freebsd-src/lib/msun/ld80/s_cospil.c
Steve Kargl 2d3b0a687b Fixes for bugs in sinpi/cospi/tanpi
patch to fix half-cycle trigonometric functions

Paul Zimmermann, a MPFR developer, contacted me about large errors in
the half-cycle trigonometric functions.  I've have investigated these
issues and developed the attached patch. The float, double, and ld80
(long double) changes have been tested.

Caveat emptor: The ld128 changes have not been compiled.  The ld128
changes have not been tested.  I do not have access to a system that
uses ld128 floating point.

Here is an itemized list of changes:

* lib/msun/src/math_private.h:
  . Add fast floor macros to compute the integer part of |x| for
    0 <= |x| 01xp(N-1), where N is the precision of the type of x.
    These macros are used in the half-cycle trigonometric functions
    (e.g., sinpi(x)).
  . The FFLOOR80 macros is used with the Intel 80-bit extended double
    functions.  This macors corrects an off-by-one error, which led to
    enormous error for |x| > 0x1p32.

* lib/msun/src/s_cospif.c:
* lib/msun/src/s_cospi.c:
* lib/msun/ld80/s_cospil.c:
  . Update Copyright years.
  . Use FFLOOR*() macro to get integer part of |x|.
  . Correct handle the range 0x1p(N-1) <= |x| < 0x1pN.  Here, one needs
    to determine if the integral value of |x| is even or odd to choose
    +1 or -1.  If |x| >= 0x1pN, always return +1.

* lib/msun/src/s_sinpif.c:
* lib/msun/src/s_sinpi.c:
* lib/msun/ld80/s_sinpil.c:
  . Update Copyright years.
  . Use FFLOOR*() macro to get integer part of |x|.

* lib/msun/src/s_tanpif.c:
* lib/msun/src/s_tanpi.c:
* lib/msun/ld80/s_tanpil.c:
  . Update Copyright years.
  . For +-0.5, return +-inf.  Previously, tanpi[fl]() returned an NaN.
  . Use FFLOOR*() to get integer part of |x|.  Need to determine if the
    integer part is even or odd.  This is used to set +-0 for |x|
integral
    and +-inf for (n+1/2).
  . For 0x1p(N-1) <= |x| < 0x1pN need to determine if x is an even or
odd
    integer to select +0 or -0.  For |x| >= 0x1pN, it is always an even
    integer, select 0.
  . Note, tanpi[fl](x) is an odd function, so one needs to consider
    tanpi[fl](-|x|) = - tanpi[fl](|x|).

* lib/msun/ld128/s_cospil.c:
* lib/msun/ld128/s_sinpil.c:
* lib/msun/ld128/s_tanpil.c:
  . Update Copyright years.
  . These routines use an FFLOOR128 macros, which likely should be
    replaced by a bit twiddling algorithm.
  . The same considerations above are applied to 0x1p112 <= |x| <
0x1p113,
    and |x| >= 0x1p113 cases.
  . Note, even and odd determination used fmodl(x,2.), which is likely
    slow.

PR:	272742
MFC after:	1 week
2023-08-03 07:27:58 +03:00

122 lines
3.2 KiB
C

/*-
* Copyright (c) 2017, 2023 Steven G. Kargl
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* See ../src/s_cospi.c for implementation details.
*/
#ifdef __i386__
#include <ieeefp.h>
#endif
#include <stdint.h>
#include "fpmath.h"
#include "math.h"
#include "math_private.h"
static const double
pi_hi = 3.1415926814079285e+00, /* 0x400921fb 0x58000000 */
pi_lo =-2.7818135228334233e-08; /* 0xbe5dde97 0x3dcb3b3a */
#include "k_cospil.h"
#include "k_sinpil.h"
volatile static const double vzero = 0;
long double
cospil(long double x)
{
long double ax, c;
uint64_t lx, m;
uint32_t j0;
uint16_t hx, ix;
EXTRACT_LDBL80_WORDS(hx, lx, x);
ix = hx & 0x7fff;
INSERT_LDBL80_WORDS(ax, ix, lx);
ENTERI();
if (ix < 0x3fff) { /* |x| < 1 */
if (ix < 0x3ffd) { /* |x| < 0.25 */
if (ix < 0x3fdd) { /* |x| < 0x1p-34 */
if ((int)x == 0)
RETURNI(1);
}
RETURNI(__kernel_cospil(ax));
}
if (ix < 0x3ffe) /* |x| < 0.5 */
c = __kernel_sinpil(0.5 - ax);
else if (lx < 0xc000000000000000ull) { /* |x| < 0.75 */
if (ax == 0.5)
RETURNI(0);
c = -__kernel_sinpil(ax - 0.5);
} else
c = -__kernel_cospil(1 - ax);
RETURNI(c);
}
if (ix < 0x403e) { /* 1 <= |x| < 0x1p63 */
FFLOORL80(x, j0, ix, lx); /* Integer part of ax. */
ax -= x;
EXTRACT_LDBL80_WORDS(ix, lx, ax);
if (ix < 0x3ffe) { /* |x| < 0.5 */
if (ix < 0x3ffd) /* |x| < 0.25 */
c = ix == 0 ? 1 : __kernel_cospil(ax);
else
c = __kernel_sinpil(0.5 - ax);
} else {
if (lx < 0xc000000000000000ull) { /* |x| < 0.75 */
if (ax == 0.5)
RETURNI(0);
c = -__kernel_sinpil(ax - 0.5);
} else
c = -__kernel_cospil(1 - ax);
}
if (j0 > 40)
x -= 0x1p40;
if (j0 > 30)
x -= 0x1p30;
j0 = (uint32_t)x;
RETURNI(j0 & 1 ? -c : c);
}
if (ix >= 0x7fff)
RETURNI(vzero / vzero);
/*
* For 0x1p63 <= |x| < 0x1p64 need to determine if x is an even
* or odd integer to return t = +1 or -1.
* For |x| >= 0x1p64, it is always an even integer, so t = 1.
*/
RETURNI(ix >= 0x403f ? 1 : ((lx & 1) ? -1 : 1));
}