freebsd-src/sys/powerpc/powernv/platform_powernv.c
Warner Losh fdafd315ad sys: Automated cleanup of cdefs and other formatting
Apply the following automated changes to try to eliminate
no-longer-needed sys/cdefs.h includes as well as now-empty
blank lines in a row.

Remove /^#if.*\n#endif.*\n#include\s+<sys/cdefs.h>.*\n/
Remove /\n+#include\s+<sys/cdefs.h>.*\n+#if.*\n#endif.*\n+/
Remove /\n+#if.*\n#endif.*\n+/
Remove /^#if.*\n#endif.*\n/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/types.h>/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/param.h>/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/capsicum.h>/

Sponsored by:		Netflix
2023-11-26 22:24:00 -07:00

625 lines
15 KiB
C

/*-
* Copyright (c) 2015 Nathan Whitehorn
* Copyright (c) 2017-2018 Semihalf
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/hid.h>
#include <machine/platformvar.h>
#include <machine/pmap.h>
#include <machine/rtas.h>
#include <machine/smp.h>
#include <machine/spr.h>
#include <machine/trap.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/ofw_machdep.h>
#include <powerpc/aim/mmu_oea64.h>
#include "platform_if.h"
#include "opal.h"
#ifdef SMP
extern void *ap_pcpu;
#endif
void (*powernv_smp_ap_extra_init)(void);
static int powernv_probe(platform_t);
static int powernv_attach(platform_t);
void powernv_mem_regions(platform_t, struct mem_region *phys, int *physsz,
struct mem_region *avail, int *availsz);
static void powernv_numa_mem_regions(platform_t plat, struct numa_mem_region *phys, int *physsz);
static u_long powernv_timebase_freq(platform_t, struct cpuref *cpuref);
static int powernv_smp_first_cpu(platform_t, struct cpuref *cpuref);
static int powernv_smp_next_cpu(platform_t, struct cpuref *cpuref);
static int powernv_smp_get_bsp(platform_t, struct cpuref *cpuref);
static void powernv_smp_ap_init(platform_t);
#ifdef SMP
static int powernv_smp_start_cpu(platform_t, struct pcpu *cpu);
static void powernv_smp_probe_threads(platform_t);
static struct cpu_group *powernv_smp_topo(platform_t plat);
#endif
static void powernv_reset(platform_t);
static void powernv_cpu_idle(sbintime_t sbt);
static int powernv_cpuref_init(void);
static int powernv_node_numa_domain(platform_t platform, phandle_t node);
static platform_method_t powernv_methods[] = {
PLATFORMMETHOD(platform_probe, powernv_probe),
PLATFORMMETHOD(platform_attach, powernv_attach),
PLATFORMMETHOD(platform_mem_regions, powernv_mem_regions),
PLATFORMMETHOD(platform_numa_mem_regions, powernv_numa_mem_regions),
PLATFORMMETHOD(platform_timebase_freq, powernv_timebase_freq),
PLATFORMMETHOD(platform_smp_ap_init, powernv_smp_ap_init),
PLATFORMMETHOD(platform_smp_first_cpu, powernv_smp_first_cpu),
PLATFORMMETHOD(platform_smp_next_cpu, powernv_smp_next_cpu),
PLATFORMMETHOD(platform_smp_get_bsp, powernv_smp_get_bsp),
#ifdef SMP
PLATFORMMETHOD(platform_smp_start_cpu, powernv_smp_start_cpu),
PLATFORMMETHOD(platform_smp_probe_threads, powernv_smp_probe_threads),
PLATFORMMETHOD(platform_smp_topo, powernv_smp_topo),
#endif
PLATFORMMETHOD(platform_node_numa_domain, powernv_node_numa_domain),
PLATFORMMETHOD(platform_reset, powernv_reset),
{ 0, 0 }
};
static platform_def_t powernv_platform = {
"powernv",
powernv_methods,
0
};
static struct cpuref platform_cpuref[MAXCPU];
static int platform_cpuref_cnt;
static int platform_cpuref_valid;
static int platform_associativity;
PLATFORM_DEF(powernv_platform);
static uint64_t powernv_boot_pir;
static int
powernv_probe(platform_t plat)
{
if (opal_check() == 0)
return (BUS_PROBE_SPECIFIC);
return (ENXIO);
}
static int
powernv_attach(platform_t plat)
{
uint32_t nptlp, shift = 0, slb_encoding = 0;
int32_t lp_size, lp_encoding;
char buf[255];
pcell_t refpoints[3];
pcell_t prop;
phandle_t cpu;
phandle_t opal;
int res, len, idx;
register_t msr;
bool has_lp;
/* Ping OPAL again just to make sure */
opal_check();
#if BYTE_ORDER == LITTLE_ENDIAN
opal_call(OPAL_REINIT_CPUS, 2 /* Little endian */);
#else
opal_call(OPAL_REINIT_CPUS, 1 /* Big endian */);
#endif
opal = OF_finddevice("/ibm,opal");
platform_associativity = 4; /* Skiboot default. */
if (OF_getencprop(opal, "ibm,associativity-reference-points", refpoints,
sizeof(refpoints)) > 0) {
platform_associativity = refpoints[0];
}
if (cpu_idle_hook == NULL)
cpu_idle_hook = powernv_cpu_idle;
powernv_boot_pir = mfspr(SPR_PIR);
/* LPID must not be altered when PSL_DR or PSL_IR is set */
msr = mfmsr();
mtmsr(msr & ~(PSL_DR | PSL_IR));
/* Direct interrupts to SRR instead of HSRR and reset LPCR otherwise */
mtspr(SPR_LPID, 0);
isync();
if (cpu_features2 & PPC_FEATURE2_ARCH_3_00)
lpcr |= LPCR_HVICE;
#if BYTE_ORDER == LITTLE_ENDIAN
lpcr |= LPCR_ILE;
#endif
mtspr(SPR_LPCR, lpcr);
isync();
mtmsr(msr);
powernv_cpuref_init();
/* Set SLB count from device tree */
cpu = OF_peer(0);
cpu = OF_child(cpu);
while (cpu != 0) {
res = OF_getprop(cpu, "name", buf, sizeof(buf));
if (res > 0 && strcmp(buf, "cpus") == 0)
break;
cpu = OF_peer(cpu);
}
if (cpu == 0)
goto out;
cpu = OF_child(cpu);
while (cpu != 0) {
res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
if (res > 0 && strcmp(buf, "cpu") == 0)
break;
cpu = OF_peer(cpu);
}
if (cpu == 0)
goto out;
res = OF_getencprop(cpu, "ibm,slb-size", &prop, sizeof(prop));
if (res > 0)
n_slbs = prop;
/*
* Scan the large page size property for PAPR compatible machines.
* See PAPR D.5 Changes to Section 5.1.4, 'CPU Node Properties'
* for the encoding of the property.
*/
len = OF_getproplen(cpu, "ibm,segment-page-sizes");
if (len > 0) {
/*
* We have to use a variable length array on the stack
* since we have very limited stack space.
*/
pcell_t arr[len/sizeof(cell_t)];
res = OF_getencprop(cpu, "ibm,segment-page-sizes", arr,
sizeof(arr));
len /= 4;
idx = 0;
has_lp = false;
while (len > 0) {
shift = arr[idx];
slb_encoding = arr[idx + 1];
nptlp = arr[idx + 2];
idx += 3;
len -= 3;
while (len > 0 && nptlp) {
lp_size = arr[idx];
lp_encoding = arr[idx+1];
if (slb_encoding == SLBV_L && lp_encoding == 0)
has_lp = true;
if (slb_encoding == SLB_PGSZ_4K_4K &&
lp_encoding == LP_4K_16M)
moea64_has_lp_4k_16m = true;
idx += 2;
len -= 2;
nptlp--;
}
if (has_lp && moea64_has_lp_4k_16m)
break;
}
if (!has_lp)
panic("Standard large pages (SLB[L] = 1, PTE[LP] = 0) "
"not supported by this system.");
moea64_large_page_shift = shift;
moea64_large_page_size = 1ULL << lp_size;
}
out:
return (0);
}
void
powernv_mem_regions(platform_t plat, struct mem_region *phys, int *physsz,
struct mem_region *avail, int *availsz)
{
ofw_mem_regions(phys, physsz, avail, availsz);
}
static void
powernv_numa_mem_regions(platform_t plat, struct numa_mem_region *phys, int *physsz)
{
ofw_numa_mem_regions(phys, physsz);
}
static u_long
powernv_timebase_freq(platform_t plat, struct cpuref *cpuref)
{
char buf[8];
phandle_t cpu, dev, root;
int res;
int32_t ticks = -1;
root = OF_peer(0);
dev = OF_child(root);
while (dev != 0) {
res = OF_getprop(dev, "name", buf, sizeof(buf));
if (res > 0 && strcmp(buf, "cpus") == 0)
break;
dev = OF_peer(dev);
}
for (cpu = OF_child(dev); cpu != 0; cpu = OF_peer(cpu)) {
res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
if (res > 0 && strcmp(buf, "cpu") == 0)
break;
}
if (cpu == 0)
return (512000000);
OF_getencprop(cpu, "timebase-frequency", &ticks, sizeof(ticks));
if (ticks <= 0)
panic("Unable to determine timebase frequency!");
return (ticks);
}
static int
powernv_cpuref_init(void)
{
phandle_t cpu, dev;
char buf[32];
int a, res, tmp_cpuref_cnt;
static struct cpuref tmp_cpuref[MAXCPU];
cell_t interrupt_servers[32];
uint64_t bsp;
if (platform_cpuref_valid)
return (0);
dev = OF_peer(0);
dev = OF_child(dev);
while (dev != 0) {
res = OF_getprop(dev, "name", buf, sizeof(buf));
if (res > 0 && strcmp(buf, "cpus") == 0)
break;
dev = OF_peer(dev);
}
bsp = 0;
tmp_cpuref_cnt = 0;
for (cpu = OF_child(dev); cpu != 0; cpu = OF_peer(cpu)) {
res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
if (res > 0 && strcmp(buf, "cpu") == 0) {
if (!ofw_bus_node_status_okay(cpu))
continue;
res = OF_getproplen(cpu, "ibm,ppc-interrupt-server#s");
if (res > 0) {
OF_getencprop(cpu, "ibm,ppc-interrupt-server#s",
interrupt_servers, res);
for (a = 0; a < res/sizeof(cell_t); a++) {
tmp_cpuref[tmp_cpuref_cnt].cr_hwref = interrupt_servers[a];
tmp_cpuref[tmp_cpuref_cnt].cr_cpuid = tmp_cpuref_cnt;
tmp_cpuref[tmp_cpuref_cnt].cr_domain =
powernv_node_numa_domain(NULL, cpu);
if (interrupt_servers[a] == (uint32_t)powernv_boot_pir)
bsp = tmp_cpuref_cnt;
tmp_cpuref_cnt++;
}
}
}
}
/* Map IDs, so BSP has CPUID 0 regardless of hwref */
for (a = bsp; a < tmp_cpuref_cnt; a++) {
platform_cpuref[platform_cpuref_cnt].cr_hwref = tmp_cpuref[a].cr_hwref;
platform_cpuref[platform_cpuref_cnt].cr_cpuid = platform_cpuref_cnt;
platform_cpuref[platform_cpuref_cnt].cr_domain = tmp_cpuref[a].cr_domain;
platform_cpuref_cnt++;
}
for (a = 0; a < bsp; a++) {
platform_cpuref[platform_cpuref_cnt].cr_hwref = tmp_cpuref[a].cr_hwref;
platform_cpuref[platform_cpuref_cnt].cr_cpuid = platform_cpuref_cnt;
platform_cpuref[platform_cpuref_cnt].cr_domain = tmp_cpuref[a].cr_domain;
platform_cpuref_cnt++;
}
platform_cpuref_valid = 1;
return (0);
}
static int
powernv_smp_first_cpu(platform_t plat, struct cpuref *cpuref)
{
if (platform_cpuref_valid == 0)
return (EINVAL);
cpuref->cr_cpuid = 0;
cpuref->cr_hwref = platform_cpuref[0].cr_hwref;
cpuref->cr_domain = platform_cpuref[0].cr_domain;
return (0);
}
static int
powernv_smp_next_cpu(platform_t plat, struct cpuref *cpuref)
{
int id;
if (platform_cpuref_valid == 0)
return (EINVAL);
id = cpuref->cr_cpuid + 1;
if (id >= platform_cpuref_cnt)
return (ENOENT);
cpuref->cr_cpuid = platform_cpuref[id].cr_cpuid;
cpuref->cr_hwref = platform_cpuref[id].cr_hwref;
cpuref->cr_domain = platform_cpuref[id].cr_domain;
return (0);
}
static int
powernv_smp_get_bsp(platform_t plat, struct cpuref *cpuref)
{
cpuref->cr_cpuid = platform_cpuref[0].cr_cpuid;
cpuref->cr_hwref = platform_cpuref[0].cr_hwref;
cpuref->cr_domain = platform_cpuref[0].cr_domain;
return (0);
}
#ifdef SMP
static int
powernv_smp_start_cpu(platform_t plat, struct pcpu *pc)
{
int result;
ap_pcpu = pc;
powerpc_sync();
result = opal_call(OPAL_START_CPU, pc->pc_hwref, EXC_RST);
if (result != OPAL_SUCCESS) {
printf("OPAL error (%d): unable to start AP %d\n",
result, (int)pc->pc_hwref);
return (ENXIO);
}
return (0);
}
static void
powernv_smp_probe_threads(platform_t plat)
{
char buf[8];
phandle_t cpu, dev, root;
int res, nthreads;
root = OF_peer(0);
dev = OF_child(root);
while (dev != 0) {
res = OF_getprop(dev, "name", buf, sizeof(buf));
if (res > 0 && strcmp(buf, "cpus") == 0)
break;
dev = OF_peer(dev);
}
nthreads = 1;
for (cpu = OF_child(dev); cpu != 0; cpu = OF_peer(cpu)) {
res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
if (res <= 0 || strcmp(buf, "cpu") != 0)
continue;
res = OF_getproplen(cpu, "ibm,ppc-interrupt-server#s");
if (res >= 0)
nthreads = res / sizeof(cell_t);
else
nthreads = 1;
break;
}
smp_threads_per_core = nthreads;
if (mp_ncpus % nthreads == 0)
mp_ncores = mp_ncpus / nthreads;
}
static struct cpu_group *
cpu_group_init(struct cpu_group *group, struct cpu_group *parent,
const cpuset_t *cpus, int children, int level, int flags)
{
struct cpu_group *child;
child = children != 0 ? smp_topo_alloc(children) : NULL;
group->cg_parent = parent;
group->cg_child = child;
CPU_COPY(cpus, &group->cg_mask);
group->cg_count = CPU_COUNT(cpus);
group->cg_children = children;
group->cg_level = level;
group->cg_flags = flags;
return (child);
}
static struct cpu_group *
powernv_smp_topo(platform_t plat)
{
struct cpu_group *core, *dom, *root;
cpuset_t corecpus, domcpus;
int cpuid, i, j, k, ncores;
if (mp_ncpus % smp_threads_per_core != 0) {
printf("%s: irregular SMP topology (%d threads, %d per core)\n",
__func__, mp_ncpus, smp_threads_per_core);
return (smp_topo_none());
}
root = smp_topo_alloc(1);
dom = cpu_group_init(root, NULL, &all_cpus, vm_ndomains, CG_SHARE_NONE,
0);
/*
* Redundant layers will be collapsed by the caller so we don't need a
* special case for a single domain.
*/
for (i = 0; i < vm_ndomains; i++, dom++) {
CPU_COPY(&cpuset_domain[i], &domcpus);
ncores = CPU_COUNT(&domcpus) / smp_threads_per_core;
KASSERT(CPU_COUNT(&domcpus) % smp_threads_per_core == 0,
("%s: domain %d core count not divisible by thread count",
__func__, i));
core = cpu_group_init(dom, root, &domcpus, ncores, CG_SHARE_L3,
0);
for (j = 0; j < ncores; j++, core++) {
/*
* Assume that consecutive CPU IDs correspond to sibling
* threads.
*/
CPU_ZERO(&corecpus);
for (k = 0; k < smp_threads_per_core; k++) {
cpuid = CPU_FFS(&domcpus) - 1;
CPU_CLR(cpuid, &domcpus);
CPU_SET(cpuid, &corecpus);
}
(void)cpu_group_init(core, dom, &corecpus, 0,
CG_SHARE_L1, CG_FLAG_SMT);
}
}
return (root);
}
#endif
static void
powernv_reset(platform_t platform)
{
opal_call(OPAL_CEC_REBOOT);
}
static void
powernv_smp_ap_init(platform_t platform)
{
if (powernv_smp_ap_extra_init != NULL)
powernv_smp_ap_extra_init();
}
static void
powernv_cpu_idle(sbintime_t sbt)
{
}
static int
powernv_node_numa_domain(platform_t platform, phandle_t node)
{
/* XXX: Is locking necessary in here? */
static int numa_domains[MAXMEMDOM];
static int numa_max_domain;
cell_t associativity[5];
int i, res;
#ifndef NUMA
return (0);
#endif
i = 0;
TUNABLE_INT_FETCH("vm.numa.disabled", &i);
if (i)
return (0);
res = OF_getencprop(node, "ibm,associativity",
associativity, sizeof(associativity));
/*
* If this node doesn't have associativity, or if there are not
* enough elements in it, check its parent.
*/
if (res < (int)(sizeof(cell_t) * (platform_associativity + 1))) {
node = OF_parent(node);
/* If already at the root, use default domain. */
if (node == 0)
return (0);
return (powernv_node_numa_domain(platform, node));
}
for (i = 0; i < numa_max_domain; i++) {
if (numa_domains[i] == associativity[platform_associativity])
return (i);
}
if (i < MAXMEMDOM)
numa_domains[numa_max_domain++] =
associativity[platform_associativity];
else
i = 0;
return (i);
}
/* Set up the Nest MMU on POWER9 relatively early, but after pmap is setup. */
static void
powernv_setup_nmmu(void *unused)
{
if (opal_check() != 0)
return;
opal_call(OPAL_NMMU_SET_PTCR, -1, mfspr(SPR_PTCR));
}
SYSINIT(powernv_setup_nmmu, SI_SUB_CPU, SI_ORDER_ANY, powernv_setup_nmmu, NULL);