error = (*semcalls[uap->which])(td, &uap->a2);
done2:
mtx_unlock(&Giant);
return (error);
}
/*
* Allocate a new sem_undo structure for a process
* (returns ptr to structure or NULL if no more room)
*/
static struct sem_undo *
semu_alloc(td)
struct thread *td;
{
register int i;
register struct sem_undo *suptr;
register struct sem_undo **supptr;
int attempt;
/*
* Try twice to allocate something.
* (we'll purge any empty structures after the first pass so
* two passes are always enough)
*/
for (attempt = 0; attempt < 2; attempt++) {
/*
* Look for a free structure.
* Fill it in and return it if we find one.
*/
for (i = 0; i < seminfo.semmnu; i++) {
suptr = SEMU(i);
if (suptr->un_proc == NULL) {
suptr->un_next = semu_list;
semu_list = suptr;
suptr->un_cnt = 0;
suptr->un_proc = td->td_proc;
return(suptr);
}
}
/*
* We didn't find a free one, if this is the first attempt
* then try to free some structures.
*/
if (attempt == 0) {
/* All the structures are in use - try to free some */
int did_something = 0;
supptr = &semu_list;
while ((suptr = *supptr) != NULL) {
if (suptr->un_cnt == 0) {
suptr->un_proc = NULL;
*supptr = suptr->un_next;
did_something = 1;
} else
supptr = &(suptr->un_next);
}
/* If we didn't free anything then just give-up */
if (!did_something)
return(NULL);
} else {
/*
* The second pass failed even though we freed
* something after the first pass!
* This is IMPOSSIBLE!
*/
panic("semu_alloc - second attempt failed");
}
}
return (NULL);
}
/*
* Adjust a particular entry for a particular proc
*/
static int
semundo_adjust(td, supptr, semid, semnum, adjval)
register struct thread *td;
struct sem_undo **supptr;
int semid, semnum;
int adjval;
{
struct proc *p = td->td_proc;
register struct sem_undo *suptr;
register struct undo *sunptr;
int i;
/* Look for and remember the sem_undo if the caller doesn't provide
it */
suptr = *supptr;
if (suptr == NULL) {
for (suptr = semu_list; suptr != NULL;
suptr = suptr->un_next) {
if (suptr->un_proc == p) {
*supptr = suptr;
break;
}
}
if (suptr == NULL) {
if (adjval == 0)
return(0);
suptr = semu_alloc(td);
if (suptr == NULL)
return(ENOSPC);
*supptr = suptr;
}
}
/*
* Look for the requested entry and adjust it (delete if adjval becomes
* 0).
*/
sunptr = &suptr->un_ent[0];
for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
if (sunptr->un_id != semid || sunptr->un_num != semnum)
continue;
if (adjval != 0) {
adjval += sunptr->un_adjval;
if (adjval > seminfo.semaem || adjval < -seminfo.semaem)
return (ERANGE);
}
sunptr->un_adjval = adjval;
if (sunptr->un_adjval == 0) {
suptr->un_cnt--;
if (i < suptr->un_cnt)
suptr->un_ent[i] =
suptr->un_ent[suptr->un_cnt];
}
return(0);
}
/* Didn't find the right entry - create it */
if (adjval == 0)
return(0);
if (adjval > seminfo.semaem || adjval < -seminfo.semaem)
return (ERANGE);
if (suptr->un_cnt != seminfo.semume) {
sunptr = &suptr->un_ent[suptr->un_cnt];
suptr->un_cnt++;
sunptr->un_adjval = adjval;
sunptr->un_id = semid; sunptr->un_num = semnum;
} else
return(EINVAL);
return(0);
}
static void
semundo_clear(semid, semnum)
int semid, semnum;
{
register struct sem_undo *suptr;
for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
register struct undo *sunptr = &suptr->un_ent[0];
register int i = 0;
while (i < suptr->un_cnt) {
if (sunptr->un_id == semid) {
if (semnum == -1 || sunptr->un_num == semnum) {
suptr->un_cnt--;
if (i < suptr->un_cnt) {
suptr->un_ent[i] =
suptr->un_ent[suptr->un_cnt];
continue;
}
}
if (semnum != -1)
break;
}
i++, sunptr++;
}
}
}
/*
* Note that the user-mode half of this passes a union, not a pointer
*/
#ifndef _SYS_SYSPROTO_H_
struct __semctl_args {
int semid;
int semnum;
int cmd;
union semun *arg;
};
#endif
/*
* MPSAFE
*/
int
__semctl(td, uap)
struct thread *td;
register struct __semctl_args *uap;
{
int semid = uap->semid;
int semnum = uap->semnum;
int cmd = uap->cmd;
union semun *arg = uap->arg;
union semun real_arg;
struct ucred *cred = td->td_proc->p_ucred;
int i, rval, error;
struct semid_ds sbuf;
register struct semid_ds *semaptr;
u_short usval;
#ifdef SEM_DEBUG
printf("call to semctl(%d, %d, %d, 0x%x)\n", semid, semnum, cmd, arg);
#endif
mtx_lock(&Giant);
if (!jail_sysvipc_allowed && jailed(td->td_proc->p_ucred)) {
error = ENOSYS;
goto done2;
}
switch(cmd) {
case SEM_STAT:
if (semid < 0 || semid >= seminfo.semmsl)
return(EINVAL);
semaptr = &sema[semid];
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 )
return(EINVAL);
if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R)))
return(error);
if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
return(error);
error = copyout((caddr_t)semaptr, real_arg.buf,
sizeof(struct semid_ds));
rval = IXSEQ_TO_IPCID(semid,semaptr->sem_perm);
if (error == 0)
td->td_retval[0] = rval;
goto done2;
}
semid = IPCID_TO_IX(semid);
if (semid < 0 || semid >= seminfo.semmsl) {
error = EINVAL;
goto done2;
}
semaptr = &sema[semid];
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid)) {
error = EINVAL;
goto done2;
}
error = 0;
rval = 0;
switch (cmd) {
case IPC_RMID:
if ((error = ipcperm(td, &semaptr->sem_perm, IPC_M)))
goto done2;
semaptr->sem_perm.cuid = cred->cr_uid;
semaptr->sem_perm.uid = cred->cr_uid;
semtot -= semaptr->sem_nsems;
for (i = semaptr->sem_base - sem; i < semtot; i++)
sem[i] = sem[i + semaptr->sem_nsems];
for (i = 0; i < seminfo.semmni; i++) {
if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
sema[i].sem_base > semaptr->sem_base)
sema[i].sem_base -= semaptr->sem_nsems;
}
semaptr->sem_perm.mode = 0;
semundo_clear(semid, -1);
wakeup((caddr_t)semaptr);
break;
case IPC_SET:
if ((error = ipcperm(td, &semaptr->sem_perm, IPC_M)))
goto done2;
if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
goto done2;
if ((error = copyin(real_arg.buf, (caddr_t)&sbuf,
sizeof(sbuf))) != 0) {
goto done2;
}
semaptr->sem_perm.uid = sbuf.sem_perm.uid;
semaptr->sem_perm.gid = sbuf.sem_perm.gid;
semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
(sbuf.sem_perm.mode & 0777);
semaptr->sem_ctime = time_second;
break;
case IPC_STAT:
if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R)))
goto done2;
if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
goto done2;
error = copyout((caddr_t)semaptr, real_arg.buf,
sizeof(struct semid_ds));
break;
case GETNCNT:
if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R)))
goto done2;
if (semnum < 0 || semnum >= semaptr->sem_nsems) {
error = EINVAL;
goto done2;
}
rval = semaptr->sem_base[semnum].semncnt;
break;
case GETPID:
if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R)))
goto done2;
if (semnum < 0 || semnum >= semaptr->sem_nsems) {
error = EINVAL;
goto done2;
}
rval = semaptr->sem_base[semnum].sempid;
break;
case GETVAL:
if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R)))
goto done2;
if (semnum < 0 || semnum >= semaptr->sem_nsems) {
error = EINVAL;
goto done2;
}
rval = semaptr->sem_base[semnum].semval;
break;
case GETALL:
if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R)))
goto done2;
if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
goto done2;
for (i = 0; i < semaptr->sem_nsems; i++) {
error = copyout((caddr_t)&semaptr->sem_base[i].semval,
&real_arg.array[i], sizeof(real_arg.array[0]));
if (error != 0)
break;
}
break;
case GETZCNT:
if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R)))
goto done2;
if (semnum < 0 || semnum >= semaptr->sem_nsems) {
error = EINVAL;
goto done2;
}
rval = semaptr->sem_base[semnum].semzcnt;
break;
case SETVAL:
if ((error = ipcperm(td, &semaptr->sem_perm, IPC_W)))
goto done2;
if (semnum < 0 || semnum >= semaptr->sem_nsems) {
error = EINVAL;
goto done2;
}
if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
goto done2;
if (real_arg.val < 0 || real_arg.val > seminfo.semvmx) {
error = ERANGE;
goto done2;
}
semaptr->sem_base[semnum].semval = real_arg.val;
semundo_clear(semid, semnum);
wakeup((caddr_t)semaptr);
break;
case SETALL:
if ((error = ipcperm(td, &semaptr->sem_perm, IPC_W)))
goto done2;
if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
goto done2;
for (i = 0; i < semaptr->sem_nsems; i++) {
error = copyin(&real_arg.array[i],
(caddr_t)&usval, sizeof(real_arg.array[0]));
if (error != 0)
break;
if (usval > seminfo.semvmx) {
error = ERANGE;
break;
}
semaptr->sem_base[i].semval = usval;
}
semundo_clear(semid, -1);
wakeup((caddr_t)semaptr);
break;
default:
error = EINVAL;
break;
}
if (error == 0)
td->td_retval[0] = rval;
done2:
mtx_unlock(&Giant);
return(error);
}
#ifndef _SYS_SYSPROTO_H_
struct semget_args {
key_t key;
int nsems;
int semflg;
};
#endif
/*
* MPSAFE
*/
int
semget(td, uap)
struct thread *td;
register struct semget_args *uap;
{
int semid, error = 0;
int key = uap->key;
int nsems = uap->nsems;
int semflg = uap->semflg;
struct ucred *cred = td->td_proc->p_ucred;
#ifdef SEM_DEBUG
printf("semget(0x%x, %d, 0%o)\n", key, nsems, semflg);
#endif
mtx_lock(&Giant);
if (!jail_sysvipc_allowed && jailed(td->td_proc->p_ucred)) {
error = ENOSYS;
goto done2;
}
if (key != IPC_PRIVATE) {
for (semid = 0; semid < seminfo.semmni; semid++) {
if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
sema[semid].sem_perm.key == key)
break;
}
if (semid < seminfo.semmni) {
#ifdef SEM_DEBUG
printf("found public key\n");
#endif
if ((error = ipcperm(td, &sema[semid].sem_perm,
semflg & 0700))) {
goto done2;
}
if (nsems > 0 && sema[semid].sem_nsems < nsems) {
#ifdef SEM_DEBUG
printf("too small\n");
#endif
error = EINVAL;
goto done2;
}
if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
#ifdef SEM_DEBUG
printf("not exclusive\n");
#endif
error = EEXIST;
goto done2;
}
goto found;
}
}
#ifdef SEM_DEBUG
printf("need to allocate the semid_ds\n");
#endif
if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
if (nsems <= 0 || nsems > seminfo.semmsl) {
#ifdef SEM_DEBUG
printf("nsems out of range (0<%d<=%d)\n", nsems,
seminfo.semmsl);
#endif
error = EINVAL;
goto done2;
}
if (nsems > seminfo.semmns - semtot) {
#ifdef SEM_DEBUG
printf("not enough semaphores left (need %d, got %d)\n",
nsems, seminfo.semmns - semtot);
#endif
error = ENOSPC;
goto done2;
}
for (semid = 0; semid < seminfo.semmni; semid++) {
if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
break;
}
if (semid == seminfo.semmni) {
#ifdef SEM_DEBUG
printf("no more semid_ds's available\n");
#endif
error = ENOSPC;
goto done2;
}
#ifdef SEM_DEBUG
printf("semid %d is available\n", semid);
#endif
sema[semid].sem_perm.key = key;
sema[semid].sem_perm.cuid = cred->cr_uid;
sema[semid].sem_perm.uid = cred->cr_uid;
sema[semid].sem_perm.cgid = cred->cr_gid;
sema[semid].sem_perm.gid = cred->cr_gid;
sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
sema[semid].sem_perm.seq =
(sema[semid].sem_perm.seq + 1) & 0x7fff;
sema[semid].sem_nsems = nsems;
sema[semid].sem_otime = 0;
sema[semid].sem_ctime = time_second;
sema[semid].sem_base = &sem[semtot];
semtot += nsems;
bzero(sema[semid].sem_base,
sizeof(sema[semid].sem_base[0])*nsems);
#ifdef SEM_DEBUG
printf("sembase = 0x%x, next = 0x%x\n", sema[semid].sem_base,
&sem[semtot]);
#endif
} else {
#ifdef SEM_DEBUG
printf("didn't find it and wasn't asked to create it\n");
#endif
error = ENOENT;
goto done2;
}
found:
td->td_retval[0] = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
done2:
mtx_unlock(&Giant);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct semop_args {
int semid;
struct sembuf *sops;
u_int nsops;
};
#endif
/*
* MPSAFE
*/
int
semop(td, uap)
struct thread *td;
register struct semop_args *uap;
{
int semid = uap->semid;
u_int nsops = uap->nsops;
struct sembuf *sops = NULL;
register struct semid_ds *semaptr;
register struct sembuf *sopptr;
register struct sem *semptr;
struct sem_undo *suptr;
int i, j, error;
int do_wakeup, do_undos;
#ifdef SEM_DEBUG
printf("call to semop(%d, 0x%x, %u)\n", semid, sops, nsops);
#endif
mtx_lock(&Giant);
if (!jail_sysvipc_allowed && jailed(td->td_proc->p_ucred)) {
error = ENOSYS;
goto done2;
}
semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
if (semid < 0 || semid >= seminfo.semmsl) {
error = EINVAL;
goto done2;
}
semaptr = &sema[semid];
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0) {
error = EINVAL;
goto done2;
}
if (semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid)) {
error = EINVAL;
goto done2;
}
if (nsops > seminfo.semopm) {
#ifdef SEM_DEBUG
printf("too many sops (max=%d, nsops=%d)\n", seminfo.semopm,
nsops);
#endif
error = E2BIG;
goto done2;
}
/* Allocate memory for sem_ops */
sops = malloc(nsops * sizeof(sops[0]), M_SEM, M_WAITOK);
if (!sops)
panic("Failed to allocate %d sem_ops", nsops);
if ((error = copyin(uap->sops, sops, nsops * sizeof(sops[0]))) != 0) {
#ifdef SEM_DEBUG
printf("error = %d from copyin(%08x, %08x, %d)\n", error,
uap->sops, sops, nsops * sizeof(sops[0]));
#endif
goto done2;
}
/*
* Initial pass thru sops to see what permissions are needed.
* Also perform any checks that don't need repeating on each
* attempt to satisfy the request vector.
*/
j = 0; /* permission needed */
do_undos = 0;
for (i = 0; i < nsops; i++) {
sopptr = &sops[i];
if (sopptr->sem_num >= semaptr->sem_nsems) {
error = EFBIG;
goto done2;
}
if (sopptr->sem_flg & SEM_UNDO && sopptr->sem_op != 0)
do_undos = 1;
j |= (sopptr->sem_op == 0) ? SEM_R : SEM_A;
}
if ((error = ipcperm(td, &semaptr->sem_perm, j))) {
#ifdef SEM_DEBUG
printf("error = %d from ipaccess\n", error);
#endif
goto done2;
}
/*
* Loop trying to satisfy the vector of requests.
* If we reach a point where we must wait, any requests already
* performed are rolled back and we go to sleep until some other
* process wakes us up. At this point, we start all over again.
*
* This ensures that from the perspective of other tasks, a set
* of requests is atomic (never partially satisfied).
*/
for (;;) {
do_wakeup = 0;
error = 0; /* error return if necessary */
for (i = 0; i < nsops; i++) {
sopptr = &sops[i];
semptr = &semaptr->sem_base[sopptr->sem_num];
#ifdef SEM_DEBUG
printf("semop: semaptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
semaptr, semaptr->sem_base, semptr,
sopptr->sem_num, semptr->semval, sopptr->sem_op,
(sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait");
#endif
if (sopptr->sem_op < 0) {
if (semptr->semval + sopptr->sem_op < 0) {
#ifdef SEM_DEBUG
printf("semop: can't do it now\n");
#endif
break;
} else {
semptr->semval += sopptr->sem_op;
if (semptr->semval == 0 &&
semptr->semzcnt > 0)
do_wakeup = 1;
}
} else if (sopptr->sem_op == 0) {
if (semptr->semval != 0) {
#ifdef SEM_DEBUG
printf("semop: not zero now\n");
#endif
break;
}
} else if (semptr->semval + sopptr->sem_op >
seminfo.semvmx) {
error = ERANGE;
break;
} else {
if (semptr->semncnt > 0)
do_wakeup = 1;
semptr->semval += sopptr->sem_op;
}
}
/*
* Did we get through the entire vector?
*/
if (i >= nsops)
goto done;
/*
* No ... rollback anything that we've already done
*/
#ifdef SEM_DEBUG
printf("semop: rollback 0 through %d\n", i-1);
#endif
for (j = 0; j < i; j++)
semaptr->sem_base[sops[j].sem_num].semval -=
sops[j].sem_op;
/* If we detected an error, return it */
if (error != 0)
goto done2;
/*
* If the request that we couldn't satisfy has the
* NOWAIT flag set then return with EAGAIN.
*/
if (sopptr->sem_flg & IPC_NOWAIT) {
error = EAGAIN;
goto done2;
}
if (sopptr->sem_op == 0)
semptr->semzcnt++;
else
semptr->semncnt++;
#ifdef SEM_DEBUG
printf("semop: good night!\n");
#endif
error = tsleep((caddr_t)semaptr, (PZERO - 4) | PCATCH,
"semwait", 0);
#ifdef SEM_DEBUG
printf("semop: good morning (error=%d)!\n", error);
#endif
if (error != 0) {
error = EINTR;
goto done2;
}
#ifdef SEM_DEBUG
printf("semop: good morning!\n");
#endif
/*
* Make sure that the semaphore still exists
*/
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid)) {
error = EIDRM;
goto done2;
}
/*
* The semaphore is still alive. Readjust the count of
* waiting processes.
*/
if (sopptr->sem_op == 0)
semptr->semzcnt--;
else
semptr->semncnt--;
}
done:
/*
* Process any SEM_UNDO requests.
*/
if (do_undos) {
suptr = NULL;
for (i = 0; i < nsops; i++) {
/*
* We only need to deal with SEM_UNDO's for non-zero
* op's.
*/
int adjval;
if ((sops[i].sem_flg & SEM_UNDO) == 0)
continue;
adjval = sops[i].sem_op;
if (adjval == 0)
continue;
error = semundo_adjust(td, &suptr, semid,
sops[i].sem_num, -adjval);
if (error == 0)
continue;
/*
* Oh-Oh! We ran out of either sem_undo's or undo's.
* Rollback the adjustments to this point and then
* rollback the semaphore ups and down so we can return
* with an error with all structures restored. We
* rollback the undo's in the exact reverse order that
* we applied them. This guarantees that we won't run
* out of space as we roll things back out.
*/
for (j = i - 1; j >= 0; j--) {
if ((sops[j].sem_flg & SEM_UNDO) == 0)
continue;
adjval = sops[j].sem_op;
if (adjval == 0)
continue;
if (semundo_adjust(td, &suptr, semid,
sops[j].sem_num, adjval) != 0)
panic("semop - can't undo undos");
}
for (j = 0; j < nsops; j++)
semaptr->sem_base[sops[j].sem_num].semval -=
sops[j].sem_op;
#ifdef SEM_DEBUG
printf("error = %d from semundo_adjust\n", error);
#endif
goto done2;
} /* loop through the sops */
} /* if (do_undos) */
/* We're definitely done - set the sempid's and time */
for (i = 0; i < nsops; i++) {
sopptr = &sops[i];
semptr = &semaptr->sem_base[sopptr->sem_num];
semptr->sempid = td->td_proc->p_pid;
}
semaptr->sem_otime = time_second;
/*
* Do a wakeup if any semaphore was up'd whilst something was
* sleeping on it.
*/
if (do_wakeup) {
#ifdef SEM_DEBUG
printf("semop: doing wakeup\n");
#endif
wakeup((caddr_t)semaptr);
#ifdef SEM_DEBUG
printf("semop: back from wakeup\n");
#endif
}
#ifdef SEM_DEBUG
printf("semop: done\n");
#endif
td->td_retval[0] = 0;
done2:
if (sops)
free(sops, M_SEM);
mtx_unlock(&Giant);
return (error);
}
/*
* Go through the undo structures for this process and apply the adjustments to
* semaphores.
*/
static void
semexit_myhook(p)
struct proc *p;
{
register struct sem_undo *suptr;
register struct sem_undo **supptr;
/*
* Go through the chain of undo vectors looking for one
* associated with this process.
*/
for (supptr = &semu_list; (suptr = *supptr) != NULL;
supptr = &suptr->un_next) {
if (suptr->un_proc == p)
break;
}
if (suptr == NULL)
return;
#ifdef SEM_DEBUG
printf("proc @%08x has undo structure with %d entries\n", p,
suptr->un_cnt);
#endif
/*
* If there are any active undo elements then process them.
*/
if (suptr->un_cnt > 0) {
int ix;
for (ix = 0; ix < suptr->un_cnt; ix++) {
int semid = suptr->un_ent[ix].un_id;
int semnum = suptr->un_ent[ix].un_num;
int adjval = suptr->un_ent[ix].un_adjval;
struct semid_ds *semaptr;
semaptr = &sema[semid];
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
panic("semexit - semid not allocated");
if (semnum >= semaptr->sem_nsems)
panic("semexit - semnum out of range");
#ifdef SEM_DEBUG
printf("semexit: %08x id=%d num=%d(adj=%d) ; sem=%d\n",
suptr->un_proc, suptr->un_ent[ix].un_id,
suptr->un_ent[ix].un_num,
suptr->un_ent[ix].un_adjval,
semaptr->sem_base[semnum].semval);
#endif
if (adjval < 0) {
if (semaptr->sem_base[semnum].semval < -adjval)
semaptr->sem_base[semnum].semval = 0;
else
semaptr->sem_base[semnum].semval +=
adjval;
} else
semaptr->sem_base[semnum].semval += adjval;
wakeup((caddr_t)semaptr);
#ifdef SEM_DEBUG
printf("semexit: back from wakeup\n");
#endif
}
}
/*
* Deallocate the undo vector.
*/
#ifdef SEM_DEBUG
printf("removing vector\n");
#endif
suptr->un_proc = NULL;
*supptr = suptr->un_next;
}
static int
sysctl_sema(SYSCTL_HANDLER_ARGS)
{
return (SYSCTL_OUT(req, sema,
sizeof(struct semid_ds) * seminfo.semmni));
}