freebsd-src/sys/cam/ata/ata_all.c

1286 lines
35 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2009 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#ifdef _KERNEL
#include "opt_scsi.h"
#include <sys/systm.h>
#include <sys/libkern.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#else
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef min
#define min(a,b) (((a)<(b))?(a):(b))
#endif
#endif
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_queue.h>
#include <cam/cam_xpt.h>
#include <sys/ata.h>
#include <cam/ata/ata_all.h>
#include <sys/sbuf.h>
#include <sys/endian.h>
int
ata_version(int ver)
{
int bit;
if (ver == 0xffff)
return 0;
for (bit = 15; bit >= 0; bit--)
if (ver & (1<<bit))
return bit;
return 0;
}
char *
ata_op_string(struct ata_cmd *cmd)
{
if (cmd->control & 0x04)
return ("SOFT_RESET");
switch (cmd->command) {
case 0x00:
switch (cmd->features) {
case 0x00: return ("NOP FLUSHQUEUE");
case 0x01: return ("NOP AUTOPOLL");
}
return ("NOP");
case 0x03: return ("CFA_REQUEST_EXTENDED_ERROR");
case 0x06:
switch (cmd->features) {
case 0x01: return ("DSM TRIM");
}
return "DSM";
case 0x07:
switch (cmd->features) {
case 0x01: return ("DSM_XL TRIM");
}
return "DSM_XL";
case 0x08: return ("DEVICE_RESET");
case 0x0b: return ("REQUEST_SENSE_DATA_EXT");
case 0x12: return ("GET_PHYSICAL_ELEMENT_STATUS");
case 0x20: return ("READ");
case 0x24: return ("READ48");
case 0x25: return ("READ_DMA48");
case 0x26: return ("READ_DMA_QUEUED48");
case 0x27: return ("READ_NATIVE_MAX_ADDRESS48");
case 0x29: return ("READ_MUL48");
case 0x2a: return ("READ_STREAM_DMA48");
case 0x2b: return ("READ_STREAM48");
case 0x2f: return ("READ_LOG_EXT");
case 0x30: return ("WRITE");
case 0x34: return ("WRITE48");
case 0x35: return ("WRITE_DMA48");
case 0x36: return ("WRITE_DMA_QUEUED48");
case 0x37: return ("SET_MAX_ADDRESS48");
case 0x39: return ("WRITE_MUL48");
case 0x3a: return ("WRITE_STREAM_DMA48");
case 0x3b: return ("WRITE_STREAM48");
case 0x3d: return ("WRITE_DMA_FUA48");
case 0x3e: return ("WRITE_DMA_QUEUED_FUA48");
case 0x3f: return ("WRITE_LOG_EXT");
case 0x40: return ("READ_VERIFY");
case 0x42: return ("READ_VERIFY48");
case 0x44:
switch (cmd->features) {
case 0x01: return ("ZERO_EXT TRIM");
}
return "ZERO_EXT";
case 0x45:
switch (cmd->features) {
case 0x55: return ("WRITE_UNCORRECTABLE48 PSEUDO");
case 0xaa: return ("WRITE_UNCORRECTABLE48 FLAGGED");
}
return "WRITE_UNCORRECTABLE48";
case 0x47: return ("READ_LOG_DMA_EXT");
case 0x4a: return ("ZAC_MANAGEMENT_IN");
case 0x51: return ("CONFIGURE_STREAM");
case 0x57: return ("WRITE_LOG_DMA_EXT");
case 0x5b: return ("TRUSTED_NON_DATA");
case 0x5c: return ("TRUSTED_RECEIVE");
case 0x5d: return ("TRUSTED_RECEIVE_DMA");
case 0x5e: return ("TRUSTED_SEND");
case 0x5f: return ("TRUSTED_SEND_DMA");
case 0x60: return ("READ_FPDMA_QUEUED");
case 0x61: return ("WRITE_FPDMA_QUEUED");
case 0x63:
switch (cmd->features & 0xf) {
case 0x00: return ("NCQ_NON_DATA ABORT NCQ QUEUE");
case 0x01: return ("NCQ_NON_DATA DEADLINE HANDLING");
case 0x02: return ("NCQ_NON_DATA HYBRID DEMOTE BY SIZE");
case 0x03: return ("NCQ_NON_DATA HYBRID CHANGE BY LBA RANGE");
case 0x04: return ("NCQ_NON_DATA HYBRID CONTROL");
case 0x05: return ("NCQ_NON_DATA SET FEATURES");
/*
* XXX KDM need common decoding between NCQ and non-NCQ
* versions of SET FEATURES.
*/
case 0x06: return ("NCQ_NON_DATA ZERO EXT");
case 0x07: return ("NCQ_NON_DATA ZAC MANAGEMENT OUT");
}
return ("NCQ_NON_DATA");
case 0x64:
switch (cmd->sector_count_exp & 0xf) {
case 0x00: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT");
case 0x01: return ("SEND_FPDMA_QUEUED HYBRID EVICT");
case 0x02: return ("SEND_FPDMA_QUEUED WRITE LOG DMA EXT");
case 0x03: return ("SEND_FPDMA_QUEUED ZAC MANAGEMENT OUT");
case 0x04: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT XL");
}
return ("SEND_FPDMA_QUEUED");
case 0x65:
switch (cmd->sector_count_exp & 0xf) {
case 0x01: return ("RECEIVE_FPDMA_QUEUED READ LOG DMA EXT");
case 0x02: return ("RECEIVE_FPDMA_QUEUED ZAC MANAGEMENT IN");
}
return ("RECEIVE_FPDMA_QUEUED");
case 0x67:
if (cmd->features == 0xec)
return ("SEP_ATTN IDENTIFY");
switch (cmd->lba_low) {
case 0x00: return ("SEP_ATTN READ BUFFER");
case 0x02: return ("SEP_ATTN RECEIVE DIAGNOSTIC RESULTS");
case 0x80: return ("SEP_ATTN WRITE BUFFER");
case 0x82: return ("SEP_ATTN SEND DIAGNOSTIC");
}
return ("SEP_ATTN");
case 0x70: return ("SEEK");
case 0x77: return ("SET_DATE_TIME_EXT");
case 0x78:
switch (cmd->features) {
case 0x00: return ("GET_NATIVE_MAX_ADDRESS_EXT");
case 0x01: return ("SET_ACCESSIBLE_MAX_ADDRESS_EXT");
case 0x02: return ("FREEZE_ACCESSIBLE_MAX_ADDRESS_EXT");
}
return ("ACCESSIBLE_MAX_ADDRESS_CONFIGURATION");
case 0x7C: return ("REMOVE_ELEMENT_AND_TRUNCATE");
case 0x87: return ("CFA_TRANSLATE_SECTOR");
case 0x90: return ("EXECUTE_DEVICE_DIAGNOSTIC");
case 0x92: return ("DOWNLOAD_MICROCODE");
case 0x93: return ("DOWNLOAD_MICROCODE_DMA");
case 0x9a: return ("ZAC_MANAGEMENT_OUT");
case 0xa0: return ("PACKET");
case 0xa1: return ("ATAPI_IDENTIFY");
case 0xa2: return ("SERVICE");
case 0xb0:
switch(cmd->features) {
case 0xd0: return ("SMART READ ATTR VALUES");
case 0xd1: return ("SMART READ ATTR THRESHOLDS");
case 0xd3: return ("SMART SAVE ATTR VALUES");
case 0xd4: return ("SMART EXECUTE OFFLINE IMMEDIATE");
case 0xd5: return ("SMART READ LOG");
case 0xd6: return ("SMART WRITE LOG");
case 0xd8: return ("SMART ENABLE OPERATION");
case 0xd9: return ("SMART DISABLE OPERATION");
case 0xda: return ("SMART RETURN STATUS");
}
return ("SMART");
case 0xb1: return ("DEVICE CONFIGURATION");
case 0xb2: return ("SET_SECTOR_CONFIGURATION_EXT");
case 0xb4:
switch(cmd->features) {
case 0x00: return ("SANITIZE_STATUS_EXT");
case 0x11: return ("CRYPTO_SCRAMBLE_EXT");
case 0x12: return ("BLOCK_ERASE_EXT");
case 0x14: return ("OVERWRITE_EXT");
case 0x20: return ("SANITIZE_FREEZE_LOCK_EXT");
case 0x40: return ("SANITIZE_ANTIFREEZE_LOCK_EXT");
}
return ("SANITIZE_DEVICE");
case 0xc0: return ("CFA_ERASE");
case 0xc4: return ("READ_MUL");
case 0xc5: return ("WRITE_MUL");
case 0xc6: return ("SET_MULTI");
case 0xc7: return ("READ_DMA_QUEUED");
case 0xc8: return ("READ_DMA");
case 0xca: return ("WRITE_DMA");
case 0xcc: return ("WRITE_DMA_QUEUED");
case 0xcd: return ("CFA_WRITE_MULTIPLE_WITHOUT_ERASE");
case 0xce: return ("WRITE_MUL_FUA48");
case 0xd1: return ("CHECK_MEDIA_CARD_TYPE");
case 0xda: return ("GET_MEDIA_STATUS");
case 0xde: return ("MEDIA_LOCK");
case 0xdf: return ("MEDIA_UNLOCK");
case 0xe0: return ("STANDBY_IMMEDIATE");
case 0xe1: return ("IDLE_IMMEDIATE");
case 0xe2: return ("STANDBY");
case 0xe3: return ("IDLE");
case 0xe4: return ("READ_BUFFER/PM");
case 0xe5: return ("CHECK_POWER_MODE");
case 0xe6: return ("SLEEP");
case 0xe7: return ("FLUSHCACHE");
case 0xe8: return ("WRITE_BUFFER/PM");
case 0xe9: return ("READ_BUFFER_DMA");
case 0xea: return ("FLUSHCACHE48");
case 0xeb: return ("WRITE_BUFFER_DMA");
case 0xec: return ("ATA_IDENTIFY");
case 0xed: return ("MEDIA_EJECT");
case 0xef:
/*
* XXX KDM need common decoding between NCQ and non-NCQ
* versions of SET FEATURES.
*/
switch (cmd->features) {
case 0x02: return ("SETFEATURES ENABLE WCACHE");
case 0x03: return ("SETFEATURES SET TRANSFER MODE");
case 0x05: return ("SETFEATURES ENABLE APM");
case 0x06: return ("SETFEATURES ENABLE PUIS");
case 0x07: return ("SETFEATURES SPIN-UP");
case 0x0b: return ("SETFEATURES ENABLE WRITE READ VERIFY");
case 0x0c: return ("SETFEATURES ENABLE DEVICE LIFE CONTROL");
case 0x10: return ("SETFEATURES ENABLE SATA FEATURE");
case 0x41: return ("SETFEATURES ENABLE FREEFALL CONTROL");
case 0x43: return ("SETFEATURES SET MAX HOST INT SECT TIMES");
case 0x45: return ("SETFEATURES SET RATE BASIS");
case 0x4a: return ("SETFEATURES EXTENDED POWER CONDITIONS");
case 0x50: return ("SETFEATURES ADVANCED BACKGROUD OPERATION");
case 0x55: return ("SETFEATURES DISABLE RCACHE");
case 0x5d: return ("SETFEATURES ENABLE RELIRQ");
case 0x5e: return ("SETFEATURES ENABLE SRVIRQ");
case 0x62: return ("SETFEATURES LONG PHYS SECT ALIGN ERC");
case 0x63: return ("SETFEATURES DSN");
case 0x66: return ("SETFEATURES DISABLE DEFAULTS");
case 0x82: return ("SETFEATURES DISABLE WCACHE");
case 0x85: return ("SETFEATURES DISABLE APM");
case 0x86: return ("SETFEATURES DISABLE PUIS");
case 0x8b: return ("SETFEATURES DISABLE WRITE READ VERIFY");
case 0x8c: return ("SETFEATURES DISABLE DEVICE LIFE CONTROL");
case 0x90: return ("SETFEATURES DISABLE SATA FEATURE");
case 0xaa: return ("SETFEATURES ENABLE RCACHE");
case 0xC1: return ("SETFEATURES DISABLE FREEFALL CONTROL");
case 0xC3: return ("SETFEATURES SENSE DATA REPORTING");
case 0xC4: return ("SETFEATURES NCQ SENSE DATA RETURN");
case 0xCC: return ("SETFEATURES ENABLE DEFAULTS");
case 0xdd: return ("SETFEATURES DISABLE RELIRQ");
case 0xde: return ("SETFEATURES DISABLE SRVIRQ");
}
return "SETFEATURES";
case 0xf1: return ("SECURITY_SET_PASSWORD");
case 0xf2: return ("SECURITY_UNLOCK");
case 0xf3: return ("SECURITY_ERASE_PREPARE");
case 0xf4: return ("SECURITY_ERASE_UNIT");
case 0xf5: return ("SECURITY_FREEZE_LOCK");
case 0xf6: return ("SECURITY_DISABLE_PASSWORD");
case 0xf8: return ("READ_NATIVE_MAX_ADDRESS");
case 0xf9: return ("SET_MAX_ADDRESS");
}
return "UNKNOWN";
}
char *
ata_cmd_string(struct ata_cmd *cmd, char *cmd_string, size_t len)
{
struct sbuf sb;
int error;
if (len == 0)
return ("");
sbuf_new(&sb, cmd_string, len, SBUF_FIXEDLEN);
ata_cmd_sbuf(cmd, &sb);
error = sbuf_finish(&sb);
if (error != 0 &&
#ifdef _KERNEL
error != ENOMEM)
#else
errno != ENOMEM)
#endif
return ("");
return(sbuf_data(&sb));
}
void
ata_cmd_sbuf(struct ata_cmd *cmd, struct sbuf *sb)
{
sbuf_printf(sb, "%02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x %02x %02x",
cmd->command, cmd->features,
cmd->lba_low, cmd->lba_mid, cmd->lba_high, cmd->device,
cmd->lba_low_exp, cmd->lba_mid_exp, cmd->lba_high_exp,
cmd->features_exp, cmd->sector_count, cmd->sector_count_exp);
}
char *
ata_res_string(struct ata_res *res, char *res_string, size_t len)
{
struct sbuf sb;
int error;
if (len == 0)
return ("");
sbuf_new(&sb, res_string, len, SBUF_FIXEDLEN);
ata_res_sbuf(res, &sb);
error = sbuf_finish(&sb);
if (error != 0 &&
#ifdef _KERNEL
error != ENOMEM)
#else
errno != ENOMEM)
#endif
return ("");
return(sbuf_data(&sb));
}
int
ata_res_sbuf(struct ata_res *res, struct sbuf *sb)
{
sbuf_printf(sb, "%02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x %02x",
res->status, res->error,
res->lba_low, res->lba_mid, res->lba_high, res->device,
res->lba_low_exp, res->lba_mid_exp, res->lba_high_exp,
res->sector_count, res->sector_count_exp);
return (0);
}
/*
* ata_command_sbuf() returns 0 for success and -1 for failure.
*/
int
ata_command_sbuf(struct ccb_ataio *ataio, struct sbuf *sb)
{
sbuf_printf(sb, "%s. ACB: ",
ata_op_string(&ataio->cmd));
ata_cmd_sbuf(&ataio->cmd, sb);
return(0);
}
/*
* ata_status_abuf() returns 0 for success and -1 for failure.
*/
int
ata_status_sbuf(struct ccb_ataio *ataio, struct sbuf *sb)
{
sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s)",
ataio->res.status,
(ataio->res.status & 0x80) ? "BSY " : "",
(ataio->res.status & 0x40) ? "DRDY " : "",
(ataio->res.status & 0x20) ? "DF " : "",
(ataio->res.status & 0x10) ? "SERV " : "",
(ataio->res.status & 0x08) ? "DRQ " : "",
(ataio->res.status & 0x04) ? "CORR " : "",
(ataio->res.status & 0x02) ? "IDX " : "",
(ataio->res.status & 0x01) ? "ERR" : "");
if (ataio->res.status & 1) {
sbuf_printf(sb, ", error: %02x (%s%s%s%s%s%s%s%s)",
ataio->res.error,
(ataio->res.error & 0x80) ? "ICRC " : "",
(ataio->res.error & 0x40) ? "UNC " : "",
(ataio->res.error & 0x20) ? "MC " : "",
(ataio->res.error & 0x10) ? "IDNF " : "",
(ataio->res.error & 0x08) ? "MCR " : "",
(ataio->res.error & 0x04) ? "ABRT " : "",
(ataio->res.error & 0x02) ? "NM " : "",
(ataio->res.error & 0x01) ? "ILI" : "");
}
return(0);
}
void
ata_print_ident(struct ata_params *ident_data)
{
const char *proto;
char ata[12], sata[12];
ata_print_ident_short(ident_data);
proto = (ident_data->config == ATA_PROTO_CFA) ? "CFA" :
(ident_data->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA";
if (ata_version(ident_data->version_major) == 0) {
snprintf(ata, sizeof(ata), "%s", proto);
} else if (ata_version(ident_data->version_major) <= 7) {
snprintf(ata, sizeof(ata), "%s-%d", proto,
ata_version(ident_data->version_major));
} else if (ata_version(ident_data->version_major) == 8) {
snprintf(ata, sizeof(ata), "%s8-ACS", proto);
} else {
snprintf(ata, sizeof(ata), "ACS-%d %s",
ata_version(ident_data->version_major) - 7, proto);
}
if (ident_data->satacapabilities && ident_data->satacapabilities != 0xffff) {
if (ident_data->satacapabilities & ATA_SATA_GEN3)
snprintf(sata, sizeof(sata), " SATA 3.x");
else if (ident_data->satacapabilities & ATA_SATA_GEN2)
snprintf(sata, sizeof(sata), " SATA 2.x");
else if (ident_data->satacapabilities & ATA_SATA_GEN1)
snprintf(sata, sizeof(sata), " SATA 1.x");
else
snprintf(sata, sizeof(sata), " SATA");
} else
sata[0] = 0;
printf(" %s%s device\n", ata, sata);
}
void
ata_print_ident_sbuf(struct ata_params *ident_data, struct sbuf *sb)
{
const char *proto, *sata;
int version;
ata_print_ident_short_sbuf(ident_data, sb);
sbuf_putc(sb, ' ');
proto = (ident_data->config == ATA_PROTO_CFA) ? "CFA" :
(ident_data->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA";
version = ata_version(ident_data->version_major);
switch (version) {
case 0:
sbuf_printf(sb, "%s", proto);
break;
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
sbuf_printf(sb, "%s-%d", proto, version);
break;
case 8:
sbuf_printf(sb, "%s8-ACS", proto);
break;
default:
sbuf_printf(sb, "ACS-%d %s", version - 7, proto);
break;
}
if (ident_data->satacapabilities && ident_data->satacapabilities != 0xffff) {
if (ident_data->satacapabilities & ATA_SATA_GEN3)
sata = " SATA 3.x";
else if (ident_data->satacapabilities & ATA_SATA_GEN2)
sata = " SATA 2.x";
else if (ident_data->satacapabilities & ATA_SATA_GEN1)
sata = " SATA 1.x";
else
sata = " SATA";
} else
sata = "";
sbuf_printf(sb, "%s device\n", sata);
}
void
ata_print_ident_short(struct ata_params *ident_data)
{
char product[48], revision[16];
cam_strvis(product, ident_data->model, sizeof(ident_data->model),
sizeof(product));
cam_strvis(revision, ident_data->revision, sizeof(ident_data->revision),
sizeof(revision));
printf("<%s %s>", product, revision);
}
void
ata_print_ident_short_sbuf(struct ata_params *ident_data, struct sbuf *sb)
{
sbuf_putc(sb, '<');
cam_strvis_sbuf(sb, ident_data->model, sizeof(ident_data->model), 0);
sbuf_putc(sb, ' ');
cam_strvis_sbuf(sb, ident_data->revision, sizeof(ident_data->revision), 0);
sbuf_putc(sb, '>');
}
void
semb_print_ident(struct sep_identify_data *ident_data)
{
char in[7], ins[5];
semb_print_ident_short(ident_data);
cam_strvis(in, ident_data->interface_id, 6, sizeof(in));
cam_strvis(ins, ident_data->interface_rev, 4, sizeof(ins));
printf(" SEMB %s %s device\n", in, ins);
}
void
semb_print_ident_sbuf(struct sep_identify_data *ident_data, struct sbuf *sb)
{
semb_print_ident_short_sbuf(ident_data, sb);
sbuf_cat(sb, " SEMB ");
cam_strvis_sbuf(sb, ident_data->interface_id, 6, 0);
sbuf_putc(sb, ' ');
cam_strvis_sbuf(sb, ident_data->interface_rev, 4, 0);
sbuf_cat(sb, " device\n");
}
void
semb_print_ident_short(struct sep_identify_data *ident_data)
{
char vendor[9], product[17], revision[5], fw[5];
cam_strvis(vendor, ident_data->vendor_id, 8, sizeof(vendor));
cam_strvis(product, ident_data->product_id, 16, sizeof(product));
cam_strvis(revision, ident_data->product_rev, 4, sizeof(revision));
cam_strvis(fw, ident_data->firmware_rev, 4, sizeof(fw));
printf("<%s %s %s %s>", vendor, product, revision, fw);
}
void
semb_print_ident_short_sbuf(struct sep_identify_data *ident_data, struct sbuf *sb)
{
sbuf_putc(sb, '<');
cam_strvis_sbuf(sb, ident_data->vendor_id, 8, 0);
sbuf_putc(sb, ' ');
cam_strvis_sbuf(sb, ident_data->product_id, 16, 0);
sbuf_putc(sb, ' ');
cam_strvis_sbuf(sb, ident_data->product_rev, 4, 0);
sbuf_putc(sb, ' ');
cam_strvis_sbuf(sb, ident_data->firmware_rev, 4, 0);
sbuf_putc(sb, '>');
}
uint32_t
ata_logical_sector_size(struct ata_params *ident_data)
{
if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE &&
(ident_data->pss & ATA_PSS_LSSABOVE512)) {
return (((uint32_t)ident_data->lss_1 |
((uint32_t)ident_data->lss_2 << 16)) * 2);
}
return (512);
}
uint64_t
ata_physical_sector_size(struct ata_params *ident_data)
{
if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE) {
if (ident_data->pss & ATA_PSS_MULTLS) {
return ((uint64_t)ata_logical_sector_size(ident_data) *
(1 << (ident_data->pss & ATA_PSS_LSPPS)));
} else {
return (uint64_t)ata_logical_sector_size(ident_data);
}
}
return (512);
}
uint64_t
ata_logical_sector_offset(struct ata_params *ident_data)
{
if ((ident_data->lsalign & 0xc000) == 0x4000) {
return ((uint64_t)ata_logical_sector_size(ident_data) *
(ident_data->lsalign & 0x3fff));
}
return (0);
}
void
ata_28bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint8_t features,
uint32_t lba, uint8_t sector_count)
{
bzero(&ataio->cmd, sizeof(ataio->cmd));
ataio->cmd.flags = 0;
if (cmd == ATA_READ_DMA ||
cmd == ATA_READ_DMA_QUEUED ||
cmd == ATA_WRITE_DMA ||
cmd == ATA_WRITE_DMA_QUEUED ||
cmd == ATA_TRUSTED_RECEIVE_DMA ||
cmd == ATA_TRUSTED_SEND_DMA ||
cmd == ATA_DOWNLOAD_MICROCODE_DMA ||
cmd == ATA_READ_BUFFER_DMA ||
cmd == ATA_WRITE_BUFFER_DMA)
ataio->cmd.flags |= CAM_ATAIO_DMA;
ataio->cmd.command = cmd;
ataio->cmd.features = features;
ataio->cmd.lba_low = lba;
ataio->cmd.lba_mid = lba >> 8;
ataio->cmd.lba_high = lba >> 16;
ataio->cmd.device = ATA_DEV_LBA | ((lba >> 24) & 0x0f);
ataio->cmd.sector_count = sector_count;
}
void
ata_48bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint16_t features,
uint64_t lba, uint16_t sector_count)
{
ataio->cmd.flags = CAM_ATAIO_48BIT;
if (cmd == ATA_READ_DMA48 ||
cmd == ATA_READ_DMA_QUEUED48 ||
cmd == ATA_READ_STREAM_DMA48 ||
cmd == ATA_WRITE_DMA48 ||
cmd == ATA_WRITE_DMA_FUA48 ||
cmd == ATA_WRITE_DMA_QUEUED48 ||
cmd == ATA_WRITE_DMA_QUEUED_FUA48 ||
cmd == ATA_WRITE_STREAM_DMA48 ||
cmd == ATA_DATA_SET_MANAGEMENT ||
cmd == ATA_READ_LOG_DMA_EXT ||
cmd == ATA_WRITE_LOG_DMA_EXT)
ataio->cmd.flags |= CAM_ATAIO_DMA;
ataio->cmd.command = cmd;
ataio->cmd.features = features;
ataio->cmd.lba_low = lba;
ataio->cmd.lba_mid = lba >> 8;
ataio->cmd.lba_high = lba >> 16;
ataio->cmd.device = ATA_DEV_LBA;
ataio->cmd.lba_low_exp = lba >> 24;
ataio->cmd.lba_mid_exp = lba >> 32;
ataio->cmd.lba_high_exp = lba >> 40;
ataio->cmd.features_exp = features >> 8;
ataio->cmd.sector_count = sector_count;
ataio->cmd.sector_count_exp = sector_count >> 8;
ataio->cmd.control = 0;
}
void
ata_ncq_cmd(struct ccb_ataio *ataio, uint8_t cmd,
uint64_t lba, uint16_t sector_count)
{
ataio->cmd.flags = CAM_ATAIO_48BIT | CAM_ATAIO_FPDMA;
ataio->cmd.command = cmd;
ataio->cmd.features = sector_count;
ataio->cmd.lba_low = lba;
ataio->cmd.lba_mid = lba >> 8;
ataio->cmd.lba_high = lba >> 16;
ataio->cmd.device = ATA_DEV_LBA;
ataio->cmd.lba_low_exp = lba >> 24;
ataio->cmd.lba_mid_exp = lba >> 32;
ataio->cmd.lba_high_exp = lba >> 40;
ataio->cmd.features_exp = sector_count >> 8;
ataio->cmd.sector_count = 0;
ataio->cmd.sector_count_exp = 0;
ataio->cmd.control = 0;
}
void
ata_reset_cmd(struct ccb_ataio *ataio)
{
bzero(&ataio->cmd, sizeof(ataio->cmd));
ataio->cmd.flags = CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT;
ataio->cmd.control = 0x04;
}
void
ata_pm_read_cmd(struct ccb_ataio *ataio, int reg, int port)
{
bzero(&ataio->cmd, sizeof(ataio->cmd));
ataio->cmd.flags = CAM_ATAIO_NEEDRESULT;
ataio->cmd.command = ATA_READ_PM;
ataio->cmd.features = reg;
ataio->cmd.device = port & 0x0f;
}
void
ata_pm_write_cmd(struct ccb_ataio *ataio, int reg, int port, uint32_t val)
{
bzero(&ataio->cmd, sizeof(ataio->cmd));
ataio->cmd.flags = 0;
ataio->cmd.command = ATA_WRITE_PM;
ataio->cmd.features = reg;
ataio->cmd.sector_count = val;
ataio->cmd.lba_low = val >> 8;
ataio->cmd.lba_mid = val >> 16;
ataio->cmd.lba_high = val >> 24;
ataio->cmd.device = port & 0x0f;
}
void
ata_read_log(struct ccb_ataio *ataio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint32_t log_address, uint32_t page_number, uint16_t block_count,
uint32_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
uint32_t timeout)
{
uint64_t lba;
cam_fill_ataio(ataio,
/*retries*/ 1,
/*cbfcnp*/ cbfcnp,
/*flags*/ CAM_DIR_IN,
/*tag_action*/ 0,
/*data_ptr*/ data_ptr,
/*dxfer_len*/ dxfer_len,
/*timeout*/ timeout);
lba = (((uint64_t)page_number & 0xff00) << 32) |
((page_number & 0x00ff) << 8) |
(log_address & 0xff);
ata_48bit_cmd(ataio,
/*cmd*/ (protocol & CAM_ATAIO_DMA) ? ATA_READ_LOG_DMA_EXT :
ATA_READ_LOG_EXT,
/*features*/ 0,
/*lba*/ lba,
/*sector_count*/ block_count);
}
void
ata_bswap(int8_t *buf, int len)
{
uint16_t *ptr = (uint16_t*)(buf + len);
while (--ptr >= (uint16_t*)buf)
*ptr = be16toh(*ptr);
}
void
ata_btrim(int8_t *buf, int len)
{
int8_t *ptr;
for (ptr = buf; ptr < buf+len; ++ptr)
if (!*ptr || *ptr == '_')
*ptr = ' ';
for (ptr = buf + len - 1; ptr >= buf && *ptr == ' '; --ptr)
*ptr = 0;
}
void
ata_bpack(int8_t *src, int8_t *dst, int len)
{
int i, j, blank;
for (i = j = blank = 0 ; i < len; i++) {
if (blank && src[i] == ' ') continue;
if (blank && src[i] != ' ') {
dst[j++] = src[i];
blank = 0;
continue;
}
if (src[i] == ' ') {
blank = 1;
if (i == 0)
continue;
}
dst[j++] = src[i];
}
while (j < len)
dst[j++] = 0x00;
}
int
ata_max_pmode(struct ata_params *ap)
{
if (ap->atavalid & ATA_FLAG_64_70) {
if (ap->apiomodes & 0x02)
return ATA_PIO4;
if (ap->apiomodes & 0x01)
return ATA_PIO3;
}
if (ap->mwdmamodes & 0x04)
return ATA_PIO4;
if (ap->mwdmamodes & 0x02)
return ATA_PIO3;
if (ap->mwdmamodes & 0x01)
return ATA_PIO2;
if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x200)
return ATA_PIO2;
if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x100)
return ATA_PIO1;
if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x000)
return ATA_PIO0;
return ATA_PIO0;
}
int
ata_max_wmode(struct ata_params *ap)
{
if (ap->mwdmamodes & 0x04)
return ATA_WDMA2;
if (ap->mwdmamodes & 0x02)
return ATA_WDMA1;
if (ap->mwdmamodes & 0x01)
return ATA_WDMA0;
return -1;
}
int
ata_max_umode(struct ata_params *ap)
{
if (ap->atavalid & ATA_FLAG_88) {
if (ap->udmamodes & 0x40)
return ATA_UDMA6;
if (ap->udmamodes & 0x20)
return ATA_UDMA5;
if (ap->udmamodes & 0x10)
return ATA_UDMA4;
if (ap->udmamodes & 0x08)
return ATA_UDMA3;
if (ap->udmamodes & 0x04)
return ATA_UDMA2;
if (ap->udmamodes & 0x02)
return ATA_UDMA1;
if (ap->udmamodes & 0x01)
return ATA_UDMA0;
}
return -1;
}
int
ata_max_mode(struct ata_params *ap, int maxmode)
{
if (maxmode == 0)
maxmode = ATA_DMA_MAX;
if (maxmode >= ATA_UDMA0 && ata_max_umode(ap) > 0)
return (min(maxmode, ata_max_umode(ap)));
if (maxmode >= ATA_WDMA0 && ata_max_wmode(ap) > 0)
return (min(maxmode, ata_max_wmode(ap)));
return (min(maxmode, ata_max_pmode(ap)));
}
char *
ata_mode2string(int mode)
{
switch (mode) {
case -1: return "UNSUPPORTED";
case 0: return "NONE";
case ATA_PIO0: return "PIO0";
case ATA_PIO1: return "PIO1";
case ATA_PIO2: return "PIO2";
case ATA_PIO3: return "PIO3";
case ATA_PIO4: return "PIO4";
case ATA_WDMA0: return "WDMA0";
case ATA_WDMA1: return "WDMA1";
case ATA_WDMA2: return "WDMA2";
case ATA_UDMA0: return "UDMA0";
case ATA_UDMA1: return "UDMA1";
case ATA_UDMA2: return "UDMA2";
case ATA_UDMA3: return "UDMA3";
case ATA_UDMA4: return "UDMA4";
case ATA_UDMA5: return "UDMA5";
case ATA_UDMA6: return "UDMA6";
default:
if (mode & ATA_DMA_MASK)
return "BIOSDMA";
else
return "BIOSPIO";
}
}
int
ata_string2mode(char *str)
{
if (!strcasecmp(str, "PIO0")) return (ATA_PIO0);
if (!strcasecmp(str, "PIO1")) return (ATA_PIO1);
if (!strcasecmp(str, "PIO2")) return (ATA_PIO2);
if (!strcasecmp(str, "PIO3")) return (ATA_PIO3);
if (!strcasecmp(str, "PIO4")) return (ATA_PIO4);
if (!strcasecmp(str, "WDMA0")) return (ATA_WDMA0);
if (!strcasecmp(str, "WDMA1")) return (ATA_WDMA1);
if (!strcasecmp(str, "WDMA2")) return (ATA_WDMA2);
if (!strcasecmp(str, "UDMA0")) return (ATA_UDMA0);
if (!strcasecmp(str, "UDMA16")) return (ATA_UDMA0);
if (!strcasecmp(str, "UDMA1")) return (ATA_UDMA1);
if (!strcasecmp(str, "UDMA25")) return (ATA_UDMA1);
if (!strcasecmp(str, "UDMA2")) return (ATA_UDMA2);
if (!strcasecmp(str, "UDMA33")) return (ATA_UDMA2);
if (!strcasecmp(str, "UDMA3")) return (ATA_UDMA3);
if (!strcasecmp(str, "UDMA44")) return (ATA_UDMA3);
if (!strcasecmp(str, "UDMA4")) return (ATA_UDMA4);
if (!strcasecmp(str, "UDMA66")) return (ATA_UDMA4);
if (!strcasecmp(str, "UDMA5")) return (ATA_UDMA5);
if (!strcasecmp(str, "UDMA100")) return (ATA_UDMA5);
if (!strcasecmp(str, "UDMA6")) return (ATA_UDMA6);
if (!strcasecmp(str, "UDMA133")) return (ATA_UDMA6);
return (-1);
}
u_int
ata_mode2speed(int mode)
{
switch (mode) {
case ATA_PIO0:
default:
return (3300);
case ATA_PIO1:
return (5200);
case ATA_PIO2:
return (8300);
case ATA_PIO3:
return (11100);
case ATA_PIO4:
return (16700);
case ATA_WDMA0:
return (4200);
case ATA_WDMA1:
return (13300);
case ATA_WDMA2:
return (16700);
case ATA_UDMA0:
return (16700);
case ATA_UDMA1:
return (25000);
case ATA_UDMA2:
return (33300);
case ATA_UDMA3:
return (44400);
case ATA_UDMA4:
return (66700);
case ATA_UDMA5:
return (100000);
case ATA_UDMA6:
return (133000);
}
}
u_int
ata_revision2speed(int revision)
{
switch (revision) {
case 1:
default:
return (150000);
case 2:
return (300000);
case 3:
return (600000);
}
}
int
ata_speed2revision(u_int speed)
{
switch (speed) {
case 0:
return (0);
case 150000:
return (1);
case 300000:
return (2);
case 600000:
return (3);
default:
return (-1);
}
}
int
ata_identify_match(caddr_t identbuffer, caddr_t table_entry)
{
struct scsi_inquiry_pattern *entry;
struct ata_params *ident;
entry = (struct scsi_inquiry_pattern *)table_entry;
ident = (struct ata_params *)identbuffer;
if ((cam_strmatch(ident->model, entry->product,
sizeof(ident->model)) == 0)
&& (cam_strmatch(ident->revision, entry->revision,
sizeof(ident->revision)) == 0)) {
return (0);
}
return (-1);
}
int
ata_static_identify_match(caddr_t identbuffer, caddr_t table_entry)
{
struct scsi_static_inquiry_pattern *entry;
struct ata_params *ident;
entry = (struct scsi_static_inquiry_pattern *)table_entry;
ident = (struct ata_params *)identbuffer;
if ((cam_strmatch(ident->model, entry->product,
sizeof(ident->model)) == 0)
&& (cam_strmatch(ident->revision, entry->revision,
sizeof(ident->revision)) == 0)) {
return (0);
}
return (-1);
}
void
semb_receive_diagnostic_results(struct ccb_ataio *ataio,
uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*),
uint8_t tag_action, int pcv, uint8_t page_code,
uint8_t *data_ptr, uint16_t length, uint32_t timeout)
{
length = min(length, 1020);
length = (length + 3) & ~3;
cam_fill_ataio(ataio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
data_ptr,
length,
timeout);
ata_28bit_cmd(ataio, ATA_SEP_ATTN,
pcv ? page_code : 0, 0x02, length / 4);
}
void
semb_send_diagnostic(struct ccb_ataio *ataio,
uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout)
{
length = min(length, 1020);
length = (length + 3) & ~3;
cam_fill_ataio(ataio,
retries,
cbfcnp,
/*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE,
tag_action,
data_ptr,
length,
timeout);
ata_28bit_cmd(ataio, ATA_SEP_ATTN,
length > 0 ? data_ptr[0] : 0, 0x82, length / 4);
}
void
semb_read_buffer(struct ccb_ataio *ataio,
uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*),
uint8_t tag_action, uint8_t page_code,
uint8_t *data_ptr, uint16_t length, uint32_t timeout)
{
length = min(length, 1020);
length = (length + 3) & ~3;
cam_fill_ataio(ataio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
data_ptr,
length,
timeout);
ata_28bit_cmd(ataio, ATA_SEP_ATTN,
page_code, 0x00, length / 4);
}
void
semb_write_buffer(struct ccb_ataio *ataio,
uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout)
{
length = min(length, 1020);
length = (length + 3) & ~3;
cam_fill_ataio(ataio,
retries,
cbfcnp,
/*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE,
tag_action,
data_ptr,
length,
timeout);
ata_28bit_cmd(ataio, ATA_SEP_ATTN,
length > 0 ? data_ptr[0] : 0, 0x80, length / 4);
}
void
ata_zac_mgmt_out(struct ccb_ataio *ataio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
int use_ncq, uint8_t zm_action, uint64_t zone_id,
uint8_t zone_flags, uint16_t sector_count, uint8_t *data_ptr,
uint32_t dxfer_len, uint32_t timeout)
{
uint8_t command_out, ata_flags;
uint16_t features_out, sectors_out;
uint32_t auxiliary;
if (use_ncq == 0) {
command_out = ATA_ZAC_MANAGEMENT_OUT;
features_out = (zm_action & 0xf) | (zone_flags << 8);
if (dxfer_len == 0) {
ata_flags = 0;
sectors_out = 0;
} else {
ata_flags = CAM_ATAIO_DMA;
/* XXX KDM use sector count? */
sectors_out = ((dxfer_len >> 9) & 0xffff);
}
auxiliary = 0;
} else {
if (dxfer_len == 0) {
command_out = ATA_NCQ_NON_DATA;
features_out = ATA_NCQ_ZAC_MGMT_OUT;
sectors_out = 0;
} else {
command_out = ATA_SEND_FPDMA_QUEUED;
/* Note that we're defaulting to normal priority */
sectors_out = ATA_SFPDMA_ZAC_MGMT_OUT << 8;
/*
* For SEND FPDMA QUEUED, the transfer length is
* encoded in the FEATURE register, and 0 means
* that 65536 512 byte blocks are to be tranferred.
* In practice, it seems unlikely that we'll see
* a transfer that large.
*/
if (dxfer_len == (65536 * 512)) {
features_out = 0;
} else {
/*
* Yes, the caller can theoretically send a
* transfer larger than we can handle.
* Anyone using this function needs enough
* knowledge to avoid doing that.
*/
features_out = ((dxfer_len >> 9) & 0xffff);
}
}
auxiliary = (zm_action & 0xf) | (zone_flags << 8);
ata_flags = CAM_ATAIO_FPDMA;
}
cam_fill_ataio(ataio,
/*retries*/ retries,
/*cbfcnp*/ cbfcnp,
/*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE,
/*tag_action*/ 0,
/*data_ptr*/ data_ptr,
/*dxfer_len*/ dxfer_len,
/*timeout*/ timeout);
ata_48bit_cmd(ataio,
/*cmd*/ command_out,
/*features*/ features_out,
/*lba*/ zone_id,
/*sector_count*/ sectors_out);
ataio->cmd.flags |= ata_flags;
if (auxiliary != 0) {
ataio->ata_flags |= ATA_FLAG_AUX;
ataio->aux = auxiliary;
}
}
void
ata_zac_mgmt_in(struct ccb_ataio *ataio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
int use_ncq, uint8_t zm_action, uint64_t zone_id,
uint8_t zone_flags, uint8_t *data_ptr, uint32_t dxfer_len,
uint32_t timeout)
{
uint8_t command_out, ata_flags;
uint16_t features_out, sectors_out;
uint32_t auxiliary;
if (use_ncq == 0) {
command_out = ATA_ZAC_MANAGEMENT_IN;
/* XXX KDM put a macro here */
features_out = (zm_action & 0xf) | (zone_flags << 8);
ata_flags = CAM_ATAIO_DMA;
sectors_out = ((dxfer_len >> 9) & 0xffff);
auxiliary = 0;
} else {
command_out = ATA_RECV_FPDMA_QUEUED;
sectors_out = ATA_RFPDMA_ZAC_MGMT_IN << 8;
auxiliary = (zm_action & 0xf) | (zone_flags << 8);
ata_flags = CAM_ATAIO_FPDMA;
/*
* For RECEIVE FPDMA QUEUED, the transfer length is
* encoded in the FEATURE register, and 0 means
* that 65536 512 byte blocks are to be tranferred.
* In practice, it is unlikely we will see a transfer that
* large.
*/
if (dxfer_len == (65536 * 512)) {
features_out = 0;
} else {
/*
* Yes, the caller can theoretically request a
* transfer larger than we can handle.
* Anyone using this function needs enough
* knowledge to avoid doing that.
*/
features_out = ((dxfer_len >> 9) & 0xffff);
}
}
cam_fill_ataio(ataio,
/*retries*/ retries,
/*cbfcnp*/ cbfcnp,
/*flags*/ CAM_DIR_IN,
/*tag_action*/ 0,
/*data_ptr*/ data_ptr,
/*dxfer_len*/ dxfer_len,
/*timeout*/ timeout);
ata_48bit_cmd(ataio,
/*cmd*/ command_out,
/*features*/ features_out,
/*lba*/ zone_id,
/*sector_count*/ sectors_out);
ataio->cmd.flags |= ata_flags;
if (auxiliary != 0) {
ataio->ata_flags |= ATA_FLAG_AUX;
ataio->aux = auxiliary;
}
}
void
ata_param_fixup(struct ata_params *ident_buf)
{
int16_t *ptr;
for (ptr = (int16_t *)ident_buf;
ptr < (int16_t *)ident_buf + sizeof(struct ata_params)/2; ptr++) {
*ptr = le16toh(*ptr);
}
if (strncmp(ident_buf->model, "FX", 2) &&
strncmp(ident_buf->model, "NEC", 3) &&
strncmp(ident_buf->model, "Pioneer", 7) &&
strncmp(ident_buf->model, "SHARP", 5)) {
ata_bswap(ident_buf->model, sizeof(ident_buf->model));
ata_bswap(ident_buf->revision, sizeof(ident_buf->revision));
ata_bswap(ident_buf->serial, sizeof(ident_buf->serial));
}
ata_btrim(ident_buf->model, sizeof(ident_buf->model));
ata_bpack(ident_buf->model, ident_buf->model, sizeof(ident_buf->model));
ata_btrim(ident_buf->revision, sizeof(ident_buf->revision));
ata_bpack(ident_buf->revision, ident_buf->revision, sizeof(ident_buf->revision));
ata_btrim(ident_buf->serial, sizeof(ident_buf->serial));
ata_bpack(ident_buf->serial, ident_buf->serial, sizeof(ident_buf->serial));
}