freebsd-src/sys/ufs/ffs/ffs_vfsops.c
Kirk McKusick 72d28f97be Reorder ffs_verify_dinode_ckhash() so that it checks the inode check-hash
before copying in the inode so that the mode and link-count are not set
if the check-hash fails. This change ensures that the vnode will be properly
unwound and recycled rather than being held in the cache.

Initialize the file mode is zero so that if the loading of the inode
fails (for example because of a check-hash failure), the vnode will be
properly unwound and recycled.

Reported by:  Gary Jennejohn (gj)
Sponsored by: Netflix
2018-12-15 18:35:46 +00:00

2331 lines
59 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1989, 1991, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_quota.h"
#include "opt_ufs.h"
#include "opt_ffs.h"
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/taskqueue.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/ioccom.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <sys/vmmeter.h>
#include <security/mac/mac_framework.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/gjournal.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#include <vm/vm.h>
#include <vm/uma.h>
#include <vm/vm_page.h>
#include <geom/geom.h>
#include <geom/geom_vfs.h>
#include <ddb/ddb.h>
static uma_zone_t uma_inode, uma_ufs1, uma_ufs2;
static int ffs_mountfs(struct vnode *, struct mount *, struct thread *);
static void ffs_oldfscompat_read(struct fs *, struct ufsmount *,
ufs2_daddr_t);
static void ffs_ifree(struct ufsmount *ump, struct inode *ip);
static int ffs_sync_lazy(struct mount *mp);
static int ffs_use_bread(void *devfd, off_t loc, void **bufp, int size);
static int ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size);
static vfs_init_t ffs_init;
static vfs_uninit_t ffs_uninit;
static vfs_extattrctl_t ffs_extattrctl;
static vfs_cmount_t ffs_cmount;
static vfs_unmount_t ffs_unmount;
static vfs_mount_t ffs_mount;
static vfs_statfs_t ffs_statfs;
static vfs_fhtovp_t ffs_fhtovp;
static vfs_sync_t ffs_sync;
static struct vfsops ufs_vfsops = {
.vfs_extattrctl = ffs_extattrctl,
.vfs_fhtovp = ffs_fhtovp,
.vfs_init = ffs_init,
.vfs_mount = ffs_mount,
.vfs_cmount = ffs_cmount,
.vfs_quotactl = ufs_quotactl,
.vfs_root = ufs_root,
.vfs_statfs = ffs_statfs,
.vfs_sync = ffs_sync,
.vfs_uninit = ffs_uninit,
.vfs_unmount = ffs_unmount,
.vfs_vget = ffs_vget,
.vfs_susp_clean = process_deferred_inactive,
};
VFS_SET(ufs_vfsops, ufs, 0);
MODULE_VERSION(ufs, 1);
static b_strategy_t ffs_geom_strategy;
static b_write_t ffs_bufwrite;
static struct buf_ops ffs_ops = {
.bop_name = "FFS",
.bop_write = ffs_bufwrite,
.bop_strategy = ffs_geom_strategy,
.bop_sync = bufsync,
#ifdef NO_FFS_SNAPSHOT
.bop_bdflush = bufbdflush,
#else
.bop_bdflush = ffs_bdflush,
#endif
};
/*
* Note that userquota and groupquota options are not currently used
* by UFS/FFS code and generally mount(8) does not pass those options
* from userland, but they can be passed by loader(8) via
* vfs.root.mountfrom.options.
*/
static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr",
"noclusterw", "noexec", "export", "force", "from", "groupquota",
"multilabel", "nfsv4acls", "fsckpid", "snapshot", "nosuid", "suiddir",
"nosymfollow", "sync", "union", "userquota", NULL };
static int
ffs_mount(struct mount *mp)
{
struct vnode *devvp;
struct thread *td;
struct ufsmount *ump = NULL;
struct fs *fs;
pid_t fsckpid = 0;
int error, error1, flags;
uint64_t mntorflags;
accmode_t accmode;
struct nameidata ndp;
char *fspec;
td = curthread;
if (vfs_filteropt(mp->mnt_optnew, ffs_opts))
return (EINVAL);
if (uma_inode == NULL) {
uma_inode = uma_zcreate("FFS inode",
sizeof(struct inode), NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, 0);
uma_ufs1 = uma_zcreate("FFS1 dinode",
sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, 0);
uma_ufs2 = uma_zcreate("FFS2 dinode",
sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, 0);
}
vfs_deleteopt(mp->mnt_optnew, "groupquota");
vfs_deleteopt(mp->mnt_optnew, "userquota");
fspec = vfs_getopts(mp->mnt_optnew, "from", &error);
if (error)
return (error);
mntorflags = 0;
if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0)
mntorflags |= MNT_ACLS;
if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) {
mntorflags |= MNT_SNAPSHOT;
/*
* Once we have set the MNT_SNAPSHOT flag, do not
* persist "snapshot" in the options list.
*/
vfs_deleteopt(mp->mnt_optnew, "snapshot");
vfs_deleteopt(mp->mnt_opt, "snapshot");
}
if (vfs_getopt(mp->mnt_optnew, "fsckpid", NULL, NULL) == 0 &&
vfs_scanopt(mp->mnt_optnew, "fsckpid", "%d", &fsckpid) == 1) {
/*
* Once we have set the restricted PID, do not
* persist "fsckpid" in the options list.
*/
vfs_deleteopt(mp->mnt_optnew, "fsckpid");
vfs_deleteopt(mp->mnt_opt, "fsckpid");
if (mp->mnt_flag & MNT_UPDATE) {
if (VFSTOUFS(mp)->um_fs->fs_ronly == 0 &&
vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0) == 0) {
vfs_mount_error(mp,
"Checker enable: Must be read-only");
return (EINVAL);
}
} else if (vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0) == 0) {
vfs_mount_error(mp,
"Checker enable: Must be read-only");
return (EINVAL);
}
/* Set to -1 if we are done */
if (fsckpid == 0)
fsckpid = -1;
}
if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) {
if (mntorflags & MNT_ACLS) {
vfs_mount_error(mp,
"\"acls\" and \"nfsv4acls\" options "
"are mutually exclusive");
return (EINVAL);
}
mntorflags |= MNT_NFS4ACLS;
}
MNT_ILOCK(mp);
mp->mnt_flag |= mntorflags;
MNT_IUNLOCK(mp);
/*
* If updating, check whether changing from read-only to
* read/write; if there is no device name, that's all we do.
*/
if (mp->mnt_flag & MNT_UPDATE) {
ump = VFSTOUFS(mp);
fs = ump->um_fs;
devvp = ump->um_devvp;
if (fsckpid == -1 && ump->um_fsckpid > 0) {
if ((error = ffs_flushfiles(mp, WRITECLOSE, td)) != 0 ||
(error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0)
return (error);
g_topology_lock();
/*
* Return to normal read-only mode.
*/
error = g_access(ump->um_cp, 0, -1, 0);
g_topology_unlock();
ump->um_fsckpid = 0;
}
if (fs->fs_ronly == 0 &&
vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
/*
* Flush any dirty data and suspend filesystem.
*/
if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0)
return (error);
error = vfs_write_suspend_umnt(mp);
if (error != 0)
return (error);
/*
* Check for and optionally get rid of files open
* for writing.
*/
flags = WRITECLOSE;
if (mp->mnt_flag & MNT_FORCE)
flags |= FORCECLOSE;
if (MOUNTEDSOFTDEP(mp)) {
error = softdep_flushfiles(mp, flags, td);
} else {
error = ffs_flushfiles(mp, flags, td);
}
if (error) {
vfs_write_resume(mp, 0);
return (error);
}
if (fs->fs_pendingblocks != 0 ||
fs->fs_pendinginodes != 0) {
printf("WARNING: %s Update error: blocks %jd "
"files %d\n", fs->fs_fsmnt,
(intmax_t)fs->fs_pendingblocks,
fs->fs_pendinginodes);
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0)
fs->fs_clean = 1;
if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) {
fs->fs_ronly = 0;
fs->fs_clean = 0;
vfs_write_resume(mp, 0);
return (error);
}
if (MOUNTEDSOFTDEP(mp))
softdep_unmount(mp);
g_topology_lock();
/*
* Drop our write and exclusive access.
*/
g_access(ump->um_cp, 0, -1, -1);
g_topology_unlock();
fs->fs_ronly = 1;
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_RDONLY;
MNT_IUNLOCK(mp);
/*
* Allow the writers to note that filesystem
* is ro now.
*/
vfs_write_resume(mp, 0);
}
if ((mp->mnt_flag & MNT_RELOAD) &&
(error = ffs_reload(mp, td, 0)) != 0)
return (error);
if (fs->fs_ronly &&
!vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
/*
* If we are running a checker, do not allow upgrade.
*/
if (ump->um_fsckpid > 0) {
vfs_mount_error(mp,
"Active checker, cannot upgrade to write");
return (EINVAL);
}
/*
* If upgrade to read-write by non-root, then verify
* that user has necessary permissions on the device.
*/
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_ACCESS(devvp, VREAD | VWRITE,
td->td_ucred, td);
if (error)
error = priv_check(td, PRIV_VFS_MOUNT_PERM);
if (error) {
VOP_UNLOCK(devvp, 0);
return (error);
}
VOP_UNLOCK(devvp, 0);
fs->fs_flags &= ~FS_UNCLEAN;
if (fs->fs_clean == 0) {
fs->fs_flags |= FS_UNCLEAN;
if ((mp->mnt_flag & MNT_FORCE) ||
((fs->fs_flags &
(FS_SUJ | FS_NEEDSFSCK)) == 0 &&
(fs->fs_flags & FS_DOSOFTDEP))) {
printf("WARNING: %s was not properly "
"dismounted\n", fs->fs_fsmnt);
} else {
vfs_mount_error(mp,
"R/W mount of %s denied. %s.%s",
fs->fs_fsmnt,
"Filesystem is not clean - run fsck",
(fs->fs_flags & FS_SUJ) == 0 ? "" :
" Forced mount will invalidate"
" journal contents");
return (EPERM);
}
}
g_topology_lock();
/*
* Request exclusive write access.
*/
error = g_access(ump->um_cp, 0, 1, 1);
g_topology_unlock();
if (error)
return (error);
if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0)
return (error);
fs->fs_ronly = 0;
MNT_ILOCK(mp);
mp->mnt_flag &= ~MNT_RDONLY;
MNT_IUNLOCK(mp);
fs->fs_mtime = time_second;
/* check to see if we need to start softdep */
if ((fs->fs_flags & FS_DOSOFTDEP) &&
(error = softdep_mount(devvp, mp, fs, td->td_ucred))){
vn_finished_write(mp);
return (error);
}
fs->fs_clean = 0;
if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) {
vn_finished_write(mp);
return (error);
}
if (fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
vn_finished_write(mp);
}
/*
* Soft updates is incompatible with "async",
* so if we are doing softupdates stop the user
* from setting the async flag in an update.
* Softdep_mount() clears it in an initial mount
* or ro->rw remount.
*/
if (MOUNTEDSOFTDEP(mp)) {
/* XXX: Reset too late ? */
MNT_ILOCK(mp);
mp->mnt_flag &= ~MNT_ASYNC;
MNT_IUNLOCK(mp);
}
/*
* Keep MNT_ACLS flag if it is stored in superblock.
*/
if ((fs->fs_flags & FS_ACLS) != 0) {
/* XXX: Set too late ? */
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_ACLS;
MNT_IUNLOCK(mp);
}
if ((fs->fs_flags & FS_NFS4ACLS) != 0) {
/* XXX: Set too late ? */
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_NFS4ACLS;
MNT_IUNLOCK(mp);
}
/*
* If this is a request from fsck to clean up the filesystem,
* then allow the specified pid to proceed.
*/
if (fsckpid > 0) {
if (ump->um_fsckpid != 0) {
vfs_mount_error(mp,
"Active checker already running on %s",
fs->fs_fsmnt);
return (EINVAL);
}
KASSERT(MOUNTEDSOFTDEP(mp) == 0,
("soft updates enabled on read-only file system"));
g_topology_lock();
/*
* Request write access.
*/
error = g_access(ump->um_cp, 0, 1, 0);
g_topology_unlock();
if (error) {
vfs_mount_error(mp,
"Checker activation failed on %s",
fs->fs_fsmnt);
return (error);
}
ump->um_fsckpid = fsckpid;
if (fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
fs->fs_mtime = time_second;
fs->fs_fmod = 1;
fs->fs_clean = 0;
(void) ffs_sbupdate(ump, MNT_WAIT, 0);
}
/*
* If this is a snapshot request, take the snapshot.
*/
if (mp->mnt_flag & MNT_SNAPSHOT)
return (ffs_snapshot(mp, fspec));
/*
* Must not call namei() while owning busy ref.
*/
vfs_unbusy(mp);
}
/*
* Not an update, or updating the name: look up the name
* and verify that it refers to a sensible disk device.
*/
NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td);
error = namei(&ndp);
if ((mp->mnt_flag & MNT_UPDATE) != 0) {
/*
* Unmount does not start if MNT_UPDATE is set. Mount
* update busies mp before setting MNT_UPDATE. We
* must be able to retain our busy ref succesfully,
* without sleep.
*/
error1 = vfs_busy(mp, MBF_NOWAIT);
MPASS(error1 == 0);
}
if (error != 0)
return (error);
NDFREE(&ndp, NDF_ONLY_PNBUF);
devvp = ndp.ni_vp;
if (!vn_isdisk(devvp, &error)) {
vput(devvp);
return (error);
}
/*
* If mount by non-root, then verify that user has necessary
* permissions on the device.
*/
accmode = VREAD;
if ((mp->mnt_flag & MNT_RDONLY) == 0)
accmode |= VWRITE;
error = VOP_ACCESS(devvp, accmode, td->td_ucred, td);
if (error)
error = priv_check(td, PRIV_VFS_MOUNT_PERM);
if (error) {
vput(devvp);
return (error);
}
if (mp->mnt_flag & MNT_UPDATE) {
/*
* Update only
*
* If it's not the same vnode, or at least the same device
* then it's not correct.
*/
if (devvp->v_rdev != ump->um_devvp->v_rdev)
error = EINVAL; /* needs translation */
vput(devvp);
if (error)
return (error);
} else {
/*
* New mount
*
* We need the name for the mount point (also used for
* "last mounted on") copied in. If an error occurs,
* the mount point is discarded by the upper level code.
* Note that vfs_mount_alloc() populates f_mntonname for us.
*/
if ((error = ffs_mountfs(devvp, mp, td)) != 0) {
vrele(devvp);
return (error);
}
if (fsckpid > 0) {
KASSERT(MOUNTEDSOFTDEP(mp) == 0,
("soft updates enabled on read-only file system"));
ump = VFSTOUFS(mp);
fs = ump->um_fs;
g_topology_lock();
/*
* Request write access.
*/
error = g_access(ump->um_cp, 0, 1, 0);
g_topology_unlock();
if (error) {
printf("WARNING: %s: Checker activation "
"failed\n", fs->fs_fsmnt);
} else {
ump->um_fsckpid = fsckpid;
if (fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
fs->fs_mtime = time_second;
fs->fs_clean = 0;
(void) ffs_sbupdate(ump, MNT_WAIT, 0);
}
}
}
vfs_mountedfrom(mp, fspec);
return (0);
}
/*
* Compatibility with old mount system call.
*/
static int
ffs_cmount(struct mntarg *ma, void *data, uint64_t flags)
{
struct ufs_args args;
struct export_args exp;
int error;
if (data == NULL)
return (EINVAL);
error = copyin(data, &args, sizeof args);
if (error)
return (error);
vfs_oexport_conv(&args.export, &exp);
ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN);
ma = mount_arg(ma, "export", &exp, sizeof(exp));
error = kernel_mount(ma, flags);
return (error);
}
/*
* Reload all incore data for a filesystem (used after running fsck on
* the root filesystem and finding things to fix). If the 'force' flag
* is 0, the filesystem must be mounted read-only.
*
* Things to do to update the mount:
* 1) invalidate all cached meta-data.
* 2) re-read superblock from disk.
* 3) re-read summary information from disk.
* 4) invalidate all inactive vnodes.
* 5) clear MNTK_SUSPEND2 and MNTK_SUSPENDED flags, allowing secondary
* writers, if requested.
* 6) invalidate all cached file data.
* 7) re-read inode data for all active vnodes.
*/
int
ffs_reload(struct mount *mp, struct thread *td, int flags)
{
struct vnode *vp, *mvp, *devvp;
struct inode *ip;
void *space;
struct buf *bp;
struct fs *fs, *newfs;
struct ufsmount *ump;
ufs2_daddr_t sblockloc;
int i, blks, error;
u_long size;
int32_t *lp;
ump = VFSTOUFS(mp);
MNT_ILOCK(mp);
if ((mp->mnt_flag & MNT_RDONLY) == 0 && (flags & FFSR_FORCE) == 0) {
MNT_IUNLOCK(mp);
return (EINVAL);
}
MNT_IUNLOCK(mp);
/*
* Step 1: invalidate all cached meta-data.
*/
devvp = VFSTOUFS(mp)->um_devvp;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
if (vinvalbuf(devvp, 0, 0, 0) != 0)
panic("ffs_reload: dirty1");
VOP_UNLOCK(devvp, 0);
/*
* Step 2: re-read superblock from disk.
*/
fs = VFSTOUFS(mp)->um_fs;
if ((error = bread(devvp, btodb(fs->fs_sblockloc), fs->fs_sbsize,
NOCRED, &bp)) != 0)
return (error);
newfs = (struct fs *)bp->b_data;
if ((newfs->fs_magic != FS_UFS1_MAGIC &&
newfs->fs_magic != FS_UFS2_MAGIC) ||
newfs->fs_bsize > MAXBSIZE ||
newfs->fs_bsize < sizeof(struct fs)) {
brelse(bp);
return (EIO); /* XXX needs translation */
}
/*
* Copy pointer fields back into superblock before copying in XXX
* new superblock. These should really be in the ufsmount. XXX
* Note that important parameters (eg fs_ncg) are unchanged.
*/
newfs->fs_csp = fs->fs_csp;
newfs->fs_maxcluster = fs->fs_maxcluster;
newfs->fs_contigdirs = fs->fs_contigdirs;
newfs->fs_active = fs->fs_active;
newfs->fs_ronly = fs->fs_ronly;
sblockloc = fs->fs_sblockloc;
bcopy(newfs, fs, (u_int)fs->fs_sbsize);
brelse(bp);
mp->mnt_maxsymlinklen = fs->fs_maxsymlinklen;
ffs_oldfscompat_read(fs, VFSTOUFS(mp), sblockloc);
UFS_LOCK(ump);
if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
printf("WARNING: %s: reload pending error: blocks %jd "
"files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
fs->fs_pendinginodes);
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
UFS_UNLOCK(ump);
/*
* Step 3: re-read summary information from disk.
*/
size = fs->fs_cssize;
blks = howmany(size, fs->fs_fsize);
if (fs->fs_contigsumsize > 0)
size += fs->fs_ncg * sizeof(int32_t);
size += fs->fs_ncg * sizeof(u_int8_t);
free(fs->fs_csp, M_UFSMNT);
space = malloc(size, M_UFSMNT, M_WAITOK);
fs->fs_csp = space;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size,
NOCRED, &bp);
if (error)
return (error);
bcopy(bp->b_data, space, (u_int)size);
space = (char *)space + size;
brelse(bp);
}
/*
* We no longer know anything about clusters per cylinder group.
*/
if (fs->fs_contigsumsize > 0) {
fs->fs_maxcluster = lp = space;
for (i = 0; i < fs->fs_ncg; i++)
*lp++ = fs->fs_contigsumsize;
space = lp;
}
size = fs->fs_ncg * sizeof(u_int8_t);
fs->fs_contigdirs = (u_int8_t *)space;
bzero(fs->fs_contigdirs, size);
if ((flags & FFSR_UNSUSPEND) != 0) {
MNT_ILOCK(mp);
mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
wakeup(&mp->mnt_flag);
MNT_IUNLOCK(mp);
}
loop:
MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
/*
* Skip syncer vnode.
*/
if (vp->v_type == VNON) {
VI_UNLOCK(vp);
continue;
}
/*
* Step 4: invalidate all cached file data.
*/
if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK, td)) {
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
goto loop;
}
if (vinvalbuf(vp, 0, 0, 0))
panic("ffs_reload: dirty2");
/*
* Step 5: re-read inode data for all active vnodes.
*/
ip = VTOI(vp);
error =
bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, NOCRED, &bp);
if (error) {
vput(vp);
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
return (error);
}
if ((error = ffs_load_inode(bp, ip, fs, ip->i_number)) != 0) {
brelse(bp);
vput(vp);
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
return (error);
}
ip->i_effnlink = ip->i_nlink;
brelse(bp);
vput(vp);
}
return (0);
}
/*
* Common code for mount and mountroot
*/
static int
ffs_mountfs(devvp, mp, td)
struct vnode *devvp;
struct mount *mp;
struct thread *td;
{
struct ufsmount *ump;
struct fs *fs;
struct cdev *dev;
int error, i, len, ronly;
struct ucred *cred;
struct g_consumer *cp;
struct mount *nmp;
int candelete;
off_t loc;
fs = NULL;
ump = NULL;
cred = td ? td->td_ucred : NOCRED;
ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
KASSERT(devvp->v_type == VCHR, ("reclaimed devvp"));
dev = devvp->v_rdev;
if (atomic_cmpset_acq_ptr((uintptr_t *)&dev->si_mountpt, 0,
(uintptr_t)mp) == 0) {
VOP_UNLOCK(devvp, 0);
return (EBUSY);
}
g_topology_lock();
error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1);
g_topology_unlock();
if (error != 0) {
atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0);
VOP_UNLOCK(devvp, 0);
return (error);
}
dev_ref(dev);
devvp->v_bufobj.bo_ops = &ffs_ops;
VOP_UNLOCK(devvp, 0);
if (dev->si_iosize_max != 0)
mp->mnt_iosize_max = dev->si_iosize_max;
if (mp->mnt_iosize_max > MAXPHYS)
mp->mnt_iosize_max = MAXPHYS;
if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) {
error = EINVAL;
vfs_mount_error(mp,
"Invalid sectorsize %d for superblock size %d",
cp->provider->sectorsize, SBLOCKSIZE);
goto out;
}
/* fetch the superblock and summary information */
loc = STDSB;
if ((mp->mnt_flag & MNT_ROOTFS) != 0)
loc = STDSB_NOHASHFAIL;
if ((error = ffs_sbget(devvp, &fs, loc, M_UFSMNT, ffs_use_bread)) != 0)
goto out;
/* none of these types of check-hashes are maintained by this kernel */
fs->fs_metackhash &= ~(CK_INDIR | CK_DIR);
/* no support for any undefined flags */
fs->fs_flags &= FS_SUPPORTED;
fs->fs_flags &= ~FS_UNCLEAN;
if (fs->fs_clean == 0) {
fs->fs_flags |= FS_UNCLEAN;
if (ronly || (mp->mnt_flag & MNT_FORCE) ||
((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 &&
(fs->fs_flags & FS_DOSOFTDEP))) {
printf("WARNING: %s was not properly dismounted\n",
fs->fs_fsmnt);
} else {
vfs_mount_error(mp, "R/W mount of %s denied. %s%s",
fs->fs_fsmnt, "Filesystem is not clean - run fsck.",
(fs->fs_flags & FS_SUJ) == 0 ? "" :
" Forced mount will invalidate journal contents");
error = EPERM;
goto out;
}
if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) &&
(mp->mnt_flag & MNT_FORCE)) {
printf("WARNING: %s: lost blocks %jd files %d\n",
fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
fs->fs_pendinginodes);
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
}
if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
printf("WARNING: %s: mount pending error: blocks %jd "
"files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
fs->fs_pendinginodes);
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
if ((fs->fs_flags & FS_GJOURNAL) != 0) {
#ifdef UFS_GJOURNAL
/*
* Get journal provider name.
*/
len = 1024;
mp->mnt_gjprovider = malloc((u_long)len, M_UFSMNT, M_WAITOK);
if (g_io_getattr("GJOURNAL::provider", cp, &len,
mp->mnt_gjprovider) == 0) {
mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, len,
M_UFSMNT, M_WAITOK);
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_GJOURNAL;
MNT_IUNLOCK(mp);
} else {
printf("WARNING: %s: GJOURNAL flag on fs "
"but no gjournal provider below\n",
mp->mnt_stat.f_mntonname);
free(mp->mnt_gjprovider, M_UFSMNT);
mp->mnt_gjprovider = NULL;
}
#else
printf("WARNING: %s: GJOURNAL flag on fs but no "
"UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname);
#endif
} else {
mp->mnt_gjprovider = NULL;
}
ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
ump->um_cp = cp;
ump->um_bo = &devvp->v_bufobj;
ump->um_fs = fs;
if (fs->fs_magic == FS_UFS1_MAGIC) {
ump->um_fstype = UFS1;
ump->um_balloc = ffs_balloc_ufs1;
} else {
ump->um_fstype = UFS2;
ump->um_balloc = ffs_balloc_ufs2;
}
ump->um_blkatoff = ffs_blkatoff;
ump->um_truncate = ffs_truncate;
ump->um_update = ffs_update;
ump->um_valloc = ffs_valloc;
ump->um_vfree = ffs_vfree;
ump->um_ifree = ffs_ifree;
ump->um_rdonly = ffs_rdonly;
ump->um_snapgone = ffs_snapgone;
mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF);
ffs_oldfscompat_read(fs, ump, fs->fs_sblockloc);
fs->fs_ronly = ronly;
fs->fs_active = NULL;
mp->mnt_data = ump;
mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0];
mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1];
nmp = NULL;
if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 ||
(nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) {
if (nmp)
vfs_rel(nmp);
vfs_getnewfsid(mp);
}
mp->mnt_maxsymlinklen = fs->fs_maxsymlinklen;
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_LOCAL;
MNT_IUNLOCK(mp);
if ((fs->fs_flags & FS_MULTILABEL) != 0) {
#ifdef MAC
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_MULTILABEL;
MNT_IUNLOCK(mp);
#else
printf("WARNING: %s: multilabel flag on fs but "
"no MAC support\n", mp->mnt_stat.f_mntonname);
#endif
}
if ((fs->fs_flags & FS_ACLS) != 0) {
#ifdef UFS_ACL
MNT_ILOCK(mp);
if (mp->mnt_flag & MNT_NFS4ACLS)
printf("WARNING: %s: ACLs flag on fs conflicts with "
"\"nfsv4acls\" mount option; option ignored\n",
mp->mnt_stat.f_mntonname);
mp->mnt_flag &= ~MNT_NFS4ACLS;
mp->mnt_flag |= MNT_ACLS;
MNT_IUNLOCK(mp);
#else
printf("WARNING: %s: ACLs flag on fs but no ACLs support\n",
mp->mnt_stat.f_mntonname);
#endif
}
if ((fs->fs_flags & FS_NFS4ACLS) != 0) {
#ifdef UFS_ACL
MNT_ILOCK(mp);
if (mp->mnt_flag & MNT_ACLS)
printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts "
"with \"acls\" mount option; option ignored\n",
mp->mnt_stat.f_mntonname);
mp->mnt_flag &= ~MNT_ACLS;
mp->mnt_flag |= MNT_NFS4ACLS;
MNT_IUNLOCK(mp);
#else
printf("WARNING: %s: NFSv4 ACLs flag on fs but no "
"ACLs support\n", mp->mnt_stat.f_mntonname);
#endif
}
if ((fs->fs_flags & FS_TRIM) != 0) {
len = sizeof(int);
if (g_io_getattr("GEOM::candelete", cp, &len,
&candelete) == 0) {
if (candelete)
ump->um_flags |= UM_CANDELETE;
else
printf("WARNING: %s: TRIM flag on fs but disk "
"does not support TRIM\n",
mp->mnt_stat.f_mntonname);
} else {
printf("WARNING: %s: TRIM flag on fs but disk does "
"not confirm that it supports TRIM\n",
mp->mnt_stat.f_mntonname);
}
if (((ump->um_flags) & UM_CANDELETE) != 0) {
ump->um_trim_tq = taskqueue_create("trim", M_WAITOK,
taskqueue_thread_enqueue, &ump->um_trim_tq);
taskqueue_start_threads(&ump->um_trim_tq, 1, PVFS,
"%s trim", mp->mnt_stat.f_mntonname);
ump->um_trimhash = hashinit(MAXTRIMIO, M_TRIM,
&ump->um_trimlisthashsize);
}
}
ump->um_mountp = mp;
ump->um_dev = dev;
ump->um_devvp = devvp;
ump->um_nindir = fs->fs_nindir;
ump->um_bptrtodb = fs->fs_fsbtodb;
ump->um_seqinc = fs->fs_frag;
for (i = 0; i < MAXQUOTAS; i++)
ump->um_quotas[i] = NULLVP;
#ifdef UFS_EXTATTR
ufs_extattr_uepm_init(&ump->um_extattr);
#endif
/*
* Set FS local "last mounted on" information (NULL pad)
*/
bzero(fs->fs_fsmnt, MAXMNTLEN);
strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN);
mp->mnt_stat.f_iosize = fs->fs_bsize;
if (mp->mnt_flag & MNT_ROOTFS) {
/*
* Root mount; update timestamp in mount structure.
* this will be used by the common root mount code
* to update the system clock.
*/
mp->mnt_time = fs->fs_time;
}
if (ronly == 0) {
fs->fs_mtime = time_second;
if ((fs->fs_flags & FS_DOSOFTDEP) &&
(error = softdep_mount(devvp, mp, fs, cred)) != 0) {
ffs_flushfiles(mp, FORCECLOSE, td);
goto out;
}
if (fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
fs->fs_fmod = 1;
fs->fs_clean = 0;
(void) ffs_sbupdate(ump, MNT_WAIT, 0);
}
/*
* Initialize filesystem state information in mount struct.
*/
MNT_ILOCK(mp);
mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED |
MNTK_NO_IOPF | MNTK_UNMAPPED_BUFS | MNTK_USES_BCACHE;
MNT_IUNLOCK(mp);
#ifdef UFS_EXTATTR
#ifdef UFS_EXTATTR_AUTOSTART
/*
*
* Auto-starting does the following:
* - check for /.attribute in the fs, and extattr_start if so
* - for each file in .attribute, enable that file with
* an attribute of the same name.
* Not clear how to report errors -- probably eat them.
* This would all happen while the filesystem was busy/not
* available, so would effectively be "atomic".
*/
(void) ufs_extattr_autostart(mp, td);
#endif /* !UFS_EXTATTR_AUTOSTART */
#endif /* !UFS_EXTATTR */
return (0);
out:
if (fs != NULL) {
free(fs->fs_csp, M_UFSMNT);
free(fs, M_UFSMNT);
}
if (cp != NULL) {
g_topology_lock();
g_vfs_close(cp);
g_topology_unlock();
}
if (ump) {
mtx_destroy(UFS_MTX(ump));
if (mp->mnt_gjprovider != NULL) {
free(mp->mnt_gjprovider, M_UFSMNT);
mp->mnt_gjprovider = NULL;
}
free(ump, M_UFSMNT);
mp->mnt_data = NULL;
}
atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0);
dev_rel(dev);
return (error);
}
/*
* A read function for use by filesystem-layer routines.
*/
static int
ffs_use_bread(void *devfd, off_t loc, void **bufp, int size)
{
struct buf *bp;
int error;
KASSERT(*bufp == NULL, ("ffs_use_bread: non-NULL *bufp %p\n", *bufp));
*bufp = malloc(size, M_UFSMNT, M_WAITOK);
if ((error = bread((struct vnode *)devfd, btodb(loc), size, NOCRED,
&bp)) != 0)
return (error);
bcopy(bp->b_data, *bufp, size);
bp->b_flags |= B_INVAL | B_NOCACHE;
brelse(bp);
return (0);
}
#include <sys/sysctl.h>
static int bigcgs = 0;
SYSCTL_INT(_debug, OID_AUTO, bigcgs, CTLFLAG_RW, &bigcgs, 0, "");
/*
* Sanity checks for loading old filesystem superblocks.
* See ffs_oldfscompat_write below for unwound actions.
*
* XXX - Parts get retired eventually.
* Unfortunately new bits get added.
*/
static void
ffs_oldfscompat_read(fs, ump, sblockloc)
struct fs *fs;
struct ufsmount *ump;
ufs2_daddr_t sblockloc;
{
off_t maxfilesize;
/*
* If not yet done, update fs_flags location and value of fs_sblockloc.
*/
if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
fs->fs_flags = fs->fs_old_flags;
fs->fs_old_flags |= FS_FLAGS_UPDATED;
fs->fs_sblockloc = sblockloc;
}
/*
* If not yet done, update UFS1 superblock with new wider fields.
*/
if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) {
fs->fs_maxbsize = fs->fs_bsize;
fs->fs_time = fs->fs_old_time;
fs->fs_size = fs->fs_old_size;
fs->fs_dsize = fs->fs_old_dsize;
fs->fs_csaddr = fs->fs_old_csaddr;
fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
}
if (fs->fs_magic == FS_UFS1_MAGIC &&
fs->fs_old_inodefmt < FS_44INODEFMT) {
fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1;
fs->fs_qbmask = ~fs->fs_bmask;
fs->fs_qfmask = ~fs->fs_fmask;
}
if (fs->fs_magic == FS_UFS1_MAGIC) {
ump->um_savedmaxfilesize = fs->fs_maxfilesize;
maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1;
if (fs->fs_maxfilesize > maxfilesize)
fs->fs_maxfilesize = maxfilesize;
}
/* Compatibility for old filesystems */
if (fs->fs_avgfilesize <= 0)
fs->fs_avgfilesize = AVFILESIZ;
if (fs->fs_avgfpdir <= 0)
fs->fs_avgfpdir = AFPDIR;
if (bigcgs) {
fs->fs_save_cgsize = fs->fs_cgsize;
fs->fs_cgsize = fs->fs_bsize;
}
}
/*
* Unwinding superblock updates for old filesystems.
* See ffs_oldfscompat_read above for details.
*
* XXX - Parts get retired eventually.
* Unfortunately new bits get added.
*/
void
ffs_oldfscompat_write(fs, ump)
struct fs *fs;
struct ufsmount *ump;
{
/*
* Copy back UFS2 updated fields that UFS1 inspects.
*/
if (fs->fs_magic == FS_UFS1_MAGIC) {
fs->fs_old_time = fs->fs_time;
fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
fs->fs_maxfilesize = ump->um_savedmaxfilesize;
}
if (bigcgs) {
fs->fs_cgsize = fs->fs_save_cgsize;
fs->fs_save_cgsize = 0;
}
}
/*
* unmount system call
*/
static int
ffs_unmount(mp, mntflags)
struct mount *mp;
int mntflags;
{
struct thread *td;
struct ufsmount *ump = VFSTOUFS(mp);
struct fs *fs;
int error, flags, susp;
#ifdef UFS_EXTATTR
int e_restart;
#endif
flags = 0;
td = curthread;
fs = ump->um_fs;
susp = 0;
if (mntflags & MNT_FORCE) {
flags |= FORCECLOSE;
susp = fs->fs_ronly == 0;
}
#ifdef UFS_EXTATTR
if ((error = ufs_extattr_stop(mp, td))) {
if (error != EOPNOTSUPP)
printf("WARNING: unmount %s: ufs_extattr_stop "
"returned errno %d\n", mp->mnt_stat.f_mntonname,
error);
e_restart = 0;
} else {
ufs_extattr_uepm_destroy(&ump->um_extattr);
e_restart = 1;
}
#endif
if (susp) {
error = vfs_write_suspend_umnt(mp);
if (error != 0)
goto fail1;
}
if (MOUNTEDSOFTDEP(mp))
error = softdep_flushfiles(mp, flags, td);
else
error = ffs_flushfiles(mp, flags, td);
if (error != 0 && error != ENXIO)
goto fail;
UFS_LOCK(ump);
if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
printf("WARNING: unmount %s: pending error: blocks %jd "
"files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
fs->fs_pendinginodes);
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
UFS_UNLOCK(ump);
if (MOUNTEDSOFTDEP(mp))
softdep_unmount(mp);
if (fs->fs_ronly == 0 || ump->um_fsckpid > 0) {
fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1;
error = ffs_sbupdate(ump, MNT_WAIT, 0);
if (error && error != ENXIO) {
fs->fs_clean = 0;
goto fail;
}
}
if (susp)
vfs_write_resume(mp, VR_START_WRITE);
if (ump->um_trim_tq != NULL) {
while (ump->um_trim_inflight != 0)
pause("ufsutr", hz);
taskqueue_drain_all(ump->um_trim_tq);
taskqueue_free(ump->um_trim_tq);
free (ump->um_trimhash, M_TRIM);
}
g_topology_lock();
if (ump->um_fsckpid > 0) {
/*
* Return to normal read-only mode.
*/
error = g_access(ump->um_cp, 0, -1, 0);
ump->um_fsckpid = 0;
}
g_vfs_close(ump->um_cp);
g_topology_unlock();
atomic_store_rel_ptr((uintptr_t *)&ump->um_dev->si_mountpt, 0);
vrele(ump->um_devvp);
dev_rel(ump->um_dev);
mtx_destroy(UFS_MTX(ump));
if (mp->mnt_gjprovider != NULL) {
free(mp->mnt_gjprovider, M_UFSMNT);
mp->mnt_gjprovider = NULL;
}
free(fs->fs_csp, M_UFSMNT);
free(fs, M_UFSMNT);
free(ump, M_UFSMNT);
mp->mnt_data = NULL;
MNT_ILOCK(mp);
mp->mnt_flag &= ~MNT_LOCAL;
MNT_IUNLOCK(mp);
if (td->td_su == mp) {
td->td_su = NULL;
vfs_rel(mp);
}
return (error);
fail:
if (susp)
vfs_write_resume(mp, VR_START_WRITE);
fail1:
#ifdef UFS_EXTATTR
if (e_restart) {
ufs_extattr_uepm_init(&ump->um_extattr);
#ifdef UFS_EXTATTR_AUTOSTART
(void) ufs_extattr_autostart(mp, td);
#endif
}
#endif
return (error);
}
/*
* Flush out all the files in a filesystem.
*/
int
ffs_flushfiles(mp, flags, td)
struct mount *mp;
int flags;
struct thread *td;
{
struct ufsmount *ump;
int qerror, error;
ump = VFSTOUFS(mp);
qerror = 0;
#ifdef QUOTA
if (mp->mnt_flag & MNT_QUOTA) {
int i;
error = vflush(mp, 0, SKIPSYSTEM|flags, td);
if (error)
return (error);
for (i = 0; i < MAXQUOTAS; i++) {
error = quotaoff(td, mp, i);
if (error != 0) {
if ((flags & EARLYFLUSH) == 0)
return (error);
else
qerror = error;
}
}
/*
* Here we fall through to vflush again to ensure that
* we have gotten rid of all the system vnodes, unless
* quotas must not be closed.
*/
}
#endif
ASSERT_VOP_LOCKED(ump->um_devvp, "ffs_flushfiles");
if (ump->um_devvp->v_vflag & VV_COPYONWRITE) {
if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0)
return (error);
ffs_snapshot_unmount(mp);
flags |= FORCECLOSE;
/*
* Here we fall through to vflush again to ensure
* that we have gotten rid of all the system vnodes.
*/
}
/*
* Do not close system files if quotas were not closed, to be
* able to sync the remaining dquots. The freeblks softupdate
* workitems might hold a reference on a dquot, preventing
* quotaoff() from completing. Next round of
* softdep_flushworklist() iteration should process the
* blockers, allowing the next run of quotaoff() to finally
* flush held dquots.
*
* Otherwise, flush all the files.
*/
if (qerror == 0 && (error = vflush(mp, 0, flags, td)) != 0)
return (error);
/*
* Flush filesystem metadata.
*/
vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td);
VOP_UNLOCK(ump->um_devvp, 0);
return (error);
}
/*
* Get filesystem statistics.
*/
static int
ffs_statfs(mp, sbp)
struct mount *mp;
struct statfs *sbp;
{
struct ufsmount *ump;
struct fs *fs;
ump = VFSTOUFS(mp);
fs = ump->um_fs;
if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC)
panic("ffs_statfs");
sbp->f_version = STATFS_VERSION;
sbp->f_bsize = fs->fs_fsize;
sbp->f_iosize = fs->fs_bsize;
sbp->f_blocks = fs->fs_dsize;
UFS_LOCK(ump);
sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag +
fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
sbp->f_bavail = freespace(fs, fs->fs_minfree) +
dbtofsb(fs, fs->fs_pendingblocks);
sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
UFS_UNLOCK(ump);
sbp->f_namemax = UFS_MAXNAMLEN;
return (0);
}
static bool
sync_doupdate(struct inode *ip)
{
return ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED |
IN_UPDATE)) != 0);
}
/*
* For a lazy sync, we only care about access times, quotas and the
* superblock. Other filesystem changes are already converted to
* cylinder group blocks or inode blocks updates and are written to
* disk by syncer.
*/
static int
ffs_sync_lazy(mp)
struct mount *mp;
{
struct vnode *mvp, *vp;
struct inode *ip;
struct thread *td;
int allerror, error;
allerror = 0;
td = curthread;
if ((mp->mnt_flag & MNT_NOATIME) != 0)
goto qupdate;
MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
if (vp->v_type == VNON) {
VI_UNLOCK(vp);
continue;
}
ip = VTOI(vp);
/*
* The IN_ACCESS flag is converted to IN_MODIFIED by
* ufs_close() and ufs_getattr() by the calls to
* ufs_itimes_locked(), without subsequent UFS_UPDATE().
* Test also all the other timestamp flags too, to pick up
* any other cases that could be missed.
*/
if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) {
VI_UNLOCK(vp);
continue;
}
if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK,
td)) != 0)
continue;
if (sync_doupdate(ip))
error = ffs_update(vp, 0);
if (error != 0)
allerror = error;
vput(vp);
}
qupdate:
#ifdef QUOTA
qsync(mp);
#endif
if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 &&
(error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0)
allerror = error;
return (allerror);
}
/*
* Go through the disk queues to initiate sandbagged IO;
* go through the inodes to write those that have been modified;
* initiate the writing of the super block if it has been modified.
*
* Note: we are always called with the filesystem marked busy using
* vfs_busy().
*/
static int
ffs_sync(mp, waitfor)
struct mount *mp;
int waitfor;
{
struct vnode *mvp, *vp, *devvp;
struct thread *td;
struct inode *ip;
struct ufsmount *ump = VFSTOUFS(mp);
struct fs *fs;
int error, count, lockreq, allerror = 0;
int suspend;
int suspended;
int secondary_writes;
int secondary_accwrites;
int softdep_deps;
int softdep_accdeps;
struct bufobj *bo;
suspend = 0;
suspended = 0;
td = curthread;
fs = ump->um_fs;
if (fs->fs_fmod != 0 && fs->fs_ronly != 0 && ump->um_fsckpid == 0)
panic("%s: ffs_sync: modification on read-only filesystem",
fs->fs_fsmnt);
if (waitfor == MNT_LAZY) {
if (!rebooting)
return (ffs_sync_lazy(mp));
waitfor = MNT_NOWAIT;
}
/*
* Write back each (modified) inode.
*/
lockreq = LK_EXCLUSIVE | LK_NOWAIT;
if (waitfor == MNT_SUSPEND) {
suspend = 1;
waitfor = MNT_WAIT;
}
if (waitfor == MNT_WAIT)
lockreq = LK_EXCLUSIVE;
lockreq |= LK_INTERLOCK | LK_SLEEPFAIL;
loop:
/* Grab snapshot of secondary write counts */
MNT_ILOCK(mp);
secondary_writes = mp->mnt_secondary_writes;
secondary_accwrites = mp->mnt_secondary_accwrites;
MNT_IUNLOCK(mp);
/* Grab snapshot of softdep dependency counts */
softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps);
MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
/*
* Depend on the vnode interlock to keep things stable enough
* for a quick test. Since there might be hundreds of
* thousands of vnodes, we cannot afford even a subroutine
* call unless there's a good chance that we have work to do.
*/
if (vp->v_type == VNON) {
VI_UNLOCK(vp);
continue;
}
ip = VTOI(vp);
if ((ip->i_flag &
(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 &&
vp->v_bufobj.bo_dirty.bv_cnt == 0) {
VI_UNLOCK(vp);
continue;
}
if ((error = vget(vp, lockreq, td)) != 0) {
if (error == ENOENT || error == ENOLCK) {
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
goto loop;
}
continue;
}
if ((error = ffs_syncvnode(vp, waitfor, 0)) != 0)
allerror = error;
vput(vp);
}
/*
* Force stale filesystem control information to be flushed.
*/
if (waitfor == MNT_WAIT || rebooting) {
if ((error = softdep_flushworklist(ump->um_mountp, &count, td)))
allerror = error;
/* Flushed work items may create new vnodes to clean */
if (allerror == 0 && count)
goto loop;
}
#ifdef QUOTA
qsync(mp);
#endif
devvp = ump->um_devvp;
bo = &devvp->v_bufobj;
BO_LOCK(bo);
if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
BO_UNLOCK(bo);
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_FSYNC(devvp, waitfor, td);
VOP_UNLOCK(devvp, 0);
if (MOUNTEDSOFTDEP(mp) && (error == 0 || error == EAGAIN))
error = ffs_sbupdate(ump, waitfor, 0);
if (error != 0)
allerror = error;
if (allerror == 0 && waitfor == MNT_WAIT)
goto loop;
} else if (suspend != 0) {
if (softdep_check_suspend(mp,
devvp,
softdep_deps,
softdep_accdeps,
secondary_writes,
secondary_accwrites) != 0) {
MNT_IUNLOCK(mp);
goto loop; /* More work needed */
}
mtx_assert(MNT_MTX(mp), MA_OWNED);
mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED;
MNT_IUNLOCK(mp);
suspended = 1;
} else
BO_UNLOCK(bo);
/*
* Write back modified superblock.
*/
if (fs->fs_fmod != 0 &&
(error = ffs_sbupdate(ump, waitfor, suspended)) != 0)
allerror = error;
return (allerror);
}
int
ffs_vget(mp, ino, flags, vpp)
struct mount *mp;
ino_t ino;
int flags;
struct vnode **vpp;
{
return (ffs_vgetf(mp, ino, flags, vpp, 0));
}
int
ffs_vgetf(mp, ino, flags, vpp, ffs_flags)
struct mount *mp;
ino_t ino;
int flags;
struct vnode **vpp;
int ffs_flags;
{
struct fs *fs;
struct inode *ip;
struct ufsmount *ump;
struct buf *bp;
struct vnode *vp;
int error;
error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL);
if (error || *vpp != NULL)
return (error);
/*
* We must promote to an exclusive lock for vnode creation. This
* can happen if lookup is passed LOCKSHARED.
*/
if ((flags & LK_TYPE_MASK) == LK_SHARED) {
flags &= ~LK_TYPE_MASK;
flags |= LK_EXCLUSIVE;
}
/*
* We do not lock vnode creation as it is believed to be too
* expensive for such rare case as simultaneous creation of vnode
* for same ino by different processes. We just allow them to race
* and check later to decide who wins. Let the race begin!
*/
ump = VFSTOUFS(mp);
fs = ump->um_fs;
ip = uma_zalloc(uma_inode, M_WAITOK | M_ZERO);
/* Allocate a new vnode/inode. */
error = getnewvnode("ufs", mp, fs->fs_magic == FS_UFS1_MAGIC ?
&ffs_vnodeops1 : &ffs_vnodeops2, &vp);
if (error) {
*vpp = NULL;
uma_zfree(uma_inode, ip);
return (error);
}
/*
* FFS supports recursive locking.
*/
lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
VN_LOCK_AREC(vp);
vp->v_data = ip;
vp->v_bufobj.bo_bsize = fs->fs_bsize;
ip->i_vnode = vp;
ip->i_ump = ump;
ip->i_number = ino;
ip->i_ea_refs = 0;
ip->i_nextclustercg = -1;
ip->i_flag = fs->fs_magic == FS_UFS1_MAGIC ? 0 : IN_UFS2;
ip->i_mode = 0; /* ensure error cases below throw away vnode */
#ifdef QUOTA
{
int i;
for (i = 0; i < MAXQUOTAS; i++)
ip->i_dquot[i] = NODQUOT;
}
#endif
if (ffs_flags & FFSV_FORCEINSMQ)
vp->v_vflag |= VV_FORCEINSMQ;
error = insmntque(vp, mp);
if (error != 0) {
uma_zfree(uma_inode, ip);
*vpp = NULL;
return (error);
}
vp->v_vflag &= ~VV_FORCEINSMQ;
error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL);
if (error || *vpp != NULL)
return (error);
/* Read in the disk contents for the inode, copy into the inode. */
error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
(int)fs->fs_bsize, NOCRED, &bp);
if (error) {
/*
* The inode does not contain anything useful, so it would
* be misleading to leave it on its hash chain. With mode
* still zero, it will be unlinked and returned to the free
* list by vput().
*/
brelse(bp);
vput(vp);
*vpp = NULL;
return (error);
}
if (I_IS_UFS1(ip))
ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK);
else
ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK);
if ((error = ffs_load_inode(bp, ip, fs, ino)) != 0) {
bqrelse(bp);
vput(vp);
*vpp = NULL;
return (error);
}
if (DOINGSOFTDEP(vp))
softdep_load_inodeblock(ip);
else
ip->i_effnlink = ip->i_nlink;
bqrelse(bp);
/*
* Initialize the vnode from the inode, check for aliases.
* Note that the underlying vnode may have changed.
*/
error = ufs_vinit(mp, I_IS_UFS1(ip) ? &ffs_fifoops1 : &ffs_fifoops2,
&vp);
if (error) {
vput(vp);
*vpp = NULL;
return (error);
}
/*
* Finish inode initialization.
*/
if (vp->v_type != VFIFO) {
/* FFS supports shared locking for all files except fifos. */
VN_LOCK_ASHARE(vp);
}
/*
* Set up a generation number for this inode if it does not
* already have one. This should only happen on old filesystems.
*/
if (ip->i_gen == 0) {
while (ip->i_gen == 0)
ip->i_gen = arc4random();
if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
ip->i_flag |= IN_MODIFIED;
DIP_SET(ip, i_gen, ip->i_gen);
}
}
#ifdef MAC
if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) {
/*
* If this vnode is already allocated, and we're running
* multi-label, attempt to perform a label association
* from the extended attributes on the inode.
*/
error = mac_vnode_associate_extattr(mp, vp);
if (error) {
/* ufs_inactive will release ip->i_devvp ref. */
vput(vp);
*vpp = NULL;
return (error);
}
}
#endif
*vpp = vp;
return (0);
}
/*
* File handle to vnode
*
* Have to be really careful about stale file handles:
* - check that the inode number is valid
* - for UFS2 check that the inode number is initialized
* - call ffs_vget() to get the locked inode
* - check for an unallocated inode (i_mode == 0)
* - check that the given client host has export rights and return
* those rights via. exflagsp and credanonp
*/
static int
ffs_fhtovp(mp, fhp, flags, vpp)
struct mount *mp;
struct fid *fhp;
int flags;
struct vnode **vpp;
{
struct ufid *ufhp;
struct ufsmount *ump;
struct fs *fs;
struct cg *cgp;
struct buf *bp;
ino_t ino;
u_int cg;
int error;
ufhp = (struct ufid *)fhp;
ino = ufhp->ufid_ino;
ump = VFSTOUFS(mp);
fs = ump->um_fs;
if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg)
return (ESTALE);
/*
* Need to check if inode is initialized because UFS2 does lazy
* initialization and nfs_fhtovp can offer arbitrary inode numbers.
*/
if (fs->fs_magic != FS_UFS2_MAGIC)
return (ufs_fhtovp(mp, ufhp, flags, vpp));
cg = ino_to_cg(fs, ino);
if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0)
return (error);
if (ino >= cg * fs->fs_ipg + cgp->cg_initediblk) {
brelse(bp);
return (ESTALE);
}
brelse(bp);
return (ufs_fhtovp(mp, ufhp, flags, vpp));
}
/*
* Initialize the filesystem.
*/
static int
ffs_init(vfsp)
struct vfsconf *vfsp;
{
ffs_susp_initialize();
softdep_initialize();
return (ufs_init(vfsp));
}
/*
* Undo the work of ffs_init().
*/
static int
ffs_uninit(vfsp)
struct vfsconf *vfsp;
{
int ret;
ret = ufs_uninit(vfsp);
softdep_uninitialize();
ffs_susp_uninitialize();
return (ret);
}
/*
* Structure used to pass information from ffs_sbupdate to its
* helper routine ffs_use_bwrite.
*/
struct devfd {
struct ufsmount *ump;
struct buf *sbbp;
int waitfor;
int suspended;
int error;
};
/*
* Write a superblock and associated information back to disk.
*/
int
ffs_sbupdate(ump, waitfor, suspended)
struct ufsmount *ump;
int waitfor;
int suspended;
{
struct fs *fs;
struct buf *sbbp;
struct devfd devfd;
fs = ump->um_fs;
if (fs->fs_ronly == 1 &&
(ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) !=
(MNT_RDONLY | MNT_UPDATE) && ump->um_fsckpid == 0)
panic("ffs_sbupdate: write read-only filesystem");
/*
* We use the superblock's buf to serialize calls to ffs_sbupdate().
*/
sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
(int)fs->fs_sbsize, 0, 0, 0);
/*
* Initialize info needed for write function.
*/
devfd.ump = ump;
devfd.sbbp = sbbp;
devfd.waitfor = waitfor;
devfd.suspended = suspended;
devfd.error = 0;
return (ffs_sbput(&devfd, fs, fs->fs_sblockloc, ffs_use_bwrite));
}
/*
* Write function for use by filesystem-layer routines.
*/
static int
ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size)
{
struct devfd *devfdp;
struct ufsmount *ump;
struct buf *bp;
struct fs *fs;
int error;
devfdp = devfd;
ump = devfdp->ump;
fs = ump->um_fs;
/*
* Writing the superblock summary information.
*/
if (loc != fs->fs_sblockloc) {
bp = getblk(ump->um_devvp, btodb(loc), size, 0, 0, 0);
bcopy(buf, bp->b_data, (u_int)size);
if (devfdp->suspended)
bp->b_flags |= B_VALIDSUSPWRT;
if (devfdp->waitfor != MNT_WAIT)
bawrite(bp);
else if ((error = bwrite(bp)) != 0)
devfdp->error = error;
return (0);
}
/*
* Writing the superblock itself. We need to do special checks for it.
*/
bp = devfdp->sbbp;
if (devfdp->error != 0) {
brelse(bp);
return (devfdp->error);
}
if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 &&
(fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n",
fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1);
fs->fs_sblockloc = SBLOCK_UFS1;
}
if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 &&
(fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n",
fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2);
fs->fs_sblockloc = SBLOCK_UFS2;
}
if (MOUNTEDSOFTDEP(ump->um_mountp))
softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp);
bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
if (devfdp->suspended)
bp->b_flags |= B_VALIDSUSPWRT;
if (devfdp->waitfor != MNT_WAIT)
bawrite(bp);
else if ((error = bwrite(bp)) != 0)
devfdp->error = error;
return (devfdp->error);
}
static int
ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp,
int attrnamespace, const char *attrname)
{
#ifdef UFS_EXTATTR
return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace,
attrname));
#else
return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace,
attrname));
#endif
}
static void
ffs_ifree(struct ufsmount *ump, struct inode *ip)
{
if (ump->um_fstype == UFS1 && ip->i_din1 != NULL)
uma_zfree(uma_ufs1, ip->i_din1);
else if (ip->i_din2 != NULL)
uma_zfree(uma_ufs2, ip->i_din2);
uma_zfree(uma_inode, ip);
}
static int dobkgrdwrite = 1;
SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
"Do background writes (honoring the BV_BKGRDWRITE flag)?");
/*
* Complete a background write started from bwrite.
*/
static void
ffs_backgroundwritedone(struct buf *bp)
{
struct bufobj *bufobj;
struct buf *origbp;
/*
* Find the original buffer that we are writing.
*/
bufobj = bp->b_bufobj;
BO_LOCK(bufobj);
if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL)
panic("backgroundwritedone: lost buffer");
/*
* We should mark the cylinder group buffer origbp as
* dirty, to not loose the failed write.
*/
if ((bp->b_ioflags & BIO_ERROR) != 0)
origbp->b_vflags |= BV_BKGRDERR;
BO_UNLOCK(bufobj);
/*
* Process dependencies then return any unfinished ones.
*/
if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) == 0)
buf_complete(bp);
#ifdef SOFTUPDATES
if (!LIST_EMPTY(&bp->b_dep))
softdep_move_dependencies(bp, origbp);
#endif
/*
* This buffer is marked B_NOCACHE so when it is released
* by biodone it will be tossed.
*/
bp->b_flags |= B_NOCACHE;
bp->b_flags &= ~B_CACHE;
pbrelvp(bp);
/*
* Prevent brelse() from trying to keep and re-dirtying bp on
* errors. It causes b_bufobj dereference in
* bdirty()/reassignbuf(), and b_bufobj was cleared in
* pbrelvp() above.
*/
if ((bp->b_ioflags & BIO_ERROR) != 0)
bp->b_flags |= B_INVAL;
bufdone(bp);
BO_LOCK(bufobj);
/*
* Clear the BV_BKGRDINPROG flag in the original buffer
* and awaken it if it is waiting for the write to complete.
* If BV_BKGRDINPROG is not set in the original buffer it must
* have been released and re-instantiated - which is not legal.
*/
KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
("backgroundwritedone: lost buffer2"));
origbp->b_vflags &= ~BV_BKGRDINPROG;
if (origbp->b_vflags & BV_BKGRDWAIT) {
origbp->b_vflags &= ~BV_BKGRDWAIT;
wakeup(&origbp->b_xflags);
}
BO_UNLOCK(bufobj);
}
/*
* Write, release buffer on completion. (Done by iodone
* if async). Do not bother writing anything if the buffer
* is invalid.
*
* Note that we set B_CACHE here, indicating that buffer is
* fully valid and thus cacheable. This is true even of NFS
* now so we set it generally. This could be set either here
* or in biodone() since the I/O is synchronous. We put it
* here.
*/
static int
ffs_bufwrite(struct buf *bp)
{
struct buf *newbp;
struct cg *cgp;
CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
if (bp->b_flags & B_INVAL) {
brelse(bp);
return (0);
}
if (!BUF_ISLOCKED(bp))
panic("bufwrite: buffer is not busy???");
/*
* If a background write is already in progress, delay
* writing this block if it is asynchronous. Otherwise
* wait for the background write to complete.
*/
BO_LOCK(bp->b_bufobj);
if (bp->b_vflags & BV_BKGRDINPROG) {
if (bp->b_flags & B_ASYNC) {
BO_UNLOCK(bp->b_bufobj);
bdwrite(bp);
return (0);
}
bp->b_vflags |= BV_BKGRDWAIT;
msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO,
"bwrbg", 0);
if (bp->b_vflags & BV_BKGRDINPROG)
panic("bufwrite: still writing");
}
bp->b_vflags &= ~BV_BKGRDERR;
BO_UNLOCK(bp->b_bufobj);
/*
* If this buffer is marked for background writing and we
* do not have to wait for it, make a copy and write the
* copy so as to leave this buffer ready for further use.
*
* This optimization eats a lot of memory. If we have a page
* or buffer shortfall we can't do it.
*/
if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
(bp->b_flags & B_ASYNC) &&
!vm_page_count_severe() &&
!buf_dirty_count_severe()) {
KASSERT(bp->b_iodone == NULL,
("bufwrite: needs chained iodone (%p)", bp->b_iodone));
/* get a new block */
newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD);
if (newbp == NULL)
goto normal_write;
KASSERT(buf_mapped(bp), ("Unmapped cg"));
memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
BO_LOCK(bp->b_bufobj);
bp->b_vflags |= BV_BKGRDINPROG;
BO_UNLOCK(bp->b_bufobj);
newbp->b_xflags |=
(bp->b_xflags & BX_FSPRIV) | BX_BKGRDMARKER;
newbp->b_lblkno = bp->b_lblkno;
newbp->b_blkno = bp->b_blkno;
newbp->b_offset = bp->b_offset;
newbp->b_iodone = ffs_backgroundwritedone;
newbp->b_flags |= B_ASYNC;
newbp->b_flags &= ~B_INVAL;
pbgetvp(bp->b_vp, newbp);
#ifdef SOFTUPDATES
/*
* Move over the dependencies. If there are rollbacks,
* leave the parent buffer dirtied as it will need to
* be written again.
*/
if (LIST_EMPTY(&bp->b_dep) ||
softdep_move_dependencies(bp, newbp) == 0)
bundirty(bp);
#else
bundirty(bp);
#endif
/*
* Initiate write on the copy, release the original. The
* BKGRDINPROG flag prevents it from going away until
* the background write completes. We have to recalculate
* its check hash in case the buffer gets freed and then
* reconstituted from the buffer cache during a later read.
*/
if ((bp->b_xflags & BX_CYLGRP) != 0) {
cgp = (struct cg *)bp->b_data;
cgp->cg_ckhash = 0;
cgp->cg_ckhash =
calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
}
bqrelse(bp);
bp = newbp;
} else
/* Mark the buffer clean */
bundirty(bp);
/* Let the normal bufwrite do the rest for us */
normal_write:
/*
* If we are writing a cylinder group, update its time.
*/
if ((bp->b_xflags & BX_CYLGRP) != 0) {
cgp = (struct cg *)bp->b_data;
cgp->cg_old_time = cgp->cg_time = time_second;
}
return (bufwrite(bp));
}
static void
ffs_geom_strategy(struct bufobj *bo, struct buf *bp)
{
struct vnode *vp;
struct buf *tbp;
int error, nocopy;
vp = bo2vnode(bo);
if (bp->b_iocmd == BIO_WRITE) {
if ((bp->b_flags & B_VALIDSUSPWRT) == 0 &&
bp->b_vp != NULL && bp->b_vp->v_mount != NULL &&
(bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0)
panic("ffs_geom_strategy: bad I/O");
nocopy = bp->b_flags & B_NOCOPY;
bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY);
if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 &&
vp->v_rdev->si_snapdata != NULL) {
if ((bp->b_flags & B_CLUSTER) != 0) {
runningbufwakeup(bp);
TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head,
b_cluster.cluster_entry) {
error = ffs_copyonwrite(vp, tbp);
if (error != 0 &&
error != EOPNOTSUPP) {
bp->b_error = error;
bp->b_ioflags |= BIO_ERROR;
bufdone(bp);
return;
}
}
bp->b_runningbufspace = bp->b_bufsize;
atomic_add_long(&runningbufspace,
bp->b_runningbufspace);
} else {
error = ffs_copyonwrite(vp, bp);
if (error != 0 && error != EOPNOTSUPP) {
bp->b_error = error;
bp->b_ioflags |= BIO_ERROR;
bufdone(bp);
return;
}
}
}
#ifdef SOFTUPDATES
if ((bp->b_flags & B_CLUSTER) != 0) {
TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head,
b_cluster.cluster_entry) {
if (!LIST_EMPTY(&tbp->b_dep))
buf_start(tbp);
}
} else {
if (!LIST_EMPTY(&bp->b_dep))
buf_start(bp);
}
#endif
/*
* Check for metadata that needs check-hashes and update them.
*/
switch (bp->b_xflags & BX_FSPRIV) {
case BX_CYLGRP:
((struct cg *)bp->b_data)->cg_ckhash = 0;
((struct cg *)bp->b_data)->cg_ckhash =
calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
break;
case BX_SUPERBLOCK:
case BX_INODE:
case BX_INDIR:
case BX_DIR:
printf("Check-hash write is unimplemented!!!\n");
break;
case 0:
break;
default:
printf("multiple buffer types 0x%b\n",
(u_int)(bp->b_xflags & BX_FSPRIV),
PRINT_UFS_BUF_XFLAGS);
break;
}
}
g_vfs_strategy(bo, bp);
}
int
ffs_own_mount(const struct mount *mp)
{
if (mp->mnt_op == &ufs_vfsops)
return (1);
return (0);
}
#ifdef DDB
#ifdef SOFTUPDATES
/* defined in ffs_softdep.c */
extern void db_print_ffs(struct ufsmount *ump);
DB_SHOW_COMMAND(ffs, db_show_ffs)
{
struct mount *mp;
struct ufsmount *ump;
if (have_addr) {
ump = VFSTOUFS((struct mount *)addr);
db_print_ffs(ump);
return;
}
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name))
db_print_ffs(VFSTOUFS(mp));
}
}
#endif /* SOFTUPDATES */
#endif /* DDB */