freebsd-src/sys/fs/nullfs/null_vnops.c
Konstantin Belousov 326836a1eb nullfs: do not allow bypass on copy_file_range()
There must be no callers of VOP_COPY_FILE_RANGE() except
vn_copy_file_range(), which does enough to find the write-vnodes where
to call the VOP.

Reviewed by:	markj, Olivier Certner <olce.freebsd@certner.fr>
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D42603
2023-11-28 19:32:53 +02:00

1183 lines
30 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* John Heidemann of the UCLA Ficus project.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Ancestors:
* ...and...
*/
/*
* Null Layer
*
* (See mount_nullfs(8) for more information.)
*
* The null layer duplicates a portion of the filesystem
* name space under a new name. In this respect, it is
* similar to the loopback filesystem. It differs from
* the loopback fs in two respects: it is implemented using
* a stackable layers techniques, and its "null-node"s stack above
* all lower-layer vnodes, not just over directory vnodes.
*
* The null layer has two purposes. First, it serves as a demonstration
* of layering by proving a layer which does nothing. (It actually
* does everything the loopback filesystem does, which is slightly
* more than nothing.) Second, the null layer can serve as a prototype
* layer. Since it provides all necessary layer framework,
* new filesystem layers can be created very easily be starting
* with a null layer.
*
* The remainder of this man page examines the null layer as a basis
* for constructing new layers.
*
*
* INSTANTIATING NEW NULL LAYERS
*
* New null layers are created with mount_nullfs(8).
* Mount_nullfs(8) takes two arguments, the pathname
* of the lower vfs (target-pn) and the pathname where the null
* layer will appear in the namespace (alias-pn). After
* the null layer is put into place, the contents
* of target-pn subtree will be aliased under alias-pn.
*
*
* OPERATION OF A NULL LAYER
*
* The null layer is the minimum filesystem layer,
* simply bypassing all possible operations to the lower layer
* for processing there. The majority of its activity centers
* on the bypass routine, through which nearly all vnode operations
* pass.
*
* The bypass routine accepts arbitrary vnode operations for
* handling by the lower layer. It begins by examining vnode
* operation arguments and replacing any null-nodes by their
* lower-layer equivlants. It then invokes the operation
* on the lower layer. Finally, it replaces the null-nodes
* in the arguments and, if a vnode is return by the operation,
* stacks a null-node on top of the returned vnode.
*
* Although bypass handles most operations, vop_getattr, vop_lock,
* vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
* bypassed. Vop_getattr must change the fsid being returned.
* Vop_lock and vop_unlock must handle any locking for the
* current vnode as well as pass the lock request down.
* Vop_inactive and vop_reclaim are not bypassed so that
* they can handle freeing null-layer specific data. Vop_print
* is not bypassed to avoid excessive debugging information.
* Also, certain vnode operations change the locking state within
* the operation (create, mknod, remove, link, rename, mkdir, rmdir,
* and symlink). Ideally these operations should not change the
* lock state, but should be changed to let the caller of the
* function unlock them. Otherwise all intermediate vnode layers
* (such as union, umapfs, etc) must catch these functions to do
* the necessary locking at their layer.
*
*
* INSTANTIATING VNODE STACKS
*
* Mounting associates the null layer with a lower layer,
* effect stacking two VFSes. Vnode stacks are instead
* created on demand as files are accessed.
*
* The initial mount creates a single vnode stack for the
* root of the new null layer. All other vnode stacks
* are created as a result of vnode operations on
* this or other null vnode stacks.
*
* New vnode stacks come into existence as a result of
* an operation which returns a vnode.
* The bypass routine stacks a null-node above the new
* vnode before returning it to the caller.
*
* For example, imagine mounting a null layer with
* "mount_nullfs /usr/include /dev/layer/null".
* Changing directory to /dev/layer/null will assign
* the root null-node (which was created when the null layer was mounted).
* Now consider opening "sys". A vop_lookup would be
* done on the root null-node. This operation would bypass through
* to the lower layer which would return a vnode representing
* the UFS "sys". Null_bypass then builds a null-node
* aliasing the UFS "sys" and returns this to the caller.
* Later operations on the null-node "sys" will repeat this
* process when constructing other vnode stacks.
*
*
* CREATING OTHER FILE SYSTEM LAYERS
*
* One of the easiest ways to construct new filesystem layers is to make
* a copy of the null layer, rename all files and variables, and
* then begin modifing the copy. Sed can be used to easily rename
* all variables.
*
* The umap layer is an example of a layer descended from the
* null layer.
*
*
* INVOKING OPERATIONS ON LOWER LAYERS
*
* There are two techniques to invoke operations on a lower layer
* when the operation cannot be completely bypassed. Each method
* is appropriate in different situations. In both cases,
* it is the responsibility of the aliasing layer to make
* the operation arguments "correct" for the lower layer
* by mapping a vnode arguments to the lower layer.
*
* The first approach is to call the aliasing layer's bypass routine.
* This method is most suitable when you wish to invoke the operation
* currently being handled on the lower layer. It has the advantage
* that the bypass routine already must do argument mapping.
* An example of this is null_getattrs in the null layer.
*
* A second approach is to directly invoke vnode operations on
* the lower layer with the VOP_OPERATIONNAME interface.
* The advantage of this method is that it is easy to invoke
* arbitrary operations on the lower layer. The disadvantage
* is that vnode arguments must be manualy mapped.
*
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/sysctl.h>
#include <sys/vnode.h>
#include <sys/stat.h>
#include <fs/nullfs/null.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vnode_pager.h>
static int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */
SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
&null_bug_bypass, 0, "");
/*
* This is the 10-Apr-92 bypass routine.
* This version has been optimized for speed, throwing away some
* safety checks. It should still always work, but it's not as
* robust to programmer errors.
*
* In general, we map all vnodes going down and unmap them on the way back.
* As an exception to this, vnodes can be marked "unmapped" by setting
* the Nth bit in operation's vdesc_flags.
*
* Also, some BSD vnode operations have the side effect of vrele'ing
* their arguments. With stacking, the reference counts are held
* by the upper node, not the lower one, so we must handle these
* side-effects here. This is not of concern in Sun-derived systems
* since there are no such side-effects.
*
* This makes the following assumptions:
* - only one returned vpp
* - no INOUT vpp's (Sun's vop_open has one of these)
* - the vnode operation vector of the first vnode should be used
* to determine what implementation of the op should be invoked
* - all mapped vnodes are of our vnode-type (NEEDSWORK:
* problems on rmdir'ing mount points and renaming?)
*/
int
null_bypass(struct vop_generic_args *ap)
{
struct vnode **this_vp_p;
struct vnode *old_vps[VDESC_MAX_VPS];
struct vnode **vps_p[VDESC_MAX_VPS];
struct vnode ***vppp;
struct vnode *lvp;
struct vnodeop_desc *descp = ap->a_desc;
int error, i, reles;
if (null_bug_bypass)
printf ("null_bypass: %s\n", descp->vdesc_name);
#ifdef DIAGNOSTIC
/*
* We require at least one vp.
*/
if (descp->vdesc_vp_offsets == NULL ||
descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
panic ("null_bypass: no vp's in map");
#endif
/*
* Map the vnodes going in.
* Later, we'll invoke the operation based on
* the first mapped vnode's operation vector.
*/
reles = descp->vdesc_flags;
for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
break; /* bail out at end of list */
vps_p[i] = this_vp_p = VOPARG_OFFSETTO(struct vnode **,
descp->vdesc_vp_offsets[i], ap);
/*
* We're not guaranteed that any but the first vnode
* are of our type. Check for and don't map any
* that aren't. (We must always map first vp or vclean fails.)
*/
if (i != 0 && (*this_vp_p == NULLVP ||
(*this_vp_p)->v_op != &null_vnodeops)) {
old_vps[i] = NULLVP;
} else {
old_vps[i] = *this_vp_p;
*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
/*
* The upper vnode reference to the lower
* vnode is the only reference that keeps our
* pointer to the lower vnode alive. If lower
* vnode is relocked during the VOP call,
* upper vnode might become unlocked and
* reclaimed, which invalidates our reference.
* Add a transient hold around VOP call.
*/
vhold(*this_vp_p);
/*
* XXX - Several operations have the side effect
* of vrele'ing their vp's. We must account for
* that. (This should go away in the future.)
*/
if (reles & VDESC_VP0_WILLRELE)
vref(*this_vp_p);
}
}
/*
* Call the operation on the lower layer
* with the modified argument structure.
*/
if (vps_p[0] != NULL && *vps_p[0] != NULL) {
error = VCALL(ap);
} else {
printf("null_bypass: no map for %s\n", descp->vdesc_name);
error = EINVAL;
}
/*
* Maintain the illusion of call-by-value
* by restoring vnodes in the argument structure
* to their original value.
*/
reles = descp->vdesc_flags;
for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
break; /* bail out at end of list */
if (old_vps[i] != NULL) {
lvp = *(vps_p[i]);
/*
* Get rid of the transient hold on lvp.
* If lowervp was unlocked during VOP
* operation, nullfs upper vnode could have
* been reclaimed, which changes its v_vnlock
* back to private v_lock. In this case we
* must move lock ownership from lower to
* upper (reclaimed) vnode.
*/
if (lvp != NULLVP) {
if (VOP_ISLOCKED(lvp) == LK_EXCLUSIVE &&
old_vps[i]->v_vnlock != lvp->v_vnlock) {
VOP_UNLOCK(lvp);
VOP_LOCK(old_vps[i], LK_EXCLUSIVE |
LK_RETRY);
}
vdrop(lvp);
}
*(vps_p[i]) = old_vps[i];
#if 0
if (reles & VDESC_VP0_WILLUNLOCK)
VOP_UNLOCK(*(vps_p[i]), 0);
#endif
if (reles & VDESC_VP0_WILLRELE)
vrele(*(vps_p[i]));
}
}
/*
* Map the possible out-going vpp
* (Assumes that the lower layer always returns
* a VREF'ed vpp unless it gets an error.)
*/
if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && error == 0) {
/*
* XXX - even though some ops have vpp returned vp's,
* several ops actually vrele this before returning.
* We must avoid these ops.
* (This should go away when these ops are regularized.)
*/
vppp = VOPARG_OFFSETTO(struct vnode ***,
descp->vdesc_vpp_offset, ap);
if (*vppp != NULL)
error = null_nodeget(old_vps[0]->v_mount, **vppp,
*vppp);
}
return (error);
}
static int
null_add_writecount(struct vop_add_writecount_args *ap)
{
struct vnode *lvp, *vp;
int error;
vp = ap->a_vp;
lvp = NULLVPTOLOWERVP(vp);
VI_LOCK(vp);
/* text refs are bypassed to lowervp */
VNASSERT(vp->v_writecount >= 0, vp, ("wrong null writecount"));
VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp,
("wrong writecount inc %d", ap->a_inc));
error = VOP_ADD_WRITECOUNT(lvp, ap->a_inc);
if (error == 0)
vp->v_writecount += ap->a_inc;
VI_UNLOCK(vp);
return (error);
}
/*
* We have to carry on the locking protocol on the null layer vnodes
* as we progress through the tree. We also have to enforce read-only
* if this layer is mounted read-only.
*/
static int
null_lookup(struct vop_lookup_args *ap)
{
struct componentname *cnp = ap->a_cnp;
struct vnode *dvp = ap->a_dvp;
int flags = cnp->cn_flags;
struct vnode *vp, *ldvp, *lvp;
struct mount *mp;
int error;
mp = dvp->v_mount;
if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 &&
(cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
return (EROFS);
/*
* Although it is possible to call null_bypass(), we'll do
* a direct call to reduce overhead
*/
ldvp = NULLVPTOLOWERVP(dvp);
vp = lvp = NULL;
/*
* Renames in the lower mounts might create an inconsistent
* configuration where lower vnode is moved out of the
* directory tree remounted by our null mount. Do not try to
* handle it fancy, just avoid VOP_LOOKUP() with DOTDOT name
* which cannot be handled by VOP, at least passing over lower
* root.
*/
if ((ldvp->v_vflag & VV_ROOT) != 0 && (flags & ISDOTDOT) != 0) {
KASSERT((dvp->v_vflag & VV_ROOT) == 0,
("ldvp %p fl %#x dvp %p fl %#x flags %#x",
ldvp, ldvp->v_vflag, dvp, dvp->v_vflag, flags));
return (ENOENT);
}
/*
* Hold ldvp. The reference on it, owned by dvp, is lost in
* case of dvp reclamation, and we need ldvp to move our lock
* from ldvp to dvp.
*/
vhold(ldvp);
error = VOP_LOOKUP(ldvp, &lvp, cnp);
/*
* VOP_LOOKUP() on lower vnode may unlock ldvp, which allows
* dvp to be reclaimed due to shared v_vnlock. Check for the
* doomed state and return error.
*/
if (VN_IS_DOOMED(dvp)) {
if (error == 0 || error == EJUSTRETURN) {
if (lvp != NULL)
vput(lvp);
error = ENOENT;
}
/*
* If vgone() did reclaimed dvp before curthread
* relocked ldvp, the locks of dvp and ldpv are no
* longer shared. In this case, relock of ldvp in
* lower fs VOP_LOOKUP() does not restore the locking
* state of dvp. Compensate for this by unlocking
* ldvp and locking dvp, which is also correct if the
* locks are still shared.
*/
VOP_UNLOCK(ldvp);
vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
}
vdrop(ldvp);
if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 &&
(mp->mnt_flag & MNT_RDONLY) != 0 &&
(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
error = EROFS;
if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
if (ldvp == lvp) {
*ap->a_vpp = dvp;
VREF(dvp);
vrele(lvp);
} else {
error = null_nodeget(mp, lvp, &vp);
if (error == 0)
*ap->a_vpp = vp;
}
}
return (error);
}
static int
null_open(struct vop_open_args *ap)
{
int retval;
struct vnode *vp, *ldvp;
vp = ap->a_vp;
ldvp = NULLVPTOLOWERVP(vp);
retval = null_bypass(&ap->a_gen);
if (retval == 0) {
vp->v_object = ldvp->v_object;
if ((vn_irflag_read(ldvp) & VIRF_PGREAD) != 0) {
MPASS(vp->v_object != NULL);
if ((vn_irflag_read(vp) & VIRF_PGREAD) == 0) {
vn_irflag_set_cond(vp, VIRF_PGREAD);
}
}
}
return (retval);
}
/*
* Setattr call. Disallow write attempts if the layer is mounted read-only.
*/
static int
null_setattr(struct vop_setattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vattr *vap = ap->a_vap;
if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
(vp->v_mount->mnt_flag & MNT_RDONLY))
return (EROFS);
if (vap->va_size != VNOVAL) {
switch (vp->v_type) {
case VDIR:
return (EISDIR);
case VCHR:
case VBLK:
case VSOCK:
case VFIFO:
if (vap->va_flags != VNOVAL)
return (EOPNOTSUPP);
return (0);
case VREG:
case VLNK:
default:
/*
* Disallow write attempts if the filesystem is
* mounted read-only.
*/
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
}
}
return (null_bypass((struct vop_generic_args *)ap));
}
/*
* We handle stat and getattr only to change the fsid.
*/
static int
null_stat(struct vop_stat_args *ap)
{
int error;
if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
return (error);
ap->a_sb->st_dev = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
return (0);
}
static int
null_getattr(struct vop_getattr_args *ap)
{
int error;
if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
return (error);
ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
return (0);
}
/*
* Handle to disallow write access if mounted read-only.
*/
static int
null_access(struct vop_access_args *ap)
{
struct vnode *vp = ap->a_vp;
accmode_t accmode = ap->a_accmode;
/*
* Disallow write attempts on read-only layers;
* unless the file is a socket, fifo, or a block or
* character device resident on the filesystem.
*/
if (accmode & VWRITE) {
switch (vp->v_type) {
case VDIR:
case VLNK:
case VREG:
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
break;
default:
break;
}
}
return (null_bypass((struct vop_generic_args *)ap));
}
static int
null_accessx(struct vop_accessx_args *ap)
{
struct vnode *vp = ap->a_vp;
accmode_t accmode = ap->a_accmode;
/*
* Disallow write attempts on read-only layers;
* unless the file is a socket, fifo, or a block or
* character device resident on the filesystem.
*/
if (accmode & VWRITE) {
switch (vp->v_type) {
case VDIR:
case VLNK:
case VREG:
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
break;
default:
break;
}
}
return (null_bypass((struct vop_generic_args *)ap));
}
/*
* Increasing refcount of lower vnode is needed at least for the case
* when lower FS is NFS to do sillyrename if the file is in use.
* Unfortunately v_usecount is incremented in many places in
* the kernel and, as such, there may be races that result in
* the NFS client doing an extraneous silly rename, but that seems
* preferable to not doing a silly rename when it is needed.
*/
static int
null_remove(struct vop_remove_args *ap)
{
int retval, vreleit;
struct vnode *lvp, *vp;
vp = ap->a_vp;
if (vrefcnt(vp) > 1) {
lvp = NULLVPTOLOWERVP(vp);
VREF(lvp);
vreleit = 1;
} else
vreleit = 0;
VTONULL(vp)->null_flags |= NULLV_DROP;
retval = null_bypass(&ap->a_gen);
if (vreleit != 0)
vrele(lvp);
return (retval);
}
/*
* We handle this to eliminate null FS to lower FS
* file moving. Don't know why we don't allow this,
* possibly we should.
*/
static int
null_rename(struct vop_rename_args *ap)
{
struct vnode *fdvp, *fvp, *tdvp, *tvp;
struct vnode *lfdvp, *lfvp, *ltdvp, *ltvp;
struct null_node *fdnn, *fnn, *tdnn, *tnn;
int error;
tdvp = ap->a_tdvp;
fvp = ap->a_fvp;
fdvp = ap->a_fdvp;
tvp = ap->a_tvp;
lfdvp = NULL;
/* Check for cross-device rename. */
if ((fvp->v_mount != tdvp->v_mount) ||
(tvp != NULL && fvp->v_mount != tvp->v_mount)) {
error = EXDEV;
goto upper_err;
}
VI_LOCK(fdvp);
fdnn = VTONULL(fdvp);
if (fdnn == NULL) { /* fdvp is not locked, can be doomed */
VI_UNLOCK(fdvp);
error = ENOENT;
goto upper_err;
}
lfdvp = fdnn->null_lowervp;
vref(lfdvp);
VI_UNLOCK(fdvp);
VI_LOCK(fvp);
fnn = VTONULL(fvp);
if (fnn == NULL) {
VI_UNLOCK(fvp);
error = ENOENT;
goto upper_err;
}
lfvp = fnn->null_lowervp;
vref(lfvp);
VI_UNLOCK(fvp);
tdnn = VTONULL(tdvp);
ltdvp = tdnn->null_lowervp;
vref(ltdvp);
if (tvp != NULL) {
tnn = VTONULL(tvp);
ltvp = tnn->null_lowervp;
vref(ltvp);
tnn->null_flags |= NULLV_DROP;
} else {
ltvp = NULL;
}
error = VOP_RENAME(lfdvp, lfvp, ap->a_fcnp, ltdvp, ltvp, ap->a_tcnp);
vrele(fdvp);
vrele(fvp);
vrele(tdvp);
if (tvp != NULL)
vrele(tvp);
return (error);
upper_err:
if (tdvp == tvp)
vrele(tdvp);
else
vput(tdvp);
if (tvp)
vput(tvp);
if (lfdvp != NULL)
vrele(lfdvp);
vrele(fdvp);
vrele(fvp);
return (error);
}
static int
null_rmdir(struct vop_rmdir_args *ap)
{
VTONULL(ap->a_vp)->null_flags |= NULLV_DROP;
return (null_bypass(&ap->a_gen));
}
/*
* We need to process our own vnode lock and then clear the
* interlock flag as it applies only to our vnode, not the
* vnodes below us on the stack.
*/
static int
null_lock(struct vop_lock1_args *ap)
{
struct vnode *vp = ap->a_vp;
int flags;
struct null_node *nn;
struct vnode *lvp;
int error;
if ((ap->a_flags & LK_INTERLOCK) == 0)
VI_LOCK(vp);
else
ap->a_flags &= ~LK_INTERLOCK;
flags = ap->a_flags;
nn = VTONULL(vp);
/*
* If we're still active we must ask the lower layer to
* lock as ffs has special lock considerations in its
* vop lock.
*/
if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
/*
* We have to hold the vnode here to solve a potential
* reclaim race. If we're forcibly vgone'd while we
* still have refs, a thread could be sleeping inside
* the lowervp's vop_lock routine. When we vgone we will
* drop our last ref to the lowervp, which would allow it
* to be reclaimed. The lowervp could then be recycled,
* in which case it is not legal to be sleeping in its VOP.
* We prevent it from being recycled by holding the vnode
* here.
*/
vholdnz(lvp);
VI_UNLOCK(vp);
error = VOP_LOCK(lvp, flags);
/*
* We might have slept to get the lock and someone might have
* clean our vnode already, switching vnode lock from one in
* lowervp to v_lock in our own vnode structure. Handle this
* case by reacquiring correct lock in requested mode.
*/
if (VTONULL(vp) == NULL && error == 0) {
ap->a_flags &= ~LK_TYPE_MASK;
switch (flags & LK_TYPE_MASK) {
case LK_SHARED:
ap->a_flags |= LK_SHARED;
break;
case LK_UPGRADE:
case LK_EXCLUSIVE:
ap->a_flags |= LK_EXCLUSIVE;
break;
default:
panic("Unsupported lock request %d\n",
ap->a_flags);
}
VOP_UNLOCK(lvp);
error = vop_stdlock(ap);
}
vdrop(lvp);
} else {
VI_UNLOCK(vp);
error = vop_stdlock(ap);
}
return (error);
}
/*
* We need to process our own vnode unlock and then clear the
* interlock flag as it applies only to our vnode, not the
* vnodes below us on the stack.
*/
static int
null_unlock(struct vop_unlock_args *ap)
{
struct vnode *vp = ap->a_vp;
struct null_node *nn;
struct vnode *lvp;
int error;
nn = VTONULL(vp);
if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
vholdnz(lvp);
error = VOP_UNLOCK(lvp);
vdrop(lvp);
} else {
error = vop_stdunlock(ap);
}
return (error);
}
/*
* Do not allow the VOP_INACTIVE to be passed to the lower layer,
* since the reference count on the lower vnode is not related to
* ours.
*/
static int
null_want_recycle(struct vnode *vp)
{
struct vnode *lvp;
struct null_node *xp;
struct mount *mp;
struct null_mount *xmp;
xp = VTONULL(vp);
lvp = NULLVPTOLOWERVP(vp);
mp = vp->v_mount;
xmp = MOUNTTONULLMOUNT(mp);
if ((xmp->nullm_flags & NULLM_CACHE) == 0 ||
(xp->null_flags & NULLV_DROP) != 0 ||
(lvp->v_vflag & VV_NOSYNC) != 0) {
/*
* If this is the last reference and caching of the
* nullfs vnodes is not enabled, or the lower vnode is
* deleted, then free up the vnode so as not to tie up
* the lower vnodes.
*/
return (1);
}
return (0);
}
static int
null_inactive(struct vop_inactive_args *ap)
{
struct vnode *vp;
vp = ap->a_vp;
if (null_want_recycle(vp)) {
vp->v_object = NULL;
vrecycle(vp);
}
return (0);
}
static int
null_need_inactive(struct vop_need_inactive_args *ap)
{
return (null_want_recycle(ap->a_vp) || vn_need_pageq_flush(ap->a_vp));
}
/*
* Now, the nullfs vnode and, due to the sharing lock, the lower
* vnode, are exclusively locked, and we shall destroy the null vnode.
*/
static int
null_reclaim(struct vop_reclaim_args *ap)
{
struct vnode *vp;
struct null_node *xp;
struct vnode *lowervp;
vp = ap->a_vp;
xp = VTONULL(vp);
lowervp = xp->null_lowervp;
KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock,
("Reclaiming incomplete null vnode %p", vp));
null_hashrem(xp);
/*
* Use the interlock to protect the clearing of v_data to
* prevent faults in null_lock().
*/
lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
VI_LOCK(vp);
vp->v_data = NULL;
vp->v_object = NULL;
vp->v_vnlock = &vp->v_lock;
/*
* If we were opened for write, we leased the write reference
* to the lower vnode. If this is a reclamation due to the
* forced unmount, undo the reference now.
*/
if (vp->v_writecount > 0)
VOP_ADD_WRITECOUNT(lowervp, -vp->v_writecount);
else if (vp->v_writecount < 0)
vp->v_writecount = 0;
VI_UNLOCK(vp);
if ((xp->null_flags & NULLV_NOUNLOCK) != 0)
vunref(lowervp);
else
vput(lowervp);
free(xp, M_NULLFSNODE);
return (0);
}
static int
null_print(struct vop_print_args *ap)
{
struct vnode *vp = ap->a_vp;
printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp);
return (0);
}
/* ARGSUSED */
static int
null_getwritemount(struct vop_getwritemount_args *ap)
{
struct null_node *xp;
struct vnode *lowervp;
struct vnode *vp;
vp = ap->a_vp;
VI_LOCK(vp);
xp = VTONULL(vp);
if (xp && (lowervp = xp->null_lowervp)) {
vholdnz(lowervp);
VI_UNLOCK(vp);
VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
vdrop(lowervp);
} else {
VI_UNLOCK(vp);
*(ap->a_mpp) = NULL;
}
return (0);
}
static int
null_vptofh(struct vop_vptofh_args *ap)
{
struct vnode *lvp;
lvp = NULLVPTOLOWERVP(ap->a_vp);
return VOP_VPTOFH(lvp, ap->a_fhp);
}
static int
null_vptocnp(struct vop_vptocnp_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode **dvp = ap->a_vpp;
struct vnode *lvp, *ldvp;
struct mount *mp;
int error, locked;
locked = VOP_ISLOCKED(vp);
lvp = NULLVPTOLOWERVP(vp);
mp = vp->v_mount;
error = vfs_busy(mp, MBF_NOWAIT);
if (error != 0)
return (error);
vhold(lvp);
VOP_UNLOCK(vp); /* vp is held by vn_vptocnp_locked that called us */
ldvp = lvp;
vref(lvp);
error = vn_vptocnp(&ldvp, ap->a_buf, ap->a_buflen);
vdrop(lvp);
if (error != 0) {
vn_lock(vp, locked | LK_RETRY);
vfs_unbusy(mp);
return (ENOENT);
}
error = vn_lock(ldvp, LK_SHARED);
if (error != 0) {
vrele(ldvp);
vn_lock(vp, locked | LK_RETRY);
vfs_unbusy(mp);
return (ENOENT);
}
error = null_nodeget(mp, ldvp, dvp);
if (error == 0) {
#ifdef DIAGNOSTIC
NULLVPTOLOWERVP(*dvp);
#endif
VOP_UNLOCK(*dvp); /* keep reference on *dvp */
}
vn_lock(vp, locked | LK_RETRY);
vfs_unbusy(mp);
return (error);
}
static int
null_read_pgcache(struct vop_read_pgcache_args *ap)
{
struct vnode *lvp, *vp;
struct null_node *xp;
int error;
vp = ap->a_vp;
VI_LOCK(vp);
xp = VTONULL(vp);
if (xp == NULL) {
VI_UNLOCK(vp);
return (EJUSTRETURN);
}
lvp = xp->null_lowervp;
vref(lvp);
VI_UNLOCK(vp);
error = VOP_READ_PGCACHE(lvp, ap->a_uio, ap->a_ioflag, ap->a_cred);
vrele(lvp);
return (error);
}
static int
null_advlock(struct vop_advlock_args *ap)
{
struct vnode *lvp, *vp;
struct null_node *xp;
int error;
vp = ap->a_vp;
VI_LOCK(vp);
xp = VTONULL(vp);
if (xp == NULL) {
VI_UNLOCK(vp);
return (EBADF);
}
lvp = xp->null_lowervp;
vref(lvp);
VI_UNLOCK(vp);
error = VOP_ADVLOCK(lvp, ap->a_id, ap->a_op, ap->a_fl, ap->a_flags);
vrele(lvp);
return (error);
}
/*
* Avoid standard bypass, since lower dvp and vp could be no longer
* valid after vput().
*/
static int
null_vput_pair(struct vop_vput_pair_args *ap)
{
struct mount *mp;
struct vnode *dvp, *ldvp, *lvp, *vp, *vp1, **vpp;
int error, res;
dvp = ap->a_dvp;
ldvp = NULLVPTOLOWERVP(dvp);
vref(ldvp);
vpp = ap->a_vpp;
vp = NULL;
lvp = NULL;
mp = NULL;
if (vpp != NULL)
vp = *vpp;
if (vp != NULL) {
lvp = NULLVPTOLOWERVP(vp);
vref(lvp);
if (!ap->a_unlock_vp) {
vhold(vp);
vhold(lvp);
mp = vp->v_mount;
vfs_ref(mp);
}
}
res = VOP_VPUT_PAIR(ldvp, lvp != NULL ? &lvp : NULL, true);
if (vp != NULL && ap->a_unlock_vp)
vrele(vp);
vrele(dvp);
if (vp == NULL || ap->a_unlock_vp)
return (res);
/* lvp has been unlocked and vp might be reclaimed */
VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
if (vp->v_data == NULL && vfs_busy(mp, MBF_NOWAIT) == 0) {
vput(vp);
vget(lvp, LK_EXCLUSIVE | LK_RETRY);
if (VN_IS_DOOMED(lvp)) {
vput(lvp);
vget(vp, LK_EXCLUSIVE | LK_RETRY);
} else {
error = null_nodeget(mp, lvp, &vp1);
if (error == 0) {
*vpp = vp1;
} else {
vget(vp, LK_EXCLUSIVE | LK_RETRY);
}
}
vfs_unbusy(mp);
}
vdrop(lvp);
vdrop(vp);
vfs_rel(mp);
return (res);
}
static int
null_getlowvnode(struct vop_getlowvnode_args *ap)
{
struct vnode *vp, *vpl;
vp = ap->a_vp;
if (vn_lock(vp, LK_SHARED) != 0)
return (EBADF);
vpl = NULLVPTOLOWERVP(vp);
vhold(vpl);
VOP_UNLOCK(vp);
VOP_GETLOWVNODE(vpl, ap->a_vplp, ap->a_flags);
vdrop(vpl);
return (0);
}
/*
* Global vfs data structures
*/
struct vop_vector null_vnodeops = {
.vop_bypass = null_bypass,
.vop_access = null_access,
.vop_accessx = null_accessx,
.vop_advlock = null_advlock,
.vop_advlockpurge = vop_stdadvlockpurge,
.vop_bmap = VOP_EOPNOTSUPP,
.vop_stat = null_stat,
.vop_getattr = null_getattr,
.vop_getlowvnode = null_getlowvnode,
.vop_getwritemount = null_getwritemount,
.vop_inactive = null_inactive,
.vop_need_inactive = null_need_inactive,
.vop_islocked = vop_stdislocked,
.vop_lock1 = null_lock,
.vop_lookup = null_lookup,
.vop_open = null_open,
.vop_print = null_print,
.vop_read_pgcache = null_read_pgcache,
.vop_reclaim = null_reclaim,
.vop_remove = null_remove,
.vop_rename = null_rename,
.vop_rmdir = null_rmdir,
.vop_setattr = null_setattr,
.vop_strategy = VOP_EOPNOTSUPP,
.vop_unlock = null_unlock,
.vop_vptocnp = null_vptocnp,
.vop_vptofh = null_vptofh,
.vop_add_writecount = null_add_writecount,
.vop_vput_pair = null_vput_pair,
.vop_copy_file_range = VOP_PANIC,
};
VFS_VOP_VECTOR_REGISTER(null_vnodeops);