freebsd-src/stand/kboot/main.c
Warner Losh 6c47abb63b kboot: Hack for running on FreeBSD host
When we're running on a FreeBSD host, we can't open /proc/iomem.  So,
for now, just assume that we have 32GB of ram starting at 4GB.

Sponsored by: Netflix
2023-03-02 11:12:09 -07:00

507 lines
13 KiB
C

/*-
* Copyright (C) 2010-2014 Nathan Whitehorn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <stand.h>
#include <sys/param.h>
#include <sys/boot.h>
#include <fdt_platform.h>
#include <machine/cpufunc.h>
#include <bootstrap.h>
#include "host_syscall.h"
#include "kboot.h"
#include "stand.h"
struct arch_switch archsw;
extern void *_end;
int kboot_getdev(void **vdev, const char *devspec, const char **path);
ssize_t kboot_copyin(const void *src, vm_offset_t dest, const size_t len);
ssize_t kboot_copyout(vm_offset_t src, void *dest, const size_t len);
ssize_t kboot_readin(readin_handle_t fd, vm_offset_t dest, const size_t len);
int kboot_autoload(void);
static void kboot_zfs_probe(void);
extern int command_fdt_internal(int argc, char *argv[]);
#define PA_INVAL (vm_offset_t)-1
static vm_offset_t pa_start = PA_INVAL;
static vm_offset_t padding;
static vm_offset_t offset;
static uint64_t commit_limit;
static uint64_t committed_as;
static uint64_t mem_avail;
static void
memory_limits(void)
{
int fd;
char buf[128];
/*
* To properly size the slabs, we need to find how much memory we can
* commit to using. commit_limit is the max, while commited_as is the
* current total. We can use these later to allocate the largetst amount
* of memory possible so we can support larger ram disks than we could
* by using fixed segment sizes. We also grab the memory available so
* we don't use more than 49% of that.
*/
fd = open("host:/proc/meminfo", O_RDONLY);
if (fd != -1) {
while (fgetstr(buf, sizeof(buf), fd) > 0) {
if (strncmp(buf, "MemAvailable:", 13) == 0) {
mem_avail = strtoll(buf + 13, NULL, 0);
mem_avail <<= 10; /* Units are kB */
} else if (strncmp(buf, "CommitLimit:", 12) == 0) {
commit_limit = strtoll(buf + 13, NULL, 0);
commit_limit <<= 10; /* Units are kB */
} else if (strncmp(buf, "Committed_AS:", 13) == 0) {
committed_as = strtoll(buf + 14, NULL, 0);
committed_as <<= 10; /* Units are kB */
}
}
} else {
/* Otherwise, on FreeBSD host, for testing 32GB host: */
mem_avail = 31ul << 30; /* 31GB free */
commit_limit = mem_avail * 9 / 10; /* 90% comittable */
committed_as = 20ul << 20; /* 20MB used */
}
printf("Commit limit: %lld Committed bytes %lld Available %lld\n",
(long long)commit_limit, (long long)committed_as,
(long long)mem_avail);
close(fd);
}
/*
* NB: getdev should likely be identical to this most places, except maybe
* we should move to storing the length of the platform devdesc.
*/
int
kboot_getdev(void **vdev, const char *devspec, const char **path)
{
struct devdesc **dev = (struct devdesc **)vdev;
int rv;
/*
* If it looks like this is just a path and no device, go with the
* current device.
*/
if (devspec == NULL || strchr(devspec, ':') == NULL) {
if (((rv = devparse(dev, getenv("currdev"), NULL)) == 0) &&
(path != NULL))
*path = devspec;
return (rv);
}
/*
* Try to parse the device name off the beginning of the devspec
*/
return (devparse(dev, devspec, path));
}
static int
parse_args(int argc, const char **argv)
{
int howto = 0;
/*
* When run as init, sometimes argv[0] is a EFI-ESP path, other times
* it's the name of the init program, and sometimes it's a placeholder
* string, so we exclude it here. For the other args, look for DOS-like
* and Unix-like absolte paths and exclude parsing it if we find that,
* otherwise parse it as a command arg (so looking for '-X', 'foo' or
* 'foo=bar'). This is a little different than EFI where it argv[0]
* often times is the first argument passed in. There are cases when
* linux-booting via EFI that we have the EFI path we used to run
* bootXXX.efi as the arguments to init, so we need to exclude the paths
* there as well.
*/
for (int i = 1; i < argc; i++) {
if (argv[i][0] != '\\' && argv[i][0] != '/') {
howto |= boot_parse_arg(argv[i]);
}
}
return (howto);
}
static vm_offset_t rsdp;
static vm_offset_t
kboot_rsdp_from_efi(void)
{
char buffer[512 + 1];
char *walker, *ep;
if (!file2str("/sys/firmware/efi/systab", buffer, sizeof(buffer)))
return (0); /* Not an EFI system */
ep = buffer + strlen(buffer);
walker = buffer;
while (walker < ep) {
if (strncmp("ACPI20=", walker, 7) == 0)
return((vm_offset_t)strtoull(walker + 7, NULL, 0));
if (strncmp("ACPI=", walker, 5) == 0)
return((vm_offset_t)strtoull(walker + 5, NULL, 0));
walker += strcspn(walker, "\n");
}
return (0);
}
static void
find_acpi(void)
{
rsdp = kboot_rsdp_from_efi();
#if 0 /* maybe for amd64 */
if (rsdp == 0)
rsdp = find_rsdp_arch();
#endif
}
vm_offset_t
acpi_rsdp(void)
{
return (rsdp);
}
bool
has_acpi(void)
{
return rsdp != 0;
}
int
main(int argc, const char **argv)
{
void *heapbase;
const size_t heapsize = 64*1024*1024;
const char *bootdev;
archsw.arch_getdev = kboot_getdev;
archsw.arch_copyin = kboot_copyin;
archsw.arch_copyout = kboot_copyout;
archsw.arch_readin = kboot_readin;
archsw.arch_autoload = kboot_autoload;
archsw.arch_zfs_probe = kboot_zfs_probe;
/* Give us a sane world if we're running as init */
do_init();
/*
* Setup the heap, 64MB is minimum for ZFS booting
*/
heapbase = host_getmem(heapsize);
setheap(heapbase, heapbase + heapsize);
/* Parse the command line args -- ignoring for now the console selection */
parse_args(argc, argv);
/*
* Set up console.
*/
cons_probe();
/* Initialize all the devices */
devinit();
bootdev = getenv("bootdev");
if (bootdev == NULL)
bootdev = hostdisk_gen_probe();
if (bootdev == NULL)
bootdev="zfs:";
hostfs_root = getenv("hostfs_root");
if (hostfs_root == NULL)
hostfs_root = "/";
#if defined(LOADER_ZFS_SUPPORT)
if (strcmp(bootdev, "zfs:") == 0) {
/*
* Pseudo device that says go find the right ZFS pool. This will be
* the first pool that we find that passes the sanity checks (eg looks
* like it might be vbootable) and sets currdev to the right thing based
* on active BEs, etc
*/
hostdisk_zfs_find_default();
} else
#endif
{
/*
* Otherwise, honor what's on the command line. If we've been
* given a specific ZFS partition, then we'll honor it w/o BE
* processing that would otherwise pick a different snapshot to
* boot than the default one in the pool.
*/
set_currdev(bootdev);
}
printf("Boot device: %s with hostfs_root %s\n", bootdev, hostfs_root);
printf("\n%s", bootprog_info);
setenv("LINES", "24", 1);
memory_limits();
enumerate_memory_arch();
/*
* Find acpi, if it exists
*/
find_acpi();
interact(); /* doesn't return */
return (0);
}
void
exit(int code)
{
host_exit(code);
__unreachable();
}
void
delay(int usecs)
{
struct host_timeval tvi, tv;
uint64_t ti, t;
host_gettimeofday(&tvi, NULL);
ti = tvi.tv_sec*1000000 + tvi.tv_usec;
do {
host_gettimeofday(&tv, NULL);
t = tv.tv_sec*1000000 + tv.tv_usec;
} while (t < ti + usecs);
}
time_t
getsecs(void)
{
struct host_timeval tv;
host_gettimeofday(&tv, NULL);
return (tv.tv_sec);
}
time_t
time(time_t *tloc)
{
time_t rv;
rv = getsecs();
if (tloc != NULL)
*tloc = rv;
return (rv);
}
struct host_kexec_segment loaded_segments[HOST_KEXEC_SEGMENT_MAX];
int nkexec_segments = 0;
#define SEGALIGN (1ul<<20)
static ssize_t
get_phys_buffer(vm_offset_t dest, const size_t len, void **buf)
{
int i = 0;
const size_t segsize = 64*1024*1024;
size_t sz, amt, l;
if (nkexec_segments == HOST_KEXEC_SEGMENT_MAX)
panic("Tried to load too many kexec segments");
for (i = 0; i < nkexec_segments; i++) {
if (dest >= (vm_offset_t)loaded_segments[i].mem &&
dest < (vm_offset_t)loaded_segments[i].mem +
loaded_segments[i].bufsz) /* Need to use bufsz since memsz is in use size */
goto out;
}
sz = segsize;
if (nkexec_segments == 0) {
/* how much space does this segment have */
sz = space_avail(dest);
/* Clip to 45% of available memory (need 2 copies) */
sz = min(sz, rounddown2(mem_avail * 45 / 100, SEGALIGN));
/* And only use 95% of what we can allocate */
sz = min(sz, rounddown2(
(commit_limit - committed_as) * 95 / 100, SEGALIGN));
printf("Allocating %zd MB for first segment\n", sz >> 20);
}
loaded_segments[nkexec_segments].buf = host_getmem(sz);
loaded_segments[nkexec_segments].bufsz = sz;
loaded_segments[nkexec_segments].mem = (void *)rounddown2(dest,SEGALIGN);
loaded_segments[nkexec_segments].memsz = 0;
i = nkexec_segments;
nkexec_segments++;
out:
/*
* Keep track of the highest amount used in a segment
*/
amt = dest - (vm_offset_t)loaded_segments[i].mem;
l = min(len,loaded_segments[i].bufsz - amt);
*buf = loaded_segments[i].buf + amt;
if (amt + l > loaded_segments[i].memsz)
loaded_segments[i].memsz = amt + l;
return (l);
}
ssize_t
kboot_copyin(const void *src, vm_offset_t dest, const size_t len)
{
ssize_t segsize, remainder;
void *destbuf;
if (pa_start == PA_INVAL) {
pa_start = kboot_get_phys_load_segment();
// padding = 2 << 20; /* XXX amd64: revisit this when we make it work */
padding = 0;
offset = dest;
get_phys_buffer(pa_start, len, &destbuf);
}
remainder = len;
do {
segsize = get_phys_buffer(dest + pa_start + padding - offset, remainder, &destbuf);
bcopy(src, destbuf, segsize);
remainder -= segsize;
src += segsize;
dest += segsize;
} while (remainder > 0);
return (len);
}
ssize_t
kboot_copyout(vm_offset_t src, void *dest, const size_t len)
{
ssize_t segsize, remainder;
void *srcbuf;
remainder = len;
do {
segsize = get_phys_buffer(src + pa_start + padding - offset, remainder, &srcbuf);
bcopy(srcbuf, dest, segsize);
remainder -= segsize;
src += segsize;
dest += segsize;
} while (remainder > 0);
return (len);
}
ssize_t
kboot_readin(readin_handle_t fd, vm_offset_t dest, const size_t len)
{
void *buf;
size_t resid, chunk, get;
ssize_t got;
vm_offset_t p;
p = dest;
chunk = min(PAGE_SIZE, len);
buf = malloc(chunk);
if (buf == NULL) {
printf("kboot_readin: buf malloc failed\n");
return (0);
}
for (resid = len; resid > 0; resid -= got, p += got) {
get = min(chunk, resid);
got = VECTX_READ(fd, buf, get);
if (got <= 0) {
if (got < 0)
printf("kboot_readin: read failed\n");
break;
}
kboot_copyin(buf, p, got);
}
free (buf);
return (len - resid);
}
int
kboot_autoload(void)
{
return (0);
}
void
kboot_kseg_get(int *nseg, void **ptr)
{
printf("kseg_get: %d segments\n", nkexec_segments);
printf("VA SZ PA MEMSZ\n");
printf("---------------- -------- ---------------- -----\n");
for (int a = 0; a < nkexec_segments; a++) {
/*
* Truncate each segment to just what we've used in the segment,
* rounded up to the next page.
*/
loaded_segments[a].memsz = roundup2(loaded_segments[a].memsz,PAGE_SIZE);
loaded_segments[a].bufsz = loaded_segments[a].memsz;
printf("%016jx %08jx %016jx %08jx\n",
(uintmax_t)loaded_segments[a].buf,
(uintmax_t)loaded_segments[a].bufsz,
(uintmax_t)loaded_segments[a].mem,
(uintmax_t)loaded_segments[a].memsz);
}
*nseg = nkexec_segments;
*ptr = &loaded_segments[0];
}
static void
kboot_zfs_probe(void)
{
#if defined(LOADER_ZFS_SUPPORT)
/*
* Open all the disks and partitions we can find to see if there are ZFS
* pools on them.
*/
hostdisk_zfs_probe();
#endif
}
/*
* Since proper fdt command handling function is defined in fdt_loader_cmd.c,
* and declaring it as extern is in contradiction with COMMAND_SET() macro
* (which uses static pointer), we're defining wrapper function, which
* calls the proper fdt handling routine.
*/
static int
command_fdt(int argc, char *argv[])
{
return (command_fdt_internal(argc, argv));
}
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);