freebsd-src/sys/crypto/rijndael/rijndael-api-fst.c
Warner Losh fdafd315ad sys: Automated cleanup of cdefs and other formatting
Apply the following automated changes to try to eliminate
no-longer-needed sys/cdefs.h includes as well as now-empty
blank lines in a row.

Remove /^#if.*\n#endif.*\n#include\s+<sys/cdefs.h>.*\n/
Remove /\n+#include\s+<sys/cdefs.h>.*\n+#if.*\n#endif.*\n+/
Remove /\n+#if.*\n#endif.*\n+/
Remove /^#if.*\n#endif.*\n/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/types.h>/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/param.h>/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/capsicum.h>/

Sponsored by:		Netflix
2023-11-26 22:24:00 -07:00

449 lines
13 KiB
C

/* $KAME: rijndael-api-fst.c,v 1.10 2001/05/27 09:34:18 itojun Exp $ */
/*
* rijndael-api-fst.c v2.3 April '2000
*
* Optimised ANSI C code
*
* authors: v1.0: Antoon Bosselaers
* v2.0: Vincent Rijmen
* v2.1: Vincent Rijmen
* v2.2: Vincent Rijmen
* v2.3: Paulo Barreto
* v2.4: Vincent Rijmen
*
* This code is placed in the public domain.
*/
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/systm.h>
#else
#include <string.h>
#endif
#include <crypto/rijndael/rijndael_local.h>
#include <crypto/rijndael/rijndael-api-fst.h>
#ifndef TRUE
#define TRUE 1
#endif
typedef uint8_t BYTE;
int rijndael_makeKey(keyInstance *key, BYTE direction, int keyLen,
const char *keyMaterial) {
if (key == NULL) {
return BAD_KEY_INSTANCE;
}
if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {
key->direction = direction;
} else {
return BAD_KEY_DIR;
}
if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) {
key->keyLen = keyLen;
} else {
return BAD_KEY_MAT;
}
if (keyMaterial != NULL) {
memcpy(key->keyMaterial, keyMaterial, keyLen/8);
}
/* initialize key schedule: */
if (direction == DIR_ENCRYPT) {
key->Nr = rijndaelKeySetupEnc(key->rk, key->keyMaterial, keyLen);
} else {
key->Nr = rijndaelKeySetupDec(key->rk, key->keyMaterial, keyLen);
}
rijndaelKeySetupEnc(key->ek, key->keyMaterial, keyLen);
return TRUE;
}
int rijndael_cipherInit(cipherInstance *cipher, BYTE mode, char *IV) {
if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {
cipher->mode = mode;
} else {
return BAD_CIPHER_MODE;
}
if (IV != NULL) {
memcpy(cipher->IV, IV, RIJNDAEL_MAX_IV_SIZE);
} else {
memset(cipher->IV, 0, RIJNDAEL_MAX_IV_SIZE);
}
return TRUE;
}
int rijndael_blockEncrypt(cipherInstance *cipher, keyInstance *key,
const BYTE *input, int inputLen, BYTE *outBuffer) {
int i, k, numBlocks;
uint8_t block[16], iv[4][4];
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_DECRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputLen <= 0) {
return 0; /* nothing to do */
}
numBlocks = inputLen/128;
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
break;
case MODE_CBC:
#if 1 /*STRICT_ALIGN*/
memcpy(block, cipher->IV, 16);
memcpy(iv, input, 16);
((uint32_t*)block)[0] ^= ((uint32_t*)iv)[0];
((uint32_t*)block)[1] ^= ((uint32_t*)iv)[1];
((uint32_t*)block)[2] ^= ((uint32_t*)iv)[2];
((uint32_t*)block)[3] ^= ((uint32_t*)iv)[3];
#else
((uint32_t*)block)[0] = ((uint32_t*)cipher->IV)[0] ^ ((uint32_t*)input)[0];
((uint32_t*)block)[1] = ((uint32_t*)cipher->IV)[1] ^ ((uint32_t*)input)[1];
((uint32_t*)block)[2] = ((uint32_t*)cipher->IV)[2] ^ ((uint32_t*)input)[2];
((uint32_t*)block)[3] = ((uint32_t*)cipher->IV)[3] ^ ((uint32_t*)input)[3];
#endif
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
input += 16;
for (i = numBlocks - 1; i > 0; i--) {
#if 1 /*STRICT_ALIGN*/
memcpy(block, outBuffer, 16);
memcpy(iv, input, 16);
((uint32_t*)block)[0] ^= ((uint32_t*)iv)[0];
((uint32_t*)block)[1] ^= ((uint32_t*)iv)[1];
((uint32_t*)block)[2] ^= ((uint32_t*)iv)[2];
((uint32_t*)block)[3] ^= ((uint32_t*)iv)[3];
#else
((uint32_t*)block)[0] = ((uint32_t*)outBuffer)[0] ^ ((uint32_t*)input)[0];
((uint32_t*)block)[1] = ((uint32_t*)outBuffer)[1] ^ ((uint32_t*)input)[1];
((uint32_t*)block)[2] = ((uint32_t*)outBuffer)[2] ^ ((uint32_t*)input)[2];
((uint32_t*)block)[3] = ((uint32_t*)outBuffer)[3] ^ ((uint32_t*)input)[3];
#endif
outBuffer += 16;
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
input += 16;
}
break;
case MODE_CFB1:
#if 1 /*STRICT_ALIGN*/
memcpy(iv, cipher->IV, 16);
#else /* !STRICT_ALIGN */
*((uint32_t*)iv[0]) = *((uint32_t*)(cipher->IV ));
*((uint32_t*)iv[1]) = *((uint32_t*)(cipher->IV+ 4));
*((uint32_t*)iv[2]) = *((uint32_t*)(cipher->IV+ 8));
*((uint32_t*)iv[3]) = *((uint32_t*)(cipher->IV+12));
#endif /* ?STRICT_ALIGN */
for (i = numBlocks; i > 0; i--) {
for (k = 0; k < 128; k++) {
*((uint32_t*) block ) = *((uint32_t*)iv[0]);
*((uint32_t*)(block+ 4)) = *((uint32_t*)iv[1]);
*((uint32_t*)(block+ 8)) = *((uint32_t*)iv[2]);
*((uint32_t*)(block+12)) = *((uint32_t*)iv[3]);
rijndaelEncrypt(key->ek, key->Nr, block,
block);
outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
iv[3][3] = (iv[3][3] << 1) | ((outBuffer[k/8] >> (7-(k&7))) & 1);
}
}
break;
default:
return BAD_CIPHER_STATE;
}
explicit_bzero(block, sizeof(block));
return 128*numBlocks;
}
/**
* Encrypt data partitioned in octets, using RFC 2040-like padding.
*
* @param input data to be encrypted (octet sequence)
* @param inputOctets input length in octets (not bits)
* @param outBuffer encrypted output data
*
* @return length in octets (not bits) of the encrypted output buffer.
*/
int rijndael_padEncrypt(cipherInstance *cipher, keyInstance *key,
const BYTE *input, int inputOctets, BYTE *outBuffer) {
int i, numBlocks, padLen;
uint8_t block[16], *iv, *cp;
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_DECRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputOctets <= 0) {
return 0; /* nothing to do */
}
numBlocks = inputOctets/16;
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
padLen = 16 - (inputOctets - 16*numBlocks);
if (padLen <= 0 || padLen > 16)
return BAD_CIPHER_STATE;
memcpy(block, input, 16 - padLen);
for (cp = block + 16 - padLen; cp < block + 16; cp++)
*cp = padLen;
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
break;
case MODE_CBC:
iv = cipher->IV;
for (i = numBlocks; i > 0; i--) {
((uint32_t*)block)[0] = ((const uint32_t*)input)[0] ^ ((uint32_t*)iv)[0];
((uint32_t*)block)[1] = ((const uint32_t*)input)[1] ^ ((uint32_t*)iv)[1];
((uint32_t*)block)[2] = ((const uint32_t*)input)[2] ^ ((uint32_t*)iv)[2];
((uint32_t*)block)[3] = ((const uint32_t*)input)[3] ^ ((uint32_t*)iv)[3];
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
iv = outBuffer;
input += 16;
outBuffer += 16;
}
padLen = 16 - (inputOctets - 16*numBlocks);
if (padLen <= 0 || padLen > 16)
return BAD_CIPHER_STATE;
for (i = 0; i < 16 - padLen; i++) {
block[i] = input[i] ^ iv[i];
}
for (i = 16 - padLen; i < 16; i++) {
block[i] = (BYTE)padLen ^ iv[i];
}
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
break;
default:
return BAD_CIPHER_STATE;
}
explicit_bzero(block, sizeof(block));
return 16*(numBlocks + 1);
}
int rijndael_blockDecrypt(cipherInstance *cipher, keyInstance *key,
const BYTE *input, int inputLen, BYTE *outBuffer) {
int i, k, numBlocks;
uint8_t block[16], iv[4][4];
if (cipher == NULL ||
key == NULL ||
(cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputLen <= 0) {
return 0; /* nothing to do */
}
numBlocks = inputLen/128;
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
break;
case MODE_CBC:
#if 1 /*STRICT_ALIGN */
memcpy(iv, cipher->IV, 16);
#else
*((uint32_t*)iv[0]) = *((uint32_t*)(cipher->IV ));
*((uint32_t*)iv[1]) = *((uint32_t*)(cipher->IV+ 4));
*((uint32_t*)iv[2]) = *((uint32_t*)(cipher->IV+ 8));
*((uint32_t*)iv[3]) = *((uint32_t*)(cipher->IV+12));
#endif
for (i = numBlocks; i > 0; i--) {
rijndaelDecrypt(key->rk, key->Nr, input, block);
((uint32_t*)block)[0] ^= *((uint32_t*)iv[0]);
((uint32_t*)block)[1] ^= *((uint32_t*)iv[1]);
((uint32_t*)block)[2] ^= *((uint32_t*)iv[2]);
((uint32_t*)block)[3] ^= *((uint32_t*)iv[3]);
#if 1 /*STRICT_ALIGN*/
memcpy(iv, input, 16);
memcpy(outBuffer, block, 16);
#else
*((uint32_t*)iv[0]) = ((uint32_t*)input)[0]; ((uint32_t*)outBuffer)[0] = ((uint32_t*)block)[0];
*((uint32_t*)iv[1]) = ((uint32_t*)input)[1]; ((uint32_t*)outBuffer)[1] = ((uint32_t*)block)[1];
*((uint32_t*)iv[2]) = ((uint32_t*)input)[2]; ((uint32_t*)outBuffer)[2] = ((uint32_t*)block)[2];
*((uint32_t*)iv[3]) = ((uint32_t*)input)[3]; ((uint32_t*)outBuffer)[3] = ((uint32_t*)block)[3];
#endif
input += 16;
outBuffer += 16;
}
break;
case MODE_CFB1:
#if 1 /*STRICT_ALIGN */
memcpy(iv, cipher->IV, 16);
#else
*((uint32_t*)iv[0]) = *((uint32_t*)(cipher->IV));
*((uint32_t*)iv[1]) = *((uint32_t*)(cipher->IV+ 4));
*((uint32_t*)iv[2]) = *((uint32_t*)(cipher->IV+ 8));
*((uint32_t*)iv[3]) = *((uint32_t*)(cipher->IV+12));
#endif
for (i = numBlocks; i > 0; i--) {
for (k = 0; k < 128; k++) {
*((uint32_t*) block ) = *((uint32_t*)iv[0]);
*((uint32_t*)(block+ 4)) = *((uint32_t*)iv[1]);
*((uint32_t*)(block+ 8)) = *((uint32_t*)iv[2]);
*((uint32_t*)(block+12)) = *((uint32_t*)iv[3]);
rijndaelEncrypt(key->ek, key->Nr, block,
block);
iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
iv[3][3] = (iv[3][3] << 1) | ((input[k/8] >> (7-(k&7))) & 1);
outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
}
}
break;
default:
return BAD_CIPHER_STATE;
}
explicit_bzero(block, sizeof(block));
return 128*numBlocks;
}
int rijndael_padDecrypt(cipherInstance *cipher, keyInstance *key,
const BYTE *input, int inputOctets, BYTE *outBuffer) {
int i, numBlocks, padLen, rval;
uint8_t block[16];
uint32_t iv[4];
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_ENCRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputOctets <= 0) {
return 0; /* nothing to do */
}
if (inputOctets % 16 != 0) {
return BAD_DATA;
}
numBlocks = inputOctets/16;
switch (cipher->mode) {
case MODE_ECB:
/* all blocks but last */
for (i = numBlocks - 1; i > 0; i--) {
rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
/* last block */
rijndaelDecrypt(key->rk, key->Nr, input, block);
padLen = block[15];
if (padLen >= 16) {
rval = BAD_DATA;
goto out;
}
for (i = 16 - padLen; i < 16; i++) {
if (block[i] != padLen) {
rval = BAD_DATA;
goto out;
}
}
memcpy(outBuffer, block, 16 - padLen);
break;
case MODE_CBC:
memcpy(iv, cipher->IV, 16);
/* all blocks but last */
for (i = numBlocks - 1; i > 0; i--) {
rijndaelDecrypt(key->rk, key->Nr, input, block);
((uint32_t*)block)[0] ^= iv[0];
((uint32_t*)block)[1] ^= iv[1];
((uint32_t*)block)[2] ^= iv[2];
((uint32_t*)block)[3] ^= iv[3];
memcpy(iv, input, 16);
memcpy(outBuffer, block, 16);
input += 16;
outBuffer += 16;
}
/* last block */
rijndaelDecrypt(key->rk, key->Nr, input, block);
((uint32_t*)block)[0] ^= iv[0];
((uint32_t*)block)[1] ^= iv[1];
((uint32_t*)block)[2] ^= iv[2];
((uint32_t*)block)[3] ^= iv[3];
padLen = block[15];
if (padLen <= 0 || padLen > 16) {
rval = BAD_DATA;
goto out;
}
for (i = 16 - padLen; i < 16; i++) {
if (block[i] != padLen) {
rval = BAD_DATA;
goto out;
}
}
memcpy(outBuffer, block, 16 - padLen);
break;
default:
return BAD_CIPHER_STATE;
}
rval = 16*numBlocks - padLen;
out:
explicit_bzero(block, sizeof(block));
return rval;
}