freebsd-src/sys/dev/ntb/ntb_hw/ntb_hw_intel.c
Austin Zhang 70450ecd37 ntb: Add Intel Xeon Gen4 support
The NTB hardware of XEON Ice lake and Sapphire Rapids has register mapping changes
Add a new NTB_XEON_GEN4 device type and use it to conditionalize driver logic differs

Reviewed by:		vangyzen, dab
Sponsored by:		Dell Technologies
Differential Revision:	https://reviews.freebsd.org/D43291
2024-02-07 15:14:58 -06:00

3912 lines
111 KiB
C

/*-
* Copyright (c) 2016-2017 Alexander Motin <mav@FreeBSD.org>
* Copyright (C) 2013 Intel Corporation
* Copyright (C) 2015 EMC Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The Non-Transparent Bridge (NTB) is a device that allows you to connect
* two or more systems using a PCI-e links, providing remote memory access.
*
* This module contains a driver for NTB hardware in Intel Xeon/Atom CPUs.
*
* NOTE: Much of the code in this module is shared with Linux. Any patches may
* be picked up and redistributed in Linux with a dual GPL/BSD license.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/interrupt.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/pciio.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <sys/queue.h>
#include <sys/rman.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/intr_machdep.h>
#include <machine/resource.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/iommu/iommu.h>
#include "ntb_hw_intel.h"
#include "../ntb.h"
#define MAX_MSIX_INTERRUPTS \
MAX(MAX(XEON_DB_COUNT, ATOM_DB_COUNT), XEON_GEN3_DB_COUNT)
#define NTB_HB_TIMEOUT 1 /* second */
#define ATOM_LINK_RECOVERY_TIME 500 /* ms */
#define BAR_HIGH_MASK (~((1ull << 12) - 1))
#define NTB_MSIX_VER_GUARD 0xaabbccdd
#define NTB_MSIX_RECEIVED 0xe0f0e0f0
/*
* PCI constants could be somewhere more generic, but aren't defined/used in
* pci.c.
*/
#define PCI_MSIX_ENTRY_SIZE 16
#define PCI_MSIX_ENTRY_LOWER_ADDR 0
#define PCI_MSIX_ENTRY_UPPER_ADDR 4
#define PCI_MSIX_ENTRY_DATA 8
enum ntb_device_type {
NTB_XEON_GEN1,
NTB_XEON_GEN3,
NTB_XEON_GEN4,
NTB_ATOM
};
/* ntb_conn_type are hardware numbers, cannot change. */
enum ntb_conn_type {
NTB_CONN_TRANSPARENT = 0,
NTB_CONN_B2B = 1,
NTB_CONN_RP = 2,
};
enum ntb_b2b_direction {
NTB_DEV_USD = 0,
NTB_DEV_DSD = 1,
};
enum ntb_bar {
NTB_CONFIG_BAR = 0,
NTB_B2B_BAR_1,
NTB_B2B_BAR_2,
NTB_B2B_BAR_3,
NTB_MAX_BARS
};
enum {
NTB_MSIX_GUARD = 0,
NTB_MSIX_DATA0,
NTB_MSIX_DATA1,
NTB_MSIX_DATA2,
NTB_MSIX_OFS0,
NTB_MSIX_OFS1,
NTB_MSIX_OFS2,
NTB_MSIX_DONE,
NTB_MAX_MSIX_SPAD
};
/* Device features and workarounds */
#define HAS_FEATURE(ntb, feature) \
(((ntb)->features & (feature)) != 0)
struct ntb_hw_info {
uint32_t device_id;
const char *desc;
enum ntb_device_type type;
uint32_t features;
};
struct ntb_pci_bar_info {
bus_space_tag_t pci_bus_tag;
bus_space_handle_t pci_bus_handle;
int pci_resource_id;
struct resource *pci_resource;
vm_paddr_t pbase;
caddr_t vbase;
vm_size_t size;
vm_memattr_t map_mode;
/* Configuration register offsets */
uint32_t psz_off;
uint32_t ssz_off;
uint32_t pbarxlat_off;
};
struct ntb_int_info {
struct resource *res;
int rid;
void *tag;
};
struct ntb_vec {
struct ntb_softc *ntb;
uint32_t num;
unsigned masked;
};
struct ntb_reg {
uint32_t ntb_ctl;
uint32_t lnk_sta;
uint8_t db_size;
unsigned mw_bar[NTB_MAX_BARS];
};
struct ntb_alt_reg {
uint32_t db_bell;
uint32_t db_mask;
uint32_t db_clear;
uint32_t spad;
};
struct ntb_xlat_reg {
uint32_t bar0_base;
uint32_t bar2_base;
uint32_t bar4_base;
uint32_t bar5_base;
uint32_t bar2_xlat;
uint32_t bar4_xlat;
uint32_t bar5_xlat;
uint32_t bar2_limit;
uint32_t bar4_limit;
uint32_t bar5_limit;
};
struct ntb_b2b_addr {
uint64_t bar0_addr;
uint64_t bar2_addr64;
uint64_t bar4_addr64;
uint64_t bar4_addr32;
uint64_t bar5_addr32;
};
struct ntb_msix_data {
uint32_t nmd_ofs;
uint32_t nmd_data;
};
struct ntb_softc {
/* ntb.c context. Do not move! Must go first! */
void *ntb_store;
device_t device;
enum ntb_device_type type;
uint32_t features;
struct ntb_pci_bar_info bar_info[NTB_MAX_BARS];
struct ntb_int_info int_info[MAX_MSIX_INTERRUPTS];
uint32_t allocated_interrupts;
struct ntb_msix_data peer_msix_data[XEON_NONLINK_DB_MSIX_BITS];
struct ntb_msix_data msix_data[XEON_NONLINK_DB_MSIX_BITS];
bool peer_msix_good;
bool peer_msix_done;
struct ntb_pci_bar_info *peer_lapic_bar;
struct callout peer_msix_work;
bus_dma_tag_t bar0_dma_tag;
bus_dmamap_t bar0_dma_map;
struct callout heartbeat_timer;
struct callout lr_timer;
struct ntb_vec *msix_vec;
uint32_t ppd;
enum ntb_conn_type conn_type;
enum ntb_b2b_direction dev_type;
/* Offset of peer bar0 in B2B BAR */
uint64_t b2b_off;
/* Memory window used to access peer bar0 */
#define B2B_MW_DISABLED UINT8_MAX
uint8_t b2b_mw_idx;
uint32_t msix_xlat;
uint8_t msix_mw_idx;
uint8_t mw_count;
uint8_t spad_count;
uint8_t db_count;
uint8_t db_vec_count;
uint8_t db_vec_shift;
/* Protects local db_mask. */
#define DB_MASK_LOCK(sc) mtx_lock_spin(&(sc)->db_mask_lock)
#define DB_MASK_UNLOCK(sc) mtx_unlock_spin(&(sc)->db_mask_lock)
#define DB_MASK_ASSERT(sc,f) mtx_assert(&(sc)->db_mask_lock, (f))
struct mtx db_mask_lock;
volatile uint32_t ntb_ctl;
volatile uint32_t lnk_sta;
uint64_t db_valid_mask;
uint64_t db_link_mask;
uint64_t db_mask;
uint64_t fake_db; /* NTB_SB01BASE_LOCKUP*/
uint64_t force_db; /* NTB_SB01BASE_LOCKUP*/
int last_ts; /* ticks @ last irq */
const struct ntb_reg *reg;
const struct ntb_alt_reg *self_reg;
const struct ntb_alt_reg *peer_reg;
const struct ntb_xlat_reg *xlat_reg;
};
#ifdef __i386__
static __inline uint64_t
bus_space_read_8(bus_space_tag_t tag, bus_space_handle_t handle,
bus_size_t offset)
{
return (bus_space_read_4(tag, handle, offset) |
((uint64_t)bus_space_read_4(tag, handle, offset + 4)) << 32);
}
static __inline void
bus_space_write_8(bus_space_tag_t tag, bus_space_handle_t handle,
bus_size_t offset, uint64_t val)
{
bus_space_write_4(tag, handle, offset, val);
bus_space_write_4(tag, handle, offset + 4, val >> 32);
}
#endif
#define intel_ntb_bar_read(SIZE, bar, offset) \
bus_space_read_ ## SIZE (ntb->bar_info[(bar)].pci_bus_tag, \
ntb->bar_info[(bar)].pci_bus_handle, (offset))
#define intel_ntb_bar_write(SIZE, bar, offset, val) \
bus_space_write_ ## SIZE (ntb->bar_info[(bar)].pci_bus_tag, \
ntb->bar_info[(bar)].pci_bus_handle, (offset), (val))
#define intel_ntb_reg_read(SIZE, offset) \
intel_ntb_bar_read(SIZE, NTB_CONFIG_BAR, offset)
#define intel_ntb_reg_write(SIZE, offset, val) \
intel_ntb_bar_write(SIZE, NTB_CONFIG_BAR, offset, val)
#define intel_ntb_mw_read(SIZE, offset) \
intel_ntb_bar_read(SIZE, intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx), \
offset)
#define intel_ntb_mw_write(SIZE, offset, val) \
intel_ntb_bar_write(SIZE, intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx), \
offset, val)
static int intel_ntb_probe(device_t device);
static int intel_ntb_attach(device_t device);
static int intel_ntb_detach(device_t device);
static uint64_t intel_ntb_db_valid_mask(device_t dev);
static void intel_ntb_spad_clear(device_t dev);
static uint64_t intel_ntb_db_vector_mask(device_t dev, uint32_t vector);
static bool intel_ntb_link_is_up(device_t dev, enum ntb_speed *speed,
enum ntb_width *width);
static int intel_ntb_link_enable(device_t dev, enum ntb_speed speed,
enum ntb_width width);
static int intel_ntb_link_disable(device_t dev);
static int intel_ntb_spad_read(device_t dev, unsigned int idx, uint32_t *val);
static int intel_ntb_peer_spad_write(device_t dev, unsigned int idx, uint32_t val);
static unsigned intel_ntb_user_mw_to_idx(struct ntb_softc *, unsigned uidx);
static inline enum ntb_bar intel_ntb_mw_to_bar(struct ntb_softc *, unsigned mw);
static inline bool bar_is_64bit(struct ntb_softc *, enum ntb_bar);
static inline void bar_get_xlat_params(struct ntb_softc *, enum ntb_bar,
uint32_t *base, uint32_t *xlat, uint32_t *lmt);
static int intel_ntb_map_pci_bars(struct ntb_softc *ntb);
static int intel_ntb_mw_set_wc_internal(struct ntb_softc *, unsigned idx,
vm_memattr_t);
static void print_map_success(struct ntb_softc *, struct ntb_pci_bar_info *,
const char *);
static int map_mmr_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar);
static int map_memory_window_bar(struct ntb_softc *ntb,
struct ntb_pci_bar_info *bar);
static void intel_ntb_unmap_pci_bar(struct ntb_softc *ntb);
static int intel_ntb_remap_msix(device_t, uint32_t desired, uint32_t avail);
static int intel_ntb_init_isr(struct ntb_softc *ntb);
static int intel_ntb_xeon_gen3_init_isr(struct ntb_softc *ntb);
static int intel_ntb_setup_legacy_interrupt(struct ntb_softc *ntb);
static int intel_ntb_setup_msix(struct ntb_softc *ntb, uint32_t num_vectors);
static void intel_ntb_teardown_interrupts(struct ntb_softc *ntb);
static inline uint64_t intel_ntb_vec_mask(struct ntb_softc *, uint64_t db_vector);
static void intel_ntb_interrupt(struct ntb_softc *, uint32_t vec);
static void ndev_vec_isr(void *arg);
static void ndev_irq_isr(void *arg);
static inline uint64_t db_ioread(struct ntb_softc *, uint64_t regoff);
static inline void db_iowrite(struct ntb_softc *, uint64_t regoff, uint64_t);
static inline void db_iowrite_raw(struct ntb_softc *, uint64_t regoff, uint64_t);
static int intel_ntb_create_msix_vec(struct ntb_softc *ntb, uint32_t num_vectors);
static void intel_ntb_free_msix_vec(struct ntb_softc *ntb);
static void intel_ntb_get_msix_info(struct ntb_softc *ntb);
static void intel_ntb_exchange_msix(void *);
static struct ntb_hw_info *intel_ntb_get_device_info(uint32_t device_id);
static void intel_ntb_detect_max_mw(struct ntb_softc *ntb);
static int intel_ntb_detect_xeon(struct ntb_softc *ntb);
static int intel_ntb_detect_xeon_gen3(struct ntb_softc *ntb);
static int intel_ntb_detect_xeon_gen4(struct ntb_softc *ntb);
static int intel_ntb_detect_xeon_gen4_cfg(struct ntb_softc *ntb);
static int intel_ntb_detect_atom(struct ntb_softc *ntb);
static int intel_ntb_xeon_init_dev(struct ntb_softc *ntb);
static int intel_ntb_xeon_gen3_init_dev(struct ntb_softc *ntb);
static int intel_ntb_xeon_gen4_init_dev(struct ntb_softc *ntb);
static int intel_ntb_atom_init_dev(struct ntb_softc *ntb);
static void intel_ntb_teardown_xeon(struct ntb_softc *ntb);
static void configure_atom_secondary_side_bars(struct ntb_softc *ntb);
static void xeon_reset_sbar_size(struct ntb_softc *, enum ntb_bar idx,
enum ntb_bar regbar);
static void xeon_set_sbar_base_and_limit(struct ntb_softc *,
uint64_t base_addr, enum ntb_bar idx, enum ntb_bar regbar);
static void xeon_set_pbar_xlat(struct ntb_softc *, uint64_t base_addr,
enum ntb_bar idx);
static int xeon_setup_b2b_mw(struct ntb_softc *,
const struct ntb_b2b_addr *addr, const struct ntb_b2b_addr *peer_addr);
static int xeon_gen3_setup_b2b_mw(struct ntb_softc *);
static int xeon_gen4_setup_b2b_mw(struct ntb_softc *);
static int intel_ntb_mw_set_trans(device_t dev, unsigned idx, bus_addr_t addr,
size_t size);
static inline bool link_is_up(struct ntb_softc *ntb);
static inline bool _xeon_link_is_up(struct ntb_softc *ntb);
static inline bool atom_link_is_err(struct ntb_softc *ntb);
static inline enum ntb_speed intel_ntb_link_sta_speed(struct ntb_softc *);
static inline enum ntb_width intel_ntb_link_sta_width(struct ntb_softc *);
static void atom_link_hb(void *arg);
static void recover_atom_link(void *arg);
static bool intel_ntb_poll_link(struct ntb_softc *ntb);
static void save_bar_parameters(struct ntb_pci_bar_info *bar);
static void intel_ntb_sysctl_init(struct ntb_softc *);
static int sysctl_handle_features(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_link_admin(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_link_status_human(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_link_status(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_register(SYSCTL_HANDLER_ARGS);
static unsigned g_ntb_hw_debug_level;
SYSCTL_UINT(_hw_ntb, OID_AUTO, debug_level, CTLFLAG_RWTUN,
&g_ntb_hw_debug_level, 0, "ntb_hw log level -- higher is more verbose");
#define intel_ntb_printf(lvl, ...) do { \
if ((lvl) <= g_ntb_hw_debug_level) { \
device_printf(ntb->device, __VA_ARGS__); \
} \
} while (0)
#define _NTB_PAT_UC 0
#define _NTB_PAT_WC 1
#define _NTB_PAT_WT 4
#define _NTB_PAT_WP 5
#define _NTB_PAT_WB 6
#define _NTB_PAT_UCM 7
static unsigned g_ntb_mw_pat = _NTB_PAT_UC;
SYSCTL_UINT(_hw_ntb, OID_AUTO, default_mw_pat, CTLFLAG_RDTUN,
&g_ntb_mw_pat, 0, "Configure the default memory window cache flags (PAT): "
"UC: " __XSTRING(_NTB_PAT_UC) ", "
"WC: " __XSTRING(_NTB_PAT_WC) ", "
"WT: " __XSTRING(_NTB_PAT_WT) ", "
"WP: " __XSTRING(_NTB_PAT_WP) ", "
"WB: " __XSTRING(_NTB_PAT_WB) ", "
"UC-: " __XSTRING(_NTB_PAT_UCM));
static inline vm_memattr_t
intel_ntb_pat_flags(void)
{
switch (g_ntb_mw_pat) {
case _NTB_PAT_WC:
return (VM_MEMATTR_WRITE_COMBINING);
case _NTB_PAT_WT:
return (VM_MEMATTR_WRITE_THROUGH);
case _NTB_PAT_WP:
return (VM_MEMATTR_WRITE_PROTECTED);
case _NTB_PAT_WB:
return (VM_MEMATTR_WRITE_BACK);
case _NTB_PAT_UCM:
return (VM_MEMATTR_WEAK_UNCACHEABLE);
case _NTB_PAT_UC:
/* FALLTHROUGH */
default:
return (VM_MEMATTR_UNCACHEABLE);
}
}
/*
* Well, this obviously doesn't belong here, but it doesn't seem to exist
* anywhere better yet.
*/
static inline const char *
intel_ntb_vm_memattr_to_str(vm_memattr_t pat)
{
switch (pat) {
case VM_MEMATTR_WRITE_COMBINING:
return ("WRITE_COMBINING");
case VM_MEMATTR_WRITE_THROUGH:
return ("WRITE_THROUGH");
case VM_MEMATTR_WRITE_PROTECTED:
return ("WRITE_PROTECTED");
case VM_MEMATTR_WRITE_BACK:
return ("WRITE_BACK");
case VM_MEMATTR_WEAK_UNCACHEABLE:
return ("UNCACHED");
case VM_MEMATTR_UNCACHEABLE:
return ("UNCACHEABLE");
default:
return ("UNKNOWN");
}
}
static int g_ntb_msix_idx = 1;
SYSCTL_INT(_hw_ntb, OID_AUTO, msix_mw_idx, CTLFLAG_RDTUN, &g_ntb_msix_idx,
0, "Use this memory window to access the peer MSIX message complex on "
"certain Xeon-based NTB systems, as a workaround for a hardware errata. "
"Like b2b_mw_idx, negative values index from the last available memory "
"window. (Applies on Xeon platforms with SB01BASE_LOCKUP errata.)");
static int g_ntb_mw_idx = -1;
SYSCTL_INT(_hw_ntb, OID_AUTO, b2b_mw_idx, CTLFLAG_RDTUN, &g_ntb_mw_idx,
0, "Use this memory window to access the peer NTB registers. A "
"non-negative value starts from the first MW index; a negative value "
"starts from the last MW index. The default is -1, i.e., the last "
"available memory window. Both sides of the NTB MUST set the same "
"value here! (Applies on Xeon platforms with SDOORBELL_LOCKUP errata.)");
/* Hardware owns the low 16 bits of features. */
#define NTB_BAR_SIZE_4K (1 << 0)
#define NTB_SDOORBELL_LOCKUP (1 << 1)
#define NTB_SB01BASE_LOCKUP (1 << 2)
#define NTB_B2BDOORBELL_BIT14 (1 << 3)
#define NTB_BAR_ALIGN (1 << 4)
#define NTB_LTR_BAD (1 << 5)
/* Software/configuration owns the top 16 bits. */
#define NTB_SPLIT_BAR (1ull << 16)
#define NTB_ONE_MSIX (1ull << 17)
#define NTB_FEATURES_STR \
"\20\21SPLIT_BAR4\06LTR_BAD\05BAR_ALIGN" \
"\04B2B_DOORBELL_BIT14\03SB01BASE_LOCKUP" \
"\02SDOORBELL_LOCKUP\01BAR_SIZE_4K"
static struct ntb_hw_info pci_ids[] = {
/* XXX: PS/SS IDs left out until they are supported. */
{ 0x0C4E8086, "BWD Atom Processor S1200 Non-Transparent Bridge B2B",
NTB_ATOM, 0 },
{ 0x37258086, "JSF Xeon C35xx/C55xx Non-Transparent Bridge B2B",
NTB_XEON_GEN1, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 },
{ 0x3C0D8086, "SNB Xeon E5/Core i7 Non-Transparent Bridge B2B",
NTB_XEON_GEN1, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 },
{ 0x0E0D8086, "IVT Xeon E5 V2 Non-Transparent Bridge B2B",
NTB_XEON_GEN1, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 |
NTB_SB01BASE_LOCKUP | NTB_BAR_SIZE_4K },
{ 0x2F0D8086, "HSX Xeon E5 V3 Non-Transparent Bridge B2B",
NTB_XEON_GEN1, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 |
NTB_SB01BASE_LOCKUP },
{ 0x6F0D8086, "BDX Xeon E5 V4 Non-Transparent Bridge B2B",
NTB_XEON_GEN1, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 |
NTB_SB01BASE_LOCKUP },
{ 0x201C8086, "SKL Xeon E5 V5 Non-Transparent Bridge B2B",
NTB_XEON_GEN3, 0 },
{ 0x347e8086, "ICX/SPR Xeon Non-Transparent Bridge B2B",
NTB_XEON_GEN4, 0 },
};
static const struct ntb_reg atom_reg = {
.ntb_ctl = ATOM_NTBCNTL_OFFSET,
.lnk_sta = ATOM_LINK_STATUS_OFFSET,
.db_size = sizeof(uint64_t),
.mw_bar = { NTB_B2B_BAR_1, NTB_B2B_BAR_2 },
};
static const struct ntb_alt_reg atom_pri_reg = {
.db_bell = ATOM_PDOORBELL_OFFSET,
.db_mask = ATOM_PDBMSK_OFFSET,
.spad = ATOM_SPAD_OFFSET,
};
static const struct ntb_alt_reg atom_b2b_reg = {
.db_bell = ATOM_B2B_DOORBELL_OFFSET,
.spad = ATOM_B2B_SPAD_OFFSET,
};
static const struct ntb_xlat_reg atom_sec_xlat = {
#if 0
/* "FIXME" says the Linux driver. */
.bar0_base = ATOM_SBAR0BASE_OFFSET,
.bar2_base = ATOM_SBAR2BASE_OFFSET,
.bar4_base = ATOM_SBAR4BASE_OFFSET,
.bar2_limit = ATOM_SBAR2LMT_OFFSET,
.bar4_limit = ATOM_SBAR4LMT_OFFSET,
#endif
.bar2_xlat = ATOM_SBAR2XLAT_OFFSET,
.bar4_xlat = ATOM_SBAR4XLAT_OFFSET,
};
static const struct ntb_reg xeon_reg = {
.ntb_ctl = XEON_NTBCNTL_OFFSET,
.lnk_sta = XEON_LINK_STATUS_OFFSET,
.db_size = sizeof(uint16_t),
.mw_bar = { NTB_B2B_BAR_1, NTB_B2B_BAR_2, NTB_B2B_BAR_3 },
};
static const struct ntb_alt_reg xeon_pri_reg = {
.db_bell = XEON_PDOORBELL_OFFSET,
.db_mask = XEON_PDBMSK_OFFSET,
.spad = XEON_SPAD_OFFSET,
};
static const struct ntb_alt_reg xeon_b2b_reg = {
.db_bell = XEON_B2B_DOORBELL_OFFSET,
.spad = XEON_B2B_SPAD_OFFSET,
};
static const struct ntb_xlat_reg xeon_sec_xlat = {
.bar0_base = XEON_SBAR0BASE_OFFSET,
.bar2_base = XEON_SBAR2BASE_OFFSET,
.bar4_base = XEON_SBAR4BASE_OFFSET,
.bar5_base = XEON_SBAR5BASE_OFFSET,
.bar2_limit = XEON_SBAR2LMT_OFFSET,
.bar4_limit = XEON_SBAR4LMT_OFFSET,
.bar5_limit = XEON_SBAR5LMT_OFFSET,
.bar2_xlat = XEON_SBAR2XLAT_OFFSET,
.bar4_xlat = XEON_SBAR4XLAT_OFFSET,
.bar5_xlat = XEON_SBAR5XLAT_OFFSET,
};
static struct ntb_b2b_addr xeon_b2b_usd_addr = {
.bar0_addr = XEON_B2B_BAR0_ADDR,
.bar2_addr64 = XEON_B2B_BAR2_ADDR64,
.bar4_addr64 = XEON_B2B_BAR4_ADDR64,
.bar4_addr32 = XEON_B2B_BAR4_ADDR32,
.bar5_addr32 = XEON_B2B_BAR5_ADDR32,
};
static struct ntb_b2b_addr xeon_b2b_dsd_addr = {
.bar0_addr = XEON_B2B_BAR0_ADDR,
.bar2_addr64 = XEON_B2B_BAR2_ADDR64,
.bar4_addr64 = XEON_B2B_BAR4_ADDR64,
.bar4_addr32 = XEON_B2B_BAR4_ADDR32,
.bar5_addr32 = XEON_B2B_BAR5_ADDR32,
};
static const struct ntb_reg xeon_gen3_reg = {
.ntb_ctl = XEON_GEN3_REG_IMNTB_CTRL,
.lnk_sta = XEON_GEN3_INT_LNK_STS_OFFSET,
.db_size = sizeof(uint32_t),
.mw_bar = { NTB_B2B_BAR_1, NTB_B2B_BAR_2 },
};
static const struct ntb_alt_reg xeon_gen3_pri_reg = {
.db_bell = XEON_GEN3_REG_EMDOORBELL,
.db_mask = XEON_GEN3_REG_IMINT_DISABLE,
.spad = XEON_GEN3_REG_IMSPAD,
};
static const struct ntb_alt_reg xeon_gen3_b2b_reg = {
.db_bell = XEON_GEN3_REG_IMDOORBELL,
.db_mask = XEON_GEN3_REG_EMINT_DISABLE,
.spad = XEON_GEN3_REG_IMB2B_SSPAD,
};
static const struct ntb_xlat_reg xeon_gen3_sec_xlat = {
.bar0_base = XEON_GEN3_EXT_REG_BAR0BASE,
.bar2_base = XEON_GEN3_EXT_REG_BAR1BASE,
.bar4_base = XEON_GEN3_EXT_REG_BAR2BASE,
.bar2_limit = XEON_GEN3_REG_IMBAR1XLIMIT,
.bar4_limit = XEON_GEN3_REG_IMBAR2XLIMIT,
.bar2_xlat = XEON_GEN3_REG_IMBAR1XBASE,
.bar4_xlat = XEON_GEN3_REG_IMBAR2XBASE,
};
static const struct ntb_reg xeon_gen4_reg = {
.ntb_ctl = XEON_GEN4_REG_IMNTB_CTL,
.lnk_sta = XEON_GEN4_REG_LINK_STATUS, /* mmio */
.db_size = sizeof(uint32_t),
.mw_bar = { NTB_B2B_BAR_1, NTB_B2B_BAR_2 },
};
static const struct ntb_alt_reg xeon_gen4_pri_reg = {
.db_clear = XEON_GEN4_REG_IMINT_STATUS,
.db_mask = XEON_GEN4_REG_IMINT_DISABLE,
.spad = XEON_GEN4_REG_IMSPAD,
};
static const struct ntb_alt_reg xeon_gen4_b2b_reg = {
.db_bell = XEON_GEN4_REG_IMDOORBELL,
.spad = XEON_GEN4_REG_EMSPAD,
};
static const struct ntb_xlat_reg xeon_gen4_sec_xlat = {
.bar2_limit = XEON_GEN4_REG_IMBAR1XLIMIT,
.bar2_xlat = XEON_GEN4_REG_IMBAR1XBASE,
.bar4_limit = XEON_GEN4_REG_IMBAR1XLIMIT,
.bar4_xlat = XEON_GEN4_REG_IMBAR2XBASE,
};
SYSCTL_NODE(_hw_ntb, OID_AUTO, xeon_b2b, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"B2B MW segment overrides -- MUST be the same on both sides");
SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar2_addr64, CTLFLAG_RDTUN,
&xeon_b2b_usd_addr.bar2_addr64, 0, "If using B2B topology on Xeon "
"hardware, use this 64-bit address on the bus between the NTB devices for "
"the window at BAR2, on the upstream side of the link. MUST be the same "
"address on both sides.");
SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar4_addr64, CTLFLAG_RDTUN,
&xeon_b2b_usd_addr.bar4_addr64, 0, "See usd_bar2_addr64, but BAR4.");
SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar4_addr32, CTLFLAG_RDTUN,
&xeon_b2b_usd_addr.bar4_addr32, 0, "See usd_bar2_addr64, but BAR4 "
"(split-BAR mode).");
SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar5_addr32, CTLFLAG_RDTUN,
&xeon_b2b_usd_addr.bar5_addr32, 0, "See usd_bar2_addr64, but BAR5 "
"(split-BAR mode).");
SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar2_addr64, CTLFLAG_RDTUN,
&xeon_b2b_dsd_addr.bar2_addr64, 0, "If using B2B topology on Xeon "
"hardware, use this 64-bit address on the bus between the NTB devices for "
"the window at BAR2, on the downstream side of the link. MUST be the same"
" address on both sides.");
SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar4_addr64, CTLFLAG_RDTUN,
&xeon_b2b_dsd_addr.bar4_addr64, 0, "See dsd_bar2_addr64, but BAR4.");
SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar4_addr32, CTLFLAG_RDTUN,
&xeon_b2b_dsd_addr.bar4_addr32, 0, "See dsd_bar2_addr64, but BAR4 "
"(split-BAR mode).");
SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar5_addr32, CTLFLAG_RDTUN,
&xeon_b2b_dsd_addr.bar5_addr32, 0, "See dsd_bar2_addr64, but BAR5 "
"(split-BAR mode).");
/*
* OS <-> Driver interface structures
*/
MALLOC_DEFINE(M_NTB, "ntb_hw", "ntb_hw driver memory allocations");
/*
* OS <-> Driver linkage functions
*/
static int
intel_ntb_probe(device_t device)
{
struct ntb_hw_info *p;
p = intel_ntb_get_device_info(pci_get_devid(device));
if (p == NULL)
return (ENXIO);
device_set_desc(device, p->desc);
return (0);
}
static int
intel_ntb_attach(device_t device)
{
struct ntb_softc *ntb;
struct ntb_hw_info *p;
int error;
ntb = device_get_softc(device);
p = intel_ntb_get_device_info(pci_get_devid(device));
ntb->device = device;
ntb->type = p->type;
ntb->features = p->features;
ntb->b2b_mw_idx = B2B_MW_DISABLED;
ntb->msix_mw_idx = B2B_MW_DISABLED;
/* Heartbeat timer for NTB_ATOM since there is no link interrupt */
callout_init(&ntb->heartbeat_timer, 1);
callout_init(&ntb->lr_timer, 1);
callout_init(&ntb->peer_msix_work, 1);
mtx_init(&ntb->db_mask_lock, "ntb hw bits", NULL, MTX_SPIN);
if (ntb->type == NTB_ATOM)
error = intel_ntb_detect_atom(ntb);
else if (ntb->type == NTB_XEON_GEN3)
error = intel_ntb_detect_xeon_gen3(ntb);
else if (ntb->type == NTB_XEON_GEN4)
error = intel_ntb_detect_xeon_gen4(ntb);
else
error = intel_ntb_detect_xeon(ntb);
if (error != 0)
goto out;
intel_ntb_detect_max_mw(ntb);
pci_enable_busmaster(ntb->device);
error = intel_ntb_map_pci_bars(ntb);
if (error != 0)
goto out;
if (ntb->type == NTB_ATOM)
error = intel_ntb_atom_init_dev(ntb);
else if (ntb->type == NTB_XEON_GEN3)
error = intel_ntb_xeon_gen3_init_dev(ntb);
else if (ntb->type == NTB_XEON_GEN4)
error = intel_ntb_xeon_gen4_init_dev(ntb);
else
error = intel_ntb_xeon_init_dev(ntb);
if (error != 0)
goto out;
intel_ntb_spad_clear(device);
intel_ntb_poll_link(ntb);
intel_ntb_sysctl_init(ntb);
/* Attach children to this controller */
error = ntb_register_device(device);
out:
if (error != 0)
intel_ntb_detach(device);
return (error);
}
static int
intel_ntb_detach(device_t device)
{
struct ntb_softc *ntb;
ntb = device_get_softc(device);
/* Detach & delete all children */
ntb_unregister_device(device);
if (ntb->self_reg != NULL) {
DB_MASK_LOCK(ntb);
db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_valid_mask);
DB_MASK_UNLOCK(ntb);
}
callout_drain(&ntb->heartbeat_timer);
callout_drain(&ntb->lr_timer);
callout_drain(&ntb->peer_msix_work);
pci_disable_busmaster(ntb->device);
if (ntb->type == NTB_XEON_GEN1)
intel_ntb_teardown_xeon(ntb);
intel_ntb_teardown_interrupts(ntb);
mtx_destroy(&ntb->db_mask_lock);
intel_ntb_unmap_pci_bar(ntb);
return (0);
}
/*
* Driver internal routines
*/
static inline enum ntb_bar
intel_ntb_mw_to_bar(struct ntb_softc *ntb, unsigned mw)
{
KASSERT(mw < ntb->mw_count,
("%s: mw:%u > count:%u", __func__, mw, (unsigned)ntb->mw_count));
KASSERT(ntb->reg->mw_bar[mw] != 0, ("invalid mw"));
return (ntb->reg->mw_bar[mw]);
}
static inline bool
bar_is_64bit(struct ntb_softc *ntb, enum ntb_bar bar)
{
/* XXX This assertion could be stronger. */
KASSERT(bar < NTB_MAX_BARS, ("bogus bar"));
return (bar < NTB_B2B_BAR_2 || !HAS_FEATURE(ntb, NTB_SPLIT_BAR));
}
static inline void
bar_get_xlat_params(struct ntb_softc *ntb, enum ntb_bar bar, uint32_t *base,
uint32_t *xlat, uint32_t *lmt)
{
uint32_t basev, lmtv, xlatv;
switch (bar) {
case NTB_B2B_BAR_1:
basev = ntb->xlat_reg->bar2_base;
lmtv = ntb->xlat_reg->bar2_limit;
xlatv = ntb->xlat_reg->bar2_xlat;
break;
case NTB_B2B_BAR_2:
basev = ntb->xlat_reg->bar4_base;
lmtv = ntb->xlat_reg->bar4_limit;
xlatv = ntb->xlat_reg->bar4_xlat;
break;
case NTB_B2B_BAR_3:
basev = ntb->xlat_reg->bar5_base;
lmtv = ntb->xlat_reg->bar5_limit;
xlatv = ntb->xlat_reg->bar5_xlat;
break;
default:
KASSERT(bar >= NTB_B2B_BAR_1 && bar < NTB_MAX_BARS,
("bad bar"));
basev = lmtv = xlatv = 0;
break;
}
if (base != NULL)
*base = basev;
if (xlat != NULL)
*xlat = xlatv;
if (lmt != NULL)
*lmt = lmtv;
}
static int
intel_ntb_map_pci_bars(struct ntb_softc *ntb)
{
struct ntb_pci_bar_info *bar;
int rc;
bar = &ntb->bar_info[NTB_CONFIG_BAR];
bar->pci_resource_id = PCIR_BAR(0);
rc = map_mmr_bar(ntb, bar);
if (rc != 0)
goto out;
/*
* At least on Xeon v4 NTB device leaks to host some remote side
* BAR0 writes supposed to update scratchpad registers. I am not
* sure why it happens, but it may be related to the fact that
* on a link side BAR0 is 32KB, while on a host side it is 64KB.
* Without this hack DMAR blocks those accesses as not allowed.
*/
if (bus_dma_tag_create(bus_get_dma_tag(ntb->device), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
bar->size, 1, bar->size, 0, NULL, NULL, &ntb->bar0_dma_tag)) {
device_printf(ntb->device, "Unable to create BAR0 tag\n");
return (ENOMEM);
}
if (bus_dmamap_create(ntb->bar0_dma_tag, 0, &ntb->bar0_dma_map)) {
device_printf(ntb->device, "Unable to create BAR0 map\n");
return (ENOMEM);
}
if (bus_dma_iommu_load_ident(ntb->bar0_dma_tag, ntb->bar0_dma_map,
bar->pbase, bar->size, 0)) {
device_printf(ntb->device, "Unable to load BAR0 map\n");
return (ENOMEM);
}
bar = &ntb->bar_info[NTB_B2B_BAR_1];
bar->pci_resource_id = PCIR_BAR(2);
rc = map_memory_window_bar(ntb, bar);
if (rc != 0)
goto out;
if (ntb->type == NTB_XEON_GEN3) {
bar->psz_off = XEON_GEN3_INT_REG_IMBAR1SZ;
bar->ssz_off = XEON_GEN3_INT_REG_EMBAR1SZ;
bar->pbarxlat_off = XEON_GEN3_REG_EMBAR1XBASE;
} else if (ntb->type == NTB_XEON_GEN4) {
bar->psz_off = XEON_GEN4_CFG_REG_IMBAR1SZ;
bar->ssz_off = XEON_GEN4_CFG_REG_EMBAR1SZ;
bar->pbarxlat_off = XEON_GEN4_REG_EXT_BAR1BASE;
} else {
bar->psz_off = XEON_PBAR23SZ_OFFSET;
bar->ssz_off = XEON_SBAR23SZ_OFFSET;
bar->pbarxlat_off = XEON_PBAR2XLAT_OFFSET;
}
bar = &ntb->bar_info[NTB_B2B_BAR_2];
bar->pci_resource_id = PCIR_BAR(4);
rc = map_memory_window_bar(ntb, bar);
if (rc != 0)
goto out;
if (ntb->type == NTB_XEON_GEN3) {
bar->psz_off = XEON_GEN3_INT_REG_IMBAR2SZ;
bar->ssz_off = XEON_GEN3_INT_REG_EMBAR2SZ;
bar->pbarxlat_off = XEON_GEN3_REG_EMBAR2XBASE;
} else if (ntb->type == NTB_XEON_GEN4) {
bar->psz_off = XEON_GEN4_CFG_REG_IMBAR2SZ;
bar->ssz_off = XEON_GEN4_CFG_REG_EMBAR2SZ;
bar->pbarxlat_off = XEON_GEN4_REG_EXT_BAR2BASE;
} else {
bar->psz_off = XEON_PBAR4SZ_OFFSET;
bar->ssz_off = XEON_SBAR4SZ_OFFSET;
bar->pbarxlat_off = XEON_PBAR4XLAT_OFFSET;
}
if (!HAS_FEATURE(ntb, NTB_SPLIT_BAR))
goto out;
if (ntb->type == NTB_XEON_GEN3 ||
ntb->type == NTB_XEON_GEN4) {
device_printf(ntb->device, "no split bar support\n");
return (ENXIO);
}
bar = &ntb->bar_info[NTB_B2B_BAR_3];
bar->pci_resource_id = PCIR_BAR(5);
rc = map_memory_window_bar(ntb, bar);
bar->psz_off = XEON_PBAR5SZ_OFFSET;
bar->ssz_off = XEON_SBAR5SZ_OFFSET;
bar->pbarxlat_off = XEON_PBAR5XLAT_OFFSET;
out:
if (rc != 0)
device_printf(ntb->device,
"unable to allocate pci resource\n");
return (rc);
}
static void
print_map_success(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar,
const char *kind)
{
device_printf(ntb->device,
"Mapped BAR%d v:[%p-%p] p:[0x%jx-0x%jx] (0x%jx bytes) (%s)\n",
PCI_RID2BAR(bar->pci_resource_id), bar->vbase,
(char *)bar->vbase + bar->size - 1,
(uintmax_t)bar->pbase, (uintmax_t)(bar->pbase + bar->size - 1),
(uintmax_t)bar->size, kind);
}
static int
map_mmr_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar)
{
bar->pci_resource = bus_alloc_resource_any(ntb->device, SYS_RES_MEMORY,
&bar->pci_resource_id, RF_ACTIVE);
if (bar->pci_resource == NULL)
return (ENXIO);
save_bar_parameters(bar);
bar->map_mode = VM_MEMATTR_UNCACHEABLE;
print_map_success(ntb, bar, "mmr");
return (0);
}
static int
map_memory_window_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar)
{
int rc;
vm_memattr_t mapmode;
uint8_t bar_size_bits = 0;
bar->pci_resource = bus_alloc_resource_any(ntb->device, SYS_RES_MEMORY,
&bar->pci_resource_id, RF_ACTIVE);
if (bar->pci_resource == NULL)
return (ENXIO);
save_bar_parameters(bar);
/*
* Ivytown NTB BAR sizes are misreported by the hardware due to a
* hardware issue. To work around this, query the size it should be
* configured to by the device and modify the resource to correspond to
* this new size. The BIOS on systems with this problem is required to
* provide enough address space to allow the driver to make this change
* safely.
*
* Ideally I could have just specified the size when I allocated the
* resource like:
* bus_alloc_resource(ntb->device,
* SYS_RES_MEMORY, &bar->pci_resource_id, 0ul, ~0ul,
* 1ul << bar_size_bits, RF_ACTIVE);
* but the PCI driver does not honor the size in this call, so we have
* to modify it after the fact.
*/
if (HAS_FEATURE(ntb, NTB_BAR_SIZE_4K)) {
if (bar->pci_resource_id == PCIR_BAR(2))
bar_size_bits = pci_read_config(ntb->device,
XEON_PBAR23SZ_OFFSET, 1);
else
bar_size_bits = pci_read_config(ntb->device,
XEON_PBAR45SZ_OFFSET, 1);
rc = bus_adjust_resource(ntb->device, SYS_RES_MEMORY,
bar->pci_resource, bar->pbase,
bar->pbase + (1ul << bar_size_bits) - 1);
if (rc != 0) {
device_printf(ntb->device,
"unable to resize bar\n");
return (rc);
}
save_bar_parameters(bar);
}
bar->map_mode = VM_MEMATTR_UNCACHEABLE;
print_map_success(ntb, bar, "mw");
/*
* Optionally, mark MW BARs as anything other than UC to improve
* performance.
*/
mapmode = intel_ntb_pat_flags();
if (mapmode == bar->map_mode)
return (0);
rc = pmap_change_attr((vm_offset_t)bar->vbase, bar->size, mapmode);
if (rc == 0) {
bar->map_mode = mapmode;
device_printf(ntb->device,
"Marked BAR%d v:[%p-%p] p:[0x%jx-0x%jx] as "
"%s.\n",
PCI_RID2BAR(bar->pci_resource_id), bar->vbase,
(char *)bar->vbase + bar->size - 1,
(uintmax_t)bar->pbase,
(uintmax_t)(bar->pbase + bar->size - 1),
intel_ntb_vm_memattr_to_str(mapmode));
} else
device_printf(ntb->device,
"Unable to mark BAR%d v:[%p-%p] p:[0x%jx-0x%jx] as "
"%s: %d\n",
PCI_RID2BAR(bar->pci_resource_id), bar->vbase,
(char *)bar->vbase + bar->size - 1,
(uintmax_t)bar->pbase,
(uintmax_t)(bar->pbase + bar->size - 1),
intel_ntb_vm_memattr_to_str(mapmode), rc);
/* Proceed anyway */
return (0);
}
static void
intel_ntb_unmap_pci_bar(struct ntb_softc *ntb)
{
struct ntb_pci_bar_info *bar;
int i;
if (ntb->bar0_dma_map != NULL) {
bus_dmamap_unload(ntb->bar0_dma_tag, ntb->bar0_dma_map);
bus_dmamap_destroy(ntb->bar0_dma_tag, ntb->bar0_dma_map);
}
if (ntb->bar0_dma_tag != NULL)
bus_dma_tag_destroy(ntb->bar0_dma_tag);
for (i = 0; i < NTB_MAX_BARS; i++) {
bar = &ntb->bar_info[i];
if (bar->pci_resource != NULL)
bus_release_resource(ntb->device, SYS_RES_MEMORY,
bar->pci_resource_id, bar->pci_resource);
}
}
static int
intel_ntb_setup_msix(struct ntb_softc *ntb, uint32_t num_vectors)
{
uint32_t i;
int rc;
for (i = 0; i < num_vectors; i++) {
ntb->int_info[i].rid = i + 1;
ntb->int_info[i].res = bus_alloc_resource_any(ntb->device,
SYS_RES_IRQ, &ntb->int_info[i].rid, RF_ACTIVE);
if (ntb->int_info[i].res == NULL) {
device_printf(ntb->device,
"bus_alloc_resource failed\n");
return (ENOMEM);
}
ntb->int_info[i].tag = NULL;
ntb->allocated_interrupts++;
rc = bus_setup_intr(ntb->device, ntb->int_info[i].res,
INTR_MPSAFE | INTR_TYPE_MISC, NULL, ndev_vec_isr,
&ntb->msix_vec[i], &ntb->int_info[i].tag);
if (rc != 0) {
device_printf(ntb->device, "bus_setup_intr failed\n");
return (ENXIO);
}
}
return (0);
}
/*
* The Linux NTB driver drops from MSI-X to legacy INTx if a unique vector
* cannot be allocated for each MSI-X message. JHB seems to think remapping
* should be okay. This tunable should enable us to test that hypothesis
* when someone gets their hands on some Xeon hardware.
*/
static int ntb_force_remap_mode;
SYSCTL_INT(_hw_ntb, OID_AUTO, force_remap_mode, CTLFLAG_RDTUN,
&ntb_force_remap_mode, 0, "If enabled, force MSI-X messages to be remapped"
" to a smaller number of ithreads, even if the desired number are "
"available");
/*
* In case it is NOT ok, give consumers an abort button.
*/
static int ntb_prefer_intx;
SYSCTL_INT(_hw_ntb, OID_AUTO, prefer_intx_to_remap, CTLFLAG_RDTUN,
&ntb_prefer_intx, 0, "If enabled, prefer to use legacy INTx mode rather "
"than remapping MSI-X messages over available slots (match Linux driver "
"behavior)");
/*
* Remap the desired number of MSI-X messages to available ithreads in a simple
* round-robin fashion.
*/
static int
intel_ntb_remap_msix(device_t dev, uint32_t desired, uint32_t avail)
{
u_int *vectors;
uint32_t i;
int rc;
if (ntb_prefer_intx != 0)
return (ENXIO);
vectors = malloc(desired * sizeof(*vectors), M_NTB, M_ZERO | M_WAITOK);
for (i = 0; i < desired; i++)
vectors[i] = (i % avail) + 1;
rc = pci_remap_msix(dev, desired, vectors);
free(vectors, M_NTB);
return (rc);
}
static int
intel_ntb_xeon_gen3_init_isr(struct ntb_softc *ntb)
{
uint64_t i, reg;
uint32_t desired_vectors, num_vectors;
int rc;
ntb->allocated_interrupts = 0;
ntb->last_ts = ticks;
/* Mask all the interrupts, including hardware interrupt */
intel_ntb_reg_write(8, XEON_GEN3_REG_IMINT_DISABLE, ~0ULL);
/* Clear Interrupt Status */
reg = intel_ntb_reg_read(8, XEON_GEN3_REG_IMINT_STATUS);
intel_ntb_reg_write(8, XEON_GEN3_REG_IMINT_STATUS, reg);
num_vectors = desired_vectors = MIN(pci_msix_count(ntb->device),
XEON_GEN3_DB_MSIX_VECTOR_COUNT);
rc = pci_alloc_msix(ntb->device, &num_vectors);
if (rc != 0) {
device_printf(ntb->device,
"Interrupt allocation failed %d\n", rc);
return (rc);
}
if (desired_vectors != num_vectors) {
device_printf(ntb->device, "Couldn't get %d vectors\n",
XEON_GEN3_DB_MSIX_VECTOR_COUNT);
return (ENXIO);
}
/* 32 db + 1 hardware */
if (num_vectors == XEON_GEN3_DB_MSIX_VECTOR_COUNT) {
/* Program INTVECXX source register */
for (i = 0; i < XEON_GEN3_DB_MSIX_VECTOR_COUNT; i++) {
/* interrupt source i for vector i */
intel_ntb_reg_write(1, XEON_GEN3_REG_IMINTVEC00 + i, i);
if (i == (XEON_GEN3_DB_MSIX_VECTOR_COUNT - 1)) {
intel_ntb_reg_write(1,
XEON_GEN3_REG_IMINTVEC00 + i,
XEON_GEN3_LINK_VECTOR_INDEX);
}
}
intel_ntb_create_msix_vec(ntb, num_vectors);
rc = intel_ntb_setup_msix(ntb, num_vectors);
/* enable all interrupts */
intel_ntb_reg_write(8, XEON_GEN3_REG_IMINT_DISABLE, 0ULL);
} else {
device_printf(ntb->device, "need to remap interrupts, giving up.\n");
return (ENXIO);
}
return (rc);
}
static int
intel_ntb_xeon_gen4_init_isr(struct ntb_softc *ntb)
{
uint64_t i, reg;
uint32_t desired_vectors, num_vectors;
int rc;
ntb->allocated_interrupts = 0;
ntb->last_ts = ticks;
/* Mask all the interrupts, including hardware interrupt */
intel_ntb_reg_write(8, XEON_GEN4_REG_IMINT_DISABLE, ~0ULL);
/* Clear Interrupt Status */
reg = intel_ntb_reg_read(8, XEON_GEN4_REG_IMINT_STATUS);
intel_ntb_reg_write(8, XEON_GEN4_REG_IMINT_STATUS, reg);
num_vectors = desired_vectors = MIN(pci_msix_count(ntb->device),
XEON_GEN4_DB_MSIX_VECTOR_COUNT);
rc = pci_alloc_msix(ntb->device, &num_vectors);
if (rc != 0) {
device_printf(ntb->device,
"Interrupt allocation failed %d\n", rc);
return (rc);
}
if (desired_vectors != num_vectors) {
device_printf(ntb->device, "Couldn't get %d vectors\n",
XEON_GEN4_DB_MSIX_VECTOR_COUNT);
return (ENXIO);
}
if (num_vectors != XEON_GEN4_DB_MSIX_VECTOR_COUNT) {
device_printf(ntb->device,
"Need to remap interrupts, giving up\n");
return (ENXIO);
}
/*
* The MSIX vectors and the interrupt status bits are not lined up
* on Gen3 (Skylake) and Gen4. By default the link status bit is bit
* 32, however it is by default MSIX vector0. We need to fixup to
* line them up. The vectors at reset is 1-32,0. We need to reprogram
* to 0-32.
*/
for (i = 0; i < XEON_GEN4_DB_MSIX_VECTOR_COUNT; i++)
intel_ntb_reg_write(1, XEON_GEN4_REG_INTVEC + i, i);
intel_ntb_create_msix_vec(ntb, num_vectors);
rc = intel_ntb_setup_msix(ntb, num_vectors);
/* enable all interrupts */
intel_ntb_reg_write(8, XEON_GEN4_REG_IMINT_DISABLE, 0ULL);
return (rc);
}
static int
intel_ntb_init_isr(struct ntb_softc *ntb)
{
uint32_t desired_vectors, num_vectors;
int rc;
ntb->allocated_interrupts = 0;
ntb->last_ts = ticks;
/*
* Mask all doorbell interrupts. (Except link events!)
*/
DB_MASK_LOCK(ntb);
ntb->db_mask = ntb->db_valid_mask;
db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
DB_MASK_UNLOCK(ntb);
num_vectors = desired_vectors = MIN(pci_msix_count(ntb->device),
ntb->db_count);
if (desired_vectors >= 1) {
rc = pci_alloc_msix(ntb->device, &num_vectors);
if (ntb_force_remap_mode != 0 && rc == 0 &&
num_vectors == desired_vectors)
num_vectors--;
if (rc == 0 && num_vectors < desired_vectors) {
rc = intel_ntb_remap_msix(ntb->device, desired_vectors,
num_vectors);
if (rc == 0)
num_vectors = desired_vectors;
else
pci_release_msi(ntb->device);
}
if (rc != 0)
num_vectors = 1;
} else
num_vectors = 1;
if (ntb->type == NTB_XEON_GEN1 && num_vectors < ntb->db_vec_count) {
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
device_printf(ntb->device,
"Errata workaround does not support MSI or INTX\n");
return (EINVAL);
}
ntb->db_vec_count = 1;
ntb->db_vec_shift = XEON_DB_TOTAL_SHIFT;
rc = intel_ntb_setup_legacy_interrupt(ntb);
} else {
if (num_vectors - 1 != XEON_NONLINK_DB_MSIX_BITS &&
HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
device_printf(ntb->device,
"Errata workaround expects %d doorbell bits\n",
XEON_NONLINK_DB_MSIX_BITS);
return (EINVAL);
}
intel_ntb_create_msix_vec(ntb, num_vectors);
rc = intel_ntb_setup_msix(ntb, num_vectors);
}
if (rc != 0) {
device_printf(ntb->device,
"Error allocating interrupts: %d\n", rc);
intel_ntb_free_msix_vec(ntb);
}
return (rc);
}
static int
intel_ntb_setup_legacy_interrupt(struct ntb_softc *ntb)
{
int rc;
ntb->int_info[0].rid = 0;
ntb->int_info[0].res = bus_alloc_resource_any(ntb->device, SYS_RES_IRQ,
&ntb->int_info[0].rid, RF_SHAREABLE|RF_ACTIVE);
if (ntb->int_info[0].res == NULL) {
device_printf(ntb->device, "bus_alloc_resource failed\n");
return (ENOMEM);
}
ntb->int_info[0].tag = NULL;
ntb->allocated_interrupts = 1;
rc = bus_setup_intr(ntb->device, ntb->int_info[0].res,
INTR_MPSAFE | INTR_TYPE_MISC, NULL, ndev_irq_isr,
ntb, &ntb->int_info[0].tag);
if (rc != 0) {
device_printf(ntb->device, "bus_setup_intr failed\n");
return (ENXIO);
}
return (0);
}
static void
intel_ntb_teardown_interrupts(struct ntb_softc *ntb)
{
struct ntb_int_info *current_int;
int i;
for (i = 0; i < ntb->allocated_interrupts; i++) {
current_int = &ntb->int_info[i];
if (current_int->tag != NULL)
bus_teardown_intr(ntb->device, current_int->res,
current_int->tag);
if (current_int->res != NULL)
bus_release_resource(ntb->device, SYS_RES_IRQ,
rman_get_rid(current_int->res), current_int->res);
}
intel_ntb_free_msix_vec(ntb);
pci_release_msi(ntb->device);
}
static inline uint64_t
db_ioread(struct ntb_softc *ntb, uint64_t regoff)
{
switch (ntb->type) {
case NTB_ATOM:
case NTB_XEON_GEN3:
case NTB_XEON_GEN4:
return (intel_ntb_reg_read(8, regoff));
case NTB_XEON_GEN1:
return (intel_ntb_reg_read(2, regoff));
}
__assert_unreachable();
}
static inline void
db_iowrite(struct ntb_softc *ntb, uint64_t regoff, uint64_t val)
{
KASSERT((val & ~ntb->db_valid_mask) == 0,
("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__,
(uintmax_t)(val & ~ntb->db_valid_mask),
(uintmax_t)ntb->db_valid_mask));
if (regoff == ntb->self_reg->db_mask)
DB_MASK_ASSERT(ntb, MA_OWNED);
db_iowrite_raw(ntb, regoff, val);
}
static inline void
db_iowrite_raw(struct ntb_softc *ntb, uint64_t regoff, uint64_t val)
{
switch (ntb->type) {
case NTB_ATOM:
case NTB_XEON_GEN3:
case NTB_XEON_GEN4:
intel_ntb_reg_write(8, regoff, val);
break;
case NTB_XEON_GEN1:
intel_ntb_reg_write(2, regoff, (uint16_t)val);
break;
}
}
static void
intel_ntb_db_set_mask(device_t dev, uint64_t bits)
{
struct ntb_softc *ntb = device_get_softc(dev);
DB_MASK_LOCK(ntb);
ntb->db_mask |= bits;
if (!HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP))
db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
DB_MASK_UNLOCK(ntb);
}
static void
intel_ntb_db_clear_mask(device_t dev, uint64_t bits)
{
struct ntb_softc *ntb = device_get_softc(dev);
uint64_t ibits;
int i;
KASSERT((bits & ~ntb->db_valid_mask) == 0,
("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__,
(uintmax_t)(bits & ~ntb->db_valid_mask),
(uintmax_t)ntb->db_valid_mask));
DB_MASK_LOCK(ntb);
ibits = ntb->fake_db & ntb->db_mask & bits;
ntb->db_mask &= ~bits;
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
/* Simulate fake interrupts if unmasked DB bits are set. */
ntb->force_db |= ibits;
for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
if ((ibits & intel_ntb_db_vector_mask(dev, i)) != 0)
swi_sched(ntb->int_info[i].tag, 0);
}
} else {
db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
}
DB_MASK_UNLOCK(ntb);
}
static uint64_t
intel_ntb_db_read(device_t dev)
{
struct ntb_softc *ntb = device_get_softc(dev);
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP))
return (ntb->fake_db);
if (ntb->type == NTB_XEON_GEN3)
return (intel_ntb_reg_read(8, XEON_GEN3_REG_IMINT_STATUS));
else
return (db_ioread(ntb, ntb->self_reg->db_bell));
}
static void
intel_ntb_db_clear(device_t dev, uint64_t bits)
{
struct ntb_softc *ntb = device_get_softc(dev);
KASSERT((bits & ~ntb->db_valid_mask) == 0,
("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__,
(uintmax_t)(bits & ~ntb->db_valid_mask),
(uintmax_t)ntb->db_valid_mask));
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
DB_MASK_LOCK(ntb);
ntb->fake_db &= ~bits;
DB_MASK_UNLOCK(ntb);
return;
}
if (ntb->type == NTB_XEON_GEN3)
intel_ntb_reg_write(4, XEON_GEN3_REG_IMINT_STATUS,
(uint32_t)bits);
else
db_iowrite(ntb, ntb->self_reg->db_bell, bits);
}
static inline uint64_t
intel_ntb_vec_mask(struct ntb_softc *ntb, uint64_t db_vector)
{
uint64_t shift, mask;
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
/*
* Remap vectors in custom way to make at least first
* three doorbells to not generate stray events.
* This breaks Linux compatibility (if one existed)
* when more then one DB is used (not by if_ntb).
*/
if (db_vector < XEON_NONLINK_DB_MSIX_BITS - 1)
return (1 << db_vector);
if (db_vector == XEON_NONLINK_DB_MSIX_BITS - 1)
return (0x7ffc);
}
shift = ntb->db_vec_shift;
mask = (1ull << shift) - 1;
return (mask << (shift * db_vector));
}
static void
intel_ntb_interrupt(struct ntb_softc *ntb, uint32_t vec)
{
uint64_t vec_mask;
ntb->last_ts = ticks;
vec_mask = intel_ntb_vec_mask(ntb, vec);
if ((ntb->type == NTB_XEON_GEN3 || ntb->type == NTB_XEON_GEN4) &&
vec == XEON_GEN3_LINK_VECTOR_INDEX)
vec_mask |= ntb->db_link_mask;
if ((vec_mask & ntb->db_link_mask) != 0) {
if (intel_ntb_poll_link(ntb))
ntb_link_event(ntb->device);
if (ntb->type == NTB_XEON_GEN3)
intel_ntb_reg_write(8, XEON_GEN3_REG_IMINT_STATUS,
intel_ntb_reg_read(8, XEON_GEN3_REG_IMINT_STATUS));
if (ntb->type == NTB_XEON_GEN4)
intel_ntb_reg_write(8, XEON_GEN4_REG_IMINT_STATUS,
intel_ntb_reg_read(8, XEON_GEN4_REG_IMINT_STATUS));
}
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP) &&
(vec_mask & ntb->db_link_mask) == 0) {
DB_MASK_LOCK(ntb);
/*
* Do not report same DB events again if not cleared yet,
* unless the mask was just cleared for them and this
* interrupt handler call can be the consequence of it.
*/
vec_mask &= ~ntb->fake_db | ntb->force_db;
ntb->force_db &= ~vec_mask;
/* Update our internal doorbell register. */
ntb->fake_db |= vec_mask;
/* Do not report masked DB events. */
vec_mask &= ~ntb->db_mask;
DB_MASK_UNLOCK(ntb);
}
if ((vec_mask & ntb->db_valid_mask) != 0)
ntb_db_event(ntb->device, vec);
}
static void
ndev_vec_isr(void *arg)
{
struct ntb_vec *nvec = arg;
intel_ntb_interrupt(nvec->ntb, nvec->num);
}
static void
ndev_irq_isr(void *arg)
{
/* If we couldn't set up MSI-X, we only have the one vector. */
intel_ntb_interrupt(arg, 0);
}
static int
intel_ntb_create_msix_vec(struct ntb_softc *ntb, uint32_t num_vectors)
{
uint32_t i;
ntb->msix_vec = malloc(num_vectors * sizeof(*ntb->msix_vec), M_NTB,
M_ZERO | M_WAITOK);
for (i = 0; i < num_vectors; i++) {
ntb->msix_vec[i].num = i;
ntb->msix_vec[i].ntb = ntb;
}
return (0);
}
static void
intel_ntb_free_msix_vec(struct ntb_softc *ntb)
{
if (ntb->msix_vec == NULL)
return;
free(ntb->msix_vec, M_NTB);
ntb->msix_vec = NULL;
}
static void
intel_ntb_get_msix_info(struct ntb_softc *ntb)
{
struct pci_devinfo *dinfo;
struct pcicfg_msix *msix;
uint32_t laddr, data, i, offset;
dinfo = device_get_ivars(ntb->device);
msix = &dinfo->cfg.msix;
CTASSERT(XEON_NONLINK_DB_MSIX_BITS == nitems(ntb->msix_data));
for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
offset = msix->msix_table_offset + i * PCI_MSIX_ENTRY_SIZE;
laddr = bus_read_4(msix->msix_table_res, offset +
PCI_MSIX_ENTRY_LOWER_ADDR);
intel_ntb_printf(2, "local MSIX addr(%u): 0x%x\n", i, laddr);
KASSERT((laddr & MSI_INTEL_ADDR_BASE) == MSI_INTEL_ADDR_BASE,
("local MSIX addr 0x%x not in MSI base 0x%x", laddr,
MSI_INTEL_ADDR_BASE));
ntb->msix_data[i].nmd_ofs = laddr;
data = bus_read_4(msix->msix_table_res, offset +
PCI_MSIX_ENTRY_DATA);
intel_ntb_printf(2, "local MSIX data(%u): 0x%x\n", i, data);
ntb->msix_data[i].nmd_data = data;
}
}
static struct ntb_hw_info *
intel_ntb_get_device_info(uint32_t device_id)
{
struct ntb_hw_info *ep;
for (ep = pci_ids; ep < &pci_ids[nitems(pci_ids)]; ep++) {
if (ep->device_id == device_id)
return (ep);
}
return (NULL);
}
static void
intel_ntb_teardown_xeon(struct ntb_softc *ntb)
{
if (ntb->reg != NULL)
intel_ntb_link_disable(ntb->device);
}
static void
intel_ntb_detect_max_mw(struct ntb_softc *ntb)
{
switch (ntb->type) {
case NTB_ATOM:
ntb->mw_count = ATOM_MW_COUNT;
break;
case NTB_XEON_GEN1:
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR))
ntb->mw_count = XEON_HSX_SPLIT_MW_COUNT;
else
ntb->mw_count = XEON_SNB_MW_COUNT;
break;
case NTB_XEON_GEN3:
case NTB_XEON_GEN4:
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR))
ntb->mw_count = XEON_GEN3_SPLIT_MW_COUNT;
else
ntb->mw_count = XEON_GEN3_MW_COUNT;
break;
}
}
static int
intel_ntb_detect_xeon(struct ntb_softc *ntb)
{
uint8_t ppd, conn_type;
ppd = pci_read_config(ntb->device, NTB_PPD_OFFSET, 1);
ntb->ppd = ppd;
if ((ppd & XEON_PPD_DEV_TYPE) != 0)
ntb->dev_type = NTB_DEV_DSD;
else
ntb->dev_type = NTB_DEV_USD;
if ((ppd & XEON_PPD_SPLIT_BAR) != 0)
ntb->features |= NTB_SPLIT_BAR;
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP) &&
!HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
device_printf(ntb->device,
"Can not apply SB01BASE_LOCKUP workaround "
"with split BARs disabled!\n");
device_printf(ntb->device,
"Expect system hangs under heavy NTB traffic!\n");
ntb->features &= ~NTB_SB01BASE_LOCKUP;
}
/*
* SDOORBELL errata workaround gets in the way of SB01BASE_LOCKUP
* errata workaround; only do one at a time.
*/
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP))
ntb->features &= ~NTB_SDOORBELL_LOCKUP;
conn_type = ppd & XEON_PPD_CONN_TYPE;
switch (conn_type) {
case NTB_CONN_B2B:
ntb->conn_type = conn_type;
break;
case NTB_CONN_RP:
case NTB_CONN_TRANSPARENT:
default:
device_printf(ntb->device, "Unsupported connection type: %u\n",
(unsigned)conn_type);
return (ENXIO);
}
return (0);
}
static int
intel_ntb_detect_atom(struct ntb_softc *ntb)
{
uint32_t ppd, conn_type;
ppd = pci_read_config(ntb->device, NTB_PPD_OFFSET, 4);
ntb->ppd = ppd;
if ((ppd & ATOM_PPD_DEV_TYPE) != 0)
ntb->dev_type = NTB_DEV_DSD;
else
ntb->dev_type = NTB_DEV_USD;
conn_type = (ppd & ATOM_PPD_CONN_TYPE) >> 8;
switch (conn_type) {
case NTB_CONN_B2B:
ntb->conn_type = conn_type;
break;
default:
device_printf(ntb->device, "Unsupported NTB configuration\n");
return (ENXIO);
}
return (0);
}
static int
intel_ntb_detect_xeon_gen3(struct ntb_softc *ntb)
{
uint8_t ppd, conn_type;
ppd = pci_read_config(ntb->device, XEON_GEN3_INT_REG_PPD, 1);
ntb->ppd = ppd;
/* check port definition */
conn_type = XEON_GEN3_REG_PPD_PORT_DEF_F(ppd);
switch (conn_type) {
case NTB_CONN_B2B:
ntb->conn_type = conn_type;
break;
default:
device_printf(ntb->device, "Unsupported connection type: %u\n",
conn_type);
return (ENXIO);
}
/* check cross link configuration status */
if (XEON_GEN3_REG_PPD_CONF_STS_F(ppd)) {
/* NTB Port is configured as DSD/USP */
ntb->dev_type = NTB_DEV_DSD;
} else {
/* NTB Port is configured as USD/DSP */
ntb->dev_type = NTB_DEV_USD;
}
if (XEON_GEN3_REG_PPD_ONE_MSIX_F(ppd)) {
/*
* This bit when set, causes only a single MSI-X message to be
* generated if MSI-X is enabled.
*/
ntb->features |= NTB_ONE_MSIX;
}
if (XEON_GEN3_REG_PPD_BAR45_SPL_F(ppd)) {
/* BARs 4 and 5 are presented as two 32b non-prefetchable BARs */
ntb->features |= NTB_SPLIT_BAR;
}
device_printf(ntb->device, "conn type 0x%02x, dev type 0x%02x,"
"features 0x%02x\n", ntb->conn_type, ntb->dev_type, ntb->features);
return (0);
}
static int
intel_ntb_is_ICX(struct ntb_softc *ntb)
{
uint8_t revision;
revision = pci_get_revid(ntb->device);
if (ntb->type == NTB_XEON_GEN4 &&
revision >= PCI_DEV_REV_ICX_MIN &&
revision <= PCI_DEV_REV_ICX_MAX)
return (1);
return (0);
}
static int
intel_ntb_is_SPR(struct ntb_softc *ntb)
{
uint8_t revision;
revision = pci_get_revid(ntb->device);
if (ntb->type == NTB_XEON_GEN4 &&
revision > PCI_DEV_REV_ICX_MAX)
return (1);
return (0);
}
static int
intel_ntb_detect_xeon_gen4(struct ntb_softc *ntb)
{
if (intel_ntb_is_ICX(ntb)) {
ntb->features |= NTB_BAR_ALIGN;
ntb->features |= NTB_LTR_BAD;
}
return (0);
}
static int
intel_ntb_detect_xeon_gen4_cfg(struct ntb_softc *ntb)
{
uint32_t ppd1;
ppd1 = intel_ntb_reg_read(4, XEON_GEN4_REG_PPD1);
ntb->ppd = ppd1;
if (intel_ntb_is_ICX(ntb)) {
if ((ppd1 & GEN4_PPD_TOPO_MASK) == GEN4_PPD_TOPO_B2B_USD) {
/* NTB Port is configured as USD/DSP */
ntb->conn_type = NTB_CONN_B2B;
ntb->dev_type = NTB_DEV_USD;
} else if ((ppd1 & GEN4_PPD_TOPO_MASK) == GEN4_PPD_TOPO_B2B_DSD) {
/* NTB Port is configured as DSD/USP */
ntb->conn_type = NTB_CONN_B2B;
ntb->dev_type = NTB_DEV_DSD;
} else {
device_printf(ntb->device, "Unsupported connection type: %u\n",
(ppd1 & GEN4_PPD_CONN_MASK));
return (ENXIO);
}
} else if (intel_ntb_is_SPR(ntb)) {
if ((ppd1 & SPR_PPD_TOPO_MASK) == SPR_PPD_TOPO_B2B_USD) {
/* NTB Port is configured as USD/DSP */
ntb->conn_type = NTB_CONN_B2B;
ntb->dev_type = NTB_DEV_USD;
} else if ((ppd1 & SPR_PPD_TOPO_MASK) == SPR_PPD_TOPO_B2B_DSD) {
/* NTB Port is configured as DSD/USP */
ntb->conn_type = NTB_CONN_B2B;
ntb->dev_type = NTB_DEV_DSD;
} else {
device_printf(ntb->device, "Unsupported connection type: %u\n",
(ppd1 & SPR_PPD_CONN_MASK));
return (ENXIO);
}
}
device_printf(ntb->device, "conn type 0x%02x, dev type 0x%02x,"
"features 0x%02x\n", ntb->conn_type, ntb->dev_type, ntb->features);
return (0);
}
static int
intel_ntb_xeon_init_dev(struct ntb_softc *ntb)
{
int rc;
ntb->spad_count = XEON_SPAD_COUNT;
ntb->db_count = XEON_DB_COUNT;
ntb->db_link_mask = XEON_DB_LINK_BIT;
ntb->db_vec_count = XEON_DB_MSIX_VECTOR_COUNT;
ntb->db_vec_shift = XEON_DB_MSIX_VECTOR_SHIFT;
if (ntb->conn_type != NTB_CONN_B2B) {
device_printf(ntb->device, "Connection type %d not supported\n",
ntb->conn_type);
return (ENXIO);
}
ntb->reg = &xeon_reg;
ntb->self_reg = &xeon_pri_reg;
ntb->peer_reg = &xeon_b2b_reg;
ntb->xlat_reg = &xeon_sec_xlat;
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
ntb->force_db = ntb->fake_db = 0;
ntb->msix_mw_idx = (ntb->mw_count + g_ntb_msix_idx) %
ntb->mw_count;
intel_ntb_printf(2, "Setting up MSIX mw idx %d means %u\n",
g_ntb_msix_idx, ntb->msix_mw_idx);
rc = intel_ntb_mw_set_wc_internal(ntb, ntb->msix_mw_idx,
VM_MEMATTR_UNCACHEABLE);
KASSERT(rc == 0, ("shouldn't fail"));
} else if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP)) {
/*
* There is a Xeon hardware errata related to writes to SDOORBELL or
* B2BDOORBELL in conjunction with inbound access to NTB MMIO space,
* which may hang the system. To workaround this, use a memory
* window to access the interrupt and scratch pad registers on the
* remote system.
*/
ntb->b2b_mw_idx = (ntb->mw_count + g_ntb_mw_idx) %
ntb->mw_count;
intel_ntb_printf(2, "Setting up b2b mw idx %d means %u\n",
g_ntb_mw_idx, ntb->b2b_mw_idx);
rc = intel_ntb_mw_set_wc_internal(ntb, ntb->b2b_mw_idx,
VM_MEMATTR_UNCACHEABLE);
KASSERT(rc == 0, ("shouldn't fail"));
} else if (HAS_FEATURE(ntb, NTB_B2BDOORBELL_BIT14))
/*
* HW Errata on bit 14 of b2bdoorbell register. Writes will not be
* mirrored to the remote system. Shrink the number of bits by one,
* since bit 14 is the last bit.
*
* On REGS_THRU_MW errata mode, we don't use the b2bdoorbell register
* anyway. Nor for non-B2B connection types.
*/
ntb->db_count = XEON_DB_COUNT - 1;
ntb->db_valid_mask = (1ull << ntb->db_count) - 1;
if (ntb->dev_type == NTB_DEV_USD)
rc = xeon_setup_b2b_mw(ntb, &xeon_b2b_dsd_addr,
&xeon_b2b_usd_addr);
else
rc = xeon_setup_b2b_mw(ntb, &xeon_b2b_usd_addr,
&xeon_b2b_dsd_addr);
if (rc != 0)
return (rc);
/* Enable Bus Master and Memory Space on the secondary side */
intel_ntb_reg_write(2, XEON_SPCICMD_OFFSET,
PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
/*
* Mask all doorbell interrupts.
*/
DB_MASK_LOCK(ntb);
ntb->db_mask = ntb->db_valid_mask;
db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
DB_MASK_UNLOCK(ntb);
rc = intel_ntb_init_isr(ntb);
return (rc);
}
static int
intel_ntb_xeon_gen3_init_dev(struct ntb_softc *ntb)
{
int rc;
ntb->spad_count = XEON_GEN3_SPAD_COUNT;
ntb->db_count = XEON_GEN3_DB_COUNT;
ntb->db_link_mask = XEON_GEN3_DB_LINK_BIT;
ntb->db_vec_count = XEON_GEN3_DB_MSIX_VECTOR_COUNT;
ntb->db_vec_shift = XEON_GEN3_DB_MSIX_VECTOR_SHIFT;
if (ntb->conn_type != NTB_CONN_B2B) {
device_printf(ntb->device, "Connection type %d not supported\n",
ntb->conn_type);
return (ENXIO);
}
ntb->reg = &xeon_gen3_reg;
ntb->self_reg = &xeon_gen3_pri_reg;
ntb->peer_reg = &xeon_gen3_b2b_reg;
ntb->xlat_reg = &xeon_gen3_sec_xlat;
ntb->db_valid_mask = (1ULL << ntb->db_count) - 1;
xeon_gen3_setup_b2b_mw(ntb);
/* Enable Bus Master and Memory Space on the External Side */
intel_ntb_reg_write(2, XEON_GEN3_EXT_REG_PCI_CMD,
PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
/* Setup Interrupt */
rc = intel_ntb_xeon_gen3_init_isr(ntb);
return (rc);
}
static int
intel_ntb_xeon_gen4_init_dev(struct ntb_softc *ntb)
{
int rc;
uint16_t lnkctl;
ntb->spad_count = XEON_GEN4_SPAD_COUNT;
ntb->db_count = XEON_GEN4_DB_COUNT;
ntb->db_link_mask = XEON_GEN4_DB_LINK_BIT;
ntb->db_vec_count = XEON_GEN4_DB_MSIX_VECTOR_COUNT;
ntb->db_vec_shift = XEON_GEN4_DB_MSIX_VECTOR_SHIFT;
if (intel_ntb_detect_xeon_gen4_cfg(ntb) != 0)
return (ENXIO);
ntb->reg = &xeon_gen4_reg;
ntb->self_reg = &xeon_gen4_pri_reg;
ntb->peer_reg = &xeon_gen4_b2b_reg;
ntb->xlat_reg = &xeon_gen4_sec_xlat;
ntb->db_valid_mask = (1ULL << ntb->db_count) - 1;
xeon_gen4_setup_b2b_mw(ntb);
/* init link setup */
lnkctl = intel_ntb_reg_read(2, XEON_GEN4_REG_LINK_CTRL);
lnkctl |= GEN4_LINK_CTRL_LINK_DISABLE;
intel_ntb_reg_write(2, XEON_GEN4_REG_LINK_CTRL, lnkctl);
/* Setup Interrupt */
rc = intel_ntb_xeon_gen4_init_isr(ntb);
return (rc);
}
static int
intel_ntb_atom_init_dev(struct ntb_softc *ntb)
{
int error;
KASSERT(ntb->conn_type == NTB_CONN_B2B,
("Unsupported NTB configuration (%d)\n", ntb->conn_type));
ntb->spad_count = ATOM_SPAD_COUNT;
ntb->db_count = ATOM_DB_COUNT;
ntb->db_vec_count = ATOM_DB_MSIX_VECTOR_COUNT;
ntb->db_vec_shift = ATOM_DB_MSIX_VECTOR_SHIFT;
ntb->db_valid_mask = (1ull << ntb->db_count) - 1;
ntb->reg = &atom_reg;
ntb->self_reg = &atom_pri_reg;
ntb->peer_reg = &atom_b2b_reg;
ntb->xlat_reg = &atom_sec_xlat;
/*
* FIXME - MSI-X bug on early Atom HW, remove once internal issue is
* resolved. Mask transaction layer internal parity errors.
*/
pci_write_config(ntb->device, 0xFC, 0x4, 4);
configure_atom_secondary_side_bars(ntb);
/* Enable Bus Master and Memory Space on the secondary side */
intel_ntb_reg_write(2, ATOM_SPCICMD_OFFSET,
PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
error = intel_ntb_init_isr(ntb);
if (error != 0)
return (error);
/* Initiate PCI-E link training */
intel_ntb_link_enable(ntb->device, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
callout_reset(&ntb->heartbeat_timer, 0, atom_link_hb, ntb);
return (0);
}
/* XXX: Linux driver doesn't seem to do any of this for Atom. */
static void
configure_atom_secondary_side_bars(struct ntb_softc *ntb)
{
if (ntb->dev_type == NTB_DEV_USD) {
intel_ntb_reg_write(8, ATOM_PBAR2XLAT_OFFSET,
XEON_B2B_BAR2_ADDR64);
intel_ntb_reg_write(8, ATOM_PBAR4XLAT_OFFSET,
XEON_B2B_BAR4_ADDR64);
intel_ntb_reg_write(8, ATOM_MBAR23_OFFSET, XEON_B2B_BAR2_ADDR64);
intel_ntb_reg_write(8, ATOM_MBAR45_OFFSET, XEON_B2B_BAR4_ADDR64);
} else {
intel_ntb_reg_write(8, ATOM_PBAR2XLAT_OFFSET,
XEON_B2B_BAR2_ADDR64);
intel_ntb_reg_write(8, ATOM_PBAR4XLAT_OFFSET,
XEON_B2B_BAR4_ADDR64);
intel_ntb_reg_write(8, ATOM_MBAR23_OFFSET, XEON_B2B_BAR2_ADDR64);
intel_ntb_reg_write(8, ATOM_MBAR45_OFFSET, XEON_B2B_BAR4_ADDR64);
}
}
/*
* When working around Xeon SDOORBELL errata by remapping remote registers in a
* MW, limit the B2B MW to half a MW. By sharing a MW, half the shared MW
* remains for use by a higher layer.
*
* Will only be used if working around SDOORBELL errata and the BIOS-configured
* MW size is sufficiently large.
*/
static unsigned int ntb_b2b_mw_share;
SYSCTL_UINT(_hw_ntb, OID_AUTO, b2b_mw_share, CTLFLAG_RDTUN, &ntb_b2b_mw_share,
0, "If enabled (non-zero), prefer to share half of the B2B peer register "
"MW with higher level consumers. Both sides of the NTB MUST set the same "
"value here.");
static void
xeon_reset_sbar_size(struct ntb_softc *ntb, enum ntb_bar idx,
enum ntb_bar regbar)
{
struct ntb_pci_bar_info *bar;
uint8_t bar_sz;
if (!HAS_FEATURE(ntb, NTB_SPLIT_BAR) && idx >= NTB_B2B_BAR_3)
return;
bar = &ntb->bar_info[idx];
bar_sz = pci_read_config(ntb->device, bar->psz_off, 1);
if (idx == regbar) {
if (ntb->b2b_off != 0)
bar_sz--;
else
bar_sz = 0;
}
pci_write_config(ntb->device, bar->ssz_off, bar_sz, 1);
bar_sz = pci_read_config(ntb->device, bar->ssz_off, 1);
(void)bar_sz;
}
static void
xeon_set_sbar_base_and_limit(struct ntb_softc *ntb, uint64_t bar_addr,
enum ntb_bar idx, enum ntb_bar regbar)
{
uint64_t reg_val;
uint32_t base_reg, lmt_reg;
bar_get_xlat_params(ntb, idx, &base_reg, NULL, &lmt_reg);
if (idx == regbar) {
if (ntb->b2b_off)
bar_addr += ntb->b2b_off;
else
bar_addr = 0;
}
if (!bar_is_64bit(ntb, idx)) {
intel_ntb_reg_write(4, base_reg, bar_addr);
reg_val = intel_ntb_reg_read(4, base_reg);
(void)reg_val;
intel_ntb_reg_write(4, lmt_reg, bar_addr);
reg_val = intel_ntb_reg_read(4, lmt_reg);
(void)reg_val;
} else {
intel_ntb_reg_write(8, base_reg, bar_addr);
reg_val = intel_ntb_reg_read(8, base_reg);
(void)reg_val;
intel_ntb_reg_write(8, lmt_reg, bar_addr);
reg_val = intel_ntb_reg_read(8, lmt_reg);
(void)reg_val;
}
}
static void
xeon_set_pbar_xlat(struct ntb_softc *ntb, uint64_t base_addr, enum ntb_bar idx)
{
struct ntb_pci_bar_info *bar;
bar = &ntb->bar_info[idx];
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR) && idx >= NTB_B2B_BAR_2) {
intel_ntb_reg_write(4, bar->pbarxlat_off, base_addr);
base_addr = intel_ntb_reg_read(4, bar->pbarxlat_off);
} else {
intel_ntb_reg_write(8, bar->pbarxlat_off, base_addr);
base_addr = intel_ntb_reg_read(8, bar->pbarxlat_off);
}
(void)base_addr;
}
static int
xeon_setup_b2b_mw(struct ntb_softc *ntb, const struct ntb_b2b_addr *addr,
const struct ntb_b2b_addr *peer_addr)
{
struct ntb_pci_bar_info *b2b_bar;
vm_size_t bar_size;
uint64_t bar_addr;
enum ntb_bar b2b_bar_num, i;
if (ntb->b2b_mw_idx == B2B_MW_DISABLED) {
b2b_bar = NULL;
b2b_bar_num = NTB_CONFIG_BAR;
ntb->b2b_off = 0;
} else {
b2b_bar_num = intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx);
KASSERT(b2b_bar_num > 0 && b2b_bar_num < NTB_MAX_BARS,
("invalid b2b mw bar"));
b2b_bar = &ntb->bar_info[b2b_bar_num];
bar_size = b2b_bar->size;
if (ntb_b2b_mw_share != 0 &&
(bar_size >> 1) >= XEON_B2B_MIN_SIZE)
ntb->b2b_off = bar_size >> 1;
else if (bar_size >= XEON_B2B_MIN_SIZE) {
ntb->b2b_off = 0;
} else {
device_printf(ntb->device,
"B2B bar size is too small!\n");
return (EIO);
}
}
/*
* Reset the secondary bar sizes to match the primary bar sizes.
* (Except, disable or halve the size of the B2B secondary bar.)
*/
for (i = NTB_B2B_BAR_1; i < NTB_MAX_BARS; i++)
xeon_reset_sbar_size(ntb, i, b2b_bar_num);
bar_addr = 0;
if (b2b_bar_num == NTB_CONFIG_BAR)
bar_addr = addr->bar0_addr;
else if (b2b_bar_num == NTB_B2B_BAR_1)
bar_addr = addr->bar2_addr64;
else if (b2b_bar_num == NTB_B2B_BAR_2 && !HAS_FEATURE(ntb, NTB_SPLIT_BAR))
bar_addr = addr->bar4_addr64;
else if (b2b_bar_num == NTB_B2B_BAR_2)
bar_addr = addr->bar4_addr32;
else if (b2b_bar_num == NTB_B2B_BAR_3)
bar_addr = addr->bar5_addr32;
else
KASSERT(false, ("invalid bar"));
intel_ntb_reg_write(8, XEON_SBAR0BASE_OFFSET, bar_addr);
/*
* Other SBARs are normally hit by the PBAR xlat, except for the b2b
* register BAR. The B2B BAR is either disabled above or configured
* half-size. It starts at PBAR xlat + offset.
*
* Also set up incoming BAR limits == base (zero length window).
*/
xeon_set_sbar_base_and_limit(ntb, addr->bar2_addr64, NTB_B2B_BAR_1,
b2b_bar_num);
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
xeon_set_sbar_base_and_limit(ntb, addr->bar4_addr32,
NTB_B2B_BAR_2, b2b_bar_num);
xeon_set_sbar_base_and_limit(ntb, addr->bar5_addr32,
NTB_B2B_BAR_3, b2b_bar_num);
} else
xeon_set_sbar_base_and_limit(ntb, addr->bar4_addr64,
NTB_B2B_BAR_2, b2b_bar_num);
/* Zero incoming translation addrs */
intel_ntb_reg_write(8, XEON_SBAR2XLAT_OFFSET, 0);
intel_ntb_reg_write(8, XEON_SBAR4XLAT_OFFSET, 0);
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
uint32_t xlat_reg, lmt_reg;
enum ntb_bar bar_num;
/*
* We point the chosen MSIX MW BAR xlat to remote LAPIC for
* workaround
*/
bar_num = intel_ntb_mw_to_bar(ntb, ntb->msix_mw_idx);
bar_get_xlat_params(ntb, bar_num, NULL, &xlat_reg, &lmt_reg);
if (bar_is_64bit(ntb, bar_num)) {
intel_ntb_reg_write(8, xlat_reg, MSI_INTEL_ADDR_BASE);
ntb->msix_xlat = intel_ntb_reg_read(8, xlat_reg);
intel_ntb_reg_write(8, lmt_reg, 0);
} else {
intel_ntb_reg_write(4, xlat_reg, MSI_INTEL_ADDR_BASE);
ntb->msix_xlat = intel_ntb_reg_read(4, xlat_reg);
intel_ntb_reg_write(4, lmt_reg, 0);
}
ntb->peer_lapic_bar = &ntb->bar_info[bar_num];
}
(void)intel_ntb_reg_read(8, XEON_SBAR2XLAT_OFFSET);
(void)intel_ntb_reg_read(8, XEON_SBAR4XLAT_OFFSET);
/* Zero outgoing translation limits (whole bar size windows) */
intel_ntb_reg_write(8, XEON_PBAR2LMT_OFFSET, 0);
intel_ntb_reg_write(8, XEON_PBAR4LMT_OFFSET, 0);
/* Set outgoing translation offsets */
xeon_set_pbar_xlat(ntb, peer_addr->bar2_addr64, NTB_B2B_BAR_1);
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
xeon_set_pbar_xlat(ntb, peer_addr->bar4_addr32, NTB_B2B_BAR_2);
xeon_set_pbar_xlat(ntb, peer_addr->bar5_addr32, NTB_B2B_BAR_3);
} else
xeon_set_pbar_xlat(ntb, peer_addr->bar4_addr64, NTB_B2B_BAR_2);
/* Set the translation offset for B2B registers */
bar_addr = 0;
if (b2b_bar_num == NTB_CONFIG_BAR)
bar_addr = peer_addr->bar0_addr;
else if (b2b_bar_num == NTB_B2B_BAR_1)
bar_addr = peer_addr->bar2_addr64;
else if (b2b_bar_num == NTB_B2B_BAR_2 && !HAS_FEATURE(ntb, NTB_SPLIT_BAR))
bar_addr = peer_addr->bar4_addr64;
else if (b2b_bar_num == NTB_B2B_BAR_2)
bar_addr = peer_addr->bar4_addr32;
else if (b2b_bar_num == NTB_B2B_BAR_3)
bar_addr = peer_addr->bar5_addr32;
else
KASSERT(false, ("invalid bar"));
/*
* B2B_XLAT_OFFSET is a 64-bit register but can only be written 32 bits
* at a time.
*/
intel_ntb_reg_write(4, XEON_B2B_XLAT_OFFSETL, bar_addr & 0xffffffff);
intel_ntb_reg_write(4, XEON_B2B_XLAT_OFFSETU, bar_addr >> 32);
return (0);
}
static int
xeon_gen3_setup_b2b_mw(struct ntb_softc *ntb)
{
uint64_t reg;
uint32_t embarsz, imbarsz;
/* IMBAR1SZ should be equal to EMBAR1SZ */
embarsz = pci_read_config(ntb->device, XEON_GEN3_INT_REG_EMBAR1SZ, 1);
imbarsz = pci_read_config(ntb->device, XEON_GEN3_INT_REG_IMBAR1SZ, 1);
if (embarsz != imbarsz) {
device_printf(ntb->device,
"IMBAR1SZ (%u) should be equal to EMBAR1SZ (%u)\n",
imbarsz, embarsz);
return (EIO);
}
/* IMBAR2SZ should be equal to EMBAR2SZ */
embarsz = pci_read_config(ntb->device, XEON_GEN3_INT_REG_EMBAR2SZ, 1);
imbarsz = pci_read_config(ntb->device, XEON_GEN3_INT_REG_IMBAR2SZ, 1);
if (embarsz != imbarsz) {
device_printf(ntb->device,
"IMBAR2SZ (%u) should be equal to EMBAR2SZ (%u)\n",
imbarsz, embarsz);
return (EIO);
}
/* Client will provide the incoming IMBAR1/2XBASE, zero it for now */
intel_ntb_reg_write(8, XEON_GEN3_REG_IMBAR1XBASE, 0);
intel_ntb_reg_write(8, XEON_GEN3_REG_IMBAR2XBASE, 0);
/*
* If the value in IMBAR1XLIMIT is set equal to the value in IMBAR1XBASE,
* the local memory window exposure from EMBAR1 is disabled.
* Note: It is needed to avoid malicious access.
*/
intel_ntb_reg_write(8, XEON_GEN3_REG_IMBAR1XLIMIT, 0);
intel_ntb_reg_write(8, XEON_GEN3_REG_IMBAR2XLIMIT, 0);
/* Config outgoing translation limits (whole bar size windows) */
reg = intel_ntb_reg_read(8, XEON_GEN3_REG_EMBAR1XBASE);
reg += ntb->bar_info[NTB_B2B_BAR_1].size;
intel_ntb_reg_write(8, XEON_GEN3_REG_EMBAR1XLIMIT, reg);
reg = intel_ntb_reg_read(8, XEON_GEN3_REG_EMBAR2XBASE);
reg += ntb->bar_info[NTB_B2B_BAR_2].size;
intel_ntb_reg_write(8, XEON_GEN3_REG_EMBAR2XLIMIT, reg);
return (0);
}
static int
xeon_gen4_setup_b2b_mw(struct ntb_softc *ntb)
{
uint32_t embarsz, imbarsz;
/* IMBAR23SZ should be equal to EMBAR23SZ */
imbarsz = pci_read_config(ntb->device, XEON_GEN4_CFG_REG_IMBAR1SZ, 1);
embarsz = pci_read_config(ntb->device, XEON_GEN4_CFG_REG_EMBAR1SZ, 1);
if (embarsz != imbarsz) {
device_printf(ntb->device,
"IMBAR23SZ (%u) should be equal to EMBAR23SZ (%u)\n",
imbarsz, embarsz);
return (EIO);
}
/* IMBAR45SZ should be equal to EMBAR45SZ */
imbarsz = pci_read_config(ntb->device, XEON_GEN4_CFG_REG_IMBAR2SZ, 1);
embarsz = pci_read_config(ntb->device, XEON_GEN4_CFG_REG_EMBAR2SZ, 1);
if (embarsz != imbarsz) {
device_printf(ntb->device,
"IMBAR45SZ (%u) should be equal to EMBAR45SZ (%u)\n",
imbarsz, embarsz);
return (EIO);
}
/* Client will provide the incoming IMBARXBASE, zero it for now */
intel_ntb_reg_write(8, XEON_GEN4_REG_IMBAR1XBASE, 0);
intel_ntb_reg_write(8, XEON_GEN4_REG_IMBAR2XBASE, 0);
/*
* If the value in IMBARXLIMIT is set equal to the value in IMBARXBASE,
* the local memory window exposure from EMBAR is disabled.
* Note: It is needed to avoid malicious access.
*/
intel_ntb_reg_write(8, XEON_GEN4_REG_IMBAR1XLIMIT, 0);
intel_ntb_reg_write(8, XEON_GEN4_REG_IMBAR2XLIMIT, 0);
/* EMBARXLIMIT & EMBARXBASE are gone for gen4, noop here */
return (0);
}
static inline bool
_xeon_link_is_up(struct ntb_softc *ntb)
{
if (ntb->conn_type == NTB_CONN_TRANSPARENT)
return (true);
return ((ntb->lnk_sta & NTB_LINK_STATUS_ACTIVE) != 0);
}
static inline bool
link_is_up(struct ntb_softc *ntb)
{
if (ntb->type == NTB_XEON_GEN1 ||
ntb->type == NTB_XEON_GEN3 ||
ntb->type == NTB_XEON_GEN4)
return (_xeon_link_is_up(ntb) && (ntb->peer_msix_good ||
!HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)));
KASSERT(ntb->type == NTB_ATOM, ("ntb type"));
return ((ntb->ntb_ctl & ATOM_CNTL_LINK_DOWN) == 0);
}
static inline bool
atom_link_is_err(struct ntb_softc *ntb)
{
uint32_t status;
KASSERT(ntb->type == NTB_ATOM, ("ntb type"));
status = intel_ntb_reg_read(4, ATOM_LTSSMSTATEJMP_OFFSET);
if ((status & ATOM_LTSSMSTATEJMP_FORCEDETECT) != 0)
return (true);
status = intel_ntb_reg_read(4, ATOM_IBSTERRRCRVSTS0_OFFSET);
return ((status & ATOM_IBIST_ERR_OFLOW) != 0);
}
/* Atom does not have link status interrupt, poll on that platform */
static void
atom_link_hb(void *arg)
{
struct ntb_softc *ntb = arg;
sbintime_t timo, poll_ts;
timo = NTB_HB_TIMEOUT * hz;
poll_ts = ntb->last_ts + timo;
/*
* Delay polling the link status if an interrupt was received, unless
* the cached link status says the link is down.
*/
if ((sbintime_t)ticks - poll_ts < 0 && link_is_up(ntb)) {
timo = poll_ts - ticks;
goto out;
}
if (intel_ntb_poll_link(ntb))
ntb_link_event(ntb->device);
if (!link_is_up(ntb) && atom_link_is_err(ntb)) {
/* Link is down with error, proceed with recovery */
callout_reset(&ntb->lr_timer, 0, recover_atom_link, ntb);
return;
}
out:
callout_reset(&ntb->heartbeat_timer, timo, atom_link_hb, ntb);
}
static void
atom_perform_link_restart(struct ntb_softc *ntb)
{
uint32_t status;
/* Driver resets the NTB ModPhy lanes - magic! */
intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG6, 0xe0);
intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG4, 0x40);
intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG4, 0x60);
intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG6, 0x60);
/* Driver waits 100ms to allow the NTB ModPhy to settle */
pause("ModPhy", hz / 10);
/* Clear AER Errors, write to clear */
status = intel_ntb_reg_read(4, ATOM_ERRCORSTS_OFFSET);
status &= PCIM_AER_COR_REPLAY_ROLLOVER;
intel_ntb_reg_write(4, ATOM_ERRCORSTS_OFFSET, status);
/* Clear unexpected electrical idle event in LTSSM, write to clear */
status = intel_ntb_reg_read(4, ATOM_LTSSMERRSTS0_OFFSET);
status |= ATOM_LTSSMERRSTS0_UNEXPECTEDEI;
intel_ntb_reg_write(4, ATOM_LTSSMERRSTS0_OFFSET, status);
/* Clear DeSkew Buffer error, write to clear */
status = intel_ntb_reg_read(4, ATOM_DESKEWSTS_OFFSET);
status |= ATOM_DESKEWSTS_DBERR;
intel_ntb_reg_write(4, ATOM_DESKEWSTS_OFFSET, status);
status = intel_ntb_reg_read(4, ATOM_IBSTERRRCRVSTS0_OFFSET);
status &= ATOM_IBIST_ERR_OFLOW;
intel_ntb_reg_write(4, ATOM_IBSTERRRCRVSTS0_OFFSET, status);
/* Releases the NTB state machine to allow the link to retrain */
status = intel_ntb_reg_read(4, ATOM_LTSSMSTATEJMP_OFFSET);
status &= ~ATOM_LTSSMSTATEJMP_FORCEDETECT;
intel_ntb_reg_write(4, ATOM_LTSSMSTATEJMP_OFFSET, status);
}
static int
intel_ntb_port_number(device_t dev)
{
struct ntb_softc *ntb = device_get_softc(dev);
return (ntb->dev_type == NTB_DEV_USD ? 0 : 1);
}
static int
intel_ntb_peer_port_count(device_t dev)
{
return (1);
}
static int
intel_ntb_peer_port_number(device_t dev, int pidx)
{
struct ntb_softc *ntb = device_get_softc(dev);
if (pidx != 0)
return (-EINVAL);
return (ntb->dev_type == NTB_DEV_USD ? 1 : 0);
}
static int
intel_ntb_peer_port_idx(device_t dev, int port)
{
int peer_port;
peer_port = intel_ntb_peer_port_number(dev, 0);
if (peer_port == -EINVAL || port != peer_port)
return (-EINVAL);
return (0);
}
static int
intel_ntb4_link_enable(device_t dev, enum ntb_speed speed __unused,
enum ntb_width width __unused)
{
struct ntb_softc *ntb = device_get_softc(dev);
uint32_t cntl, ppd0, ltr;
uint16_t lnkctl;
if (!HAS_FEATURE(ntb, NTB_LTR_BAD)) {
/* Setup active snoop LTR values */
ltr = NTB_LTR_ACTIVE_REQMNT | NTB_LTR_ACTIVE_VAL | NTB_LTR_ACTIVE_LATSCALE;
/* Setup active non-snoop values */
ltr = (ltr << NTB_LTR_NS_SHIFT) | ltr;
intel_ntb_reg_write(4, XEON_GEN4_REG_EXT_LTR_ACTIVE, ltr);
/* Setup idle snoop LTR values */
ltr = NTB_LTR_IDLE_VAL | NTB_LTR_IDLE_LATSCALE | NTB_LTR_IDLE_REQMNT;
/* Setup idle non-snoop values */
ltr = (ltr << NTB_LTR_NS_SHIFT) | ltr;
intel_ntb_reg_write(4, XEON_GEN4_REG_EXT_LTR_IDLE, ltr);
/* setup PCIe LTR to active */
intel_ntb_reg_write(4, XEON_GEN4_REG_EXT_LTR_SWSEL, NTB_LTR_SWSEL_ACTIVE);
}
cntl = NTB_CTL_E2I_BAR23_SNOOP | NTB_CTL_I2E_BAR23_SNOOP;
cntl |= NTB_CTL_E2I_BAR45_SNOOP | NTB_CTL_I2E_BAR45_SNOOP;
intel_ntb_reg_write(4, ntb->reg->ntb_ctl, cntl);
lnkctl = intel_ntb_reg_read(2, XEON_GEN4_REG_LINK_CTRL);
lnkctl &= ~GEN4_LINK_CTRL_LINK_DISABLE;
intel_ntb_reg_write(2, XEON_GEN4_REG_LINK_CTRL, lnkctl);
/* start link training in PPD0 */
ppd0 = intel_ntb_reg_read(4, XEON_GEN4_REG_PPD0);
ppd0 |= GEN4_PPD_LINKTRN;
intel_ntb_reg_write(4, XEON_GEN4_REG_PPD0, ppd0);
/* make sure link training has started */
ppd0 = intel_ntb_reg_read(4, XEON_GEN4_REG_PPD0);
if (!(ppd0 & GEN4_PPD_LINKTRN))
intel_ntb_printf(2, "Link is not training\n");
return (0);
}
static int
intel_ntb_link_enable(device_t dev, enum ntb_speed speed __unused,
enum ntb_width width __unused)
{
struct ntb_softc *ntb = device_get_softc(dev);
uint32_t cntl;
intel_ntb_printf(2, "%s\n", __func__);
if (ntb->type == NTB_XEON_GEN4)
return (intel_ntb4_link_enable(dev, speed, width));
if (ntb->type == NTB_ATOM) {
pci_write_config(ntb->device, NTB_PPD_OFFSET,
ntb->ppd | ATOM_PPD_INIT_LINK, 4);
return (0);
}
if (ntb->conn_type == NTB_CONN_TRANSPARENT) {
ntb_link_event(dev);
return (0);
}
cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl);
cntl &= ~(NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK);
cntl |= NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP;
cntl |= NTB_CNTL_P2S_BAR4_SNOOP | NTB_CNTL_S2P_BAR4_SNOOP;
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR))
cntl |= NTB_CNTL_P2S_BAR5_SNOOP | NTB_CNTL_S2P_BAR5_SNOOP;
intel_ntb_reg_write(4, ntb->reg->ntb_ctl, cntl);
return (0);
}
static int
intel_ntb4_link_disable(device_t dev)
{
struct ntb_softc *ntb = device_get_softc(dev);
uint32_t cntl;
uint16_t lnkctl;
/* clear the snoop bits */
cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl);
cntl &= ~(NTB_CTL_E2I_BAR23_SNOOP | NTB_CTL_I2E_BAR23_SNOOP);
cntl &= ~(NTB_CTL_E2I_BAR45_SNOOP | NTB_CTL_I2E_BAR45_SNOOP);
intel_ntb_reg_write(4, ntb->reg->ntb_ctl, cntl);
lnkctl = intel_ntb_reg_read(2, XEON_GEN4_REG_LINK_CTRL);
lnkctl |= GEN4_LINK_CTRL_LINK_DISABLE;
intel_ntb_reg_write(2, XEON_GEN4_REG_LINK_CTRL, lnkctl);
/* set LTR to idle */
if (!HAS_FEATURE(ntb, NTB_LTR_BAD))
intel_ntb_reg_write(4, XEON_GEN4_REG_EXT_LTR_SWSEL, NTB_LTR_SWSEL_IDLE);
return (0);
}
static int
intel_ntb_link_disable(device_t dev)
{
struct ntb_softc *ntb = device_get_softc(dev);
uint32_t cntl;
intel_ntb_printf(2, "%s\n", __func__);
if (ntb->type == NTB_XEON_GEN4)
return (intel_ntb4_link_disable(dev));
if (ntb->conn_type == NTB_CONN_TRANSPARENT) {
ntb_link_event(dev);
return (0);
}
cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl);
cntl &= ~(NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP);
cntl &= ~(NTB_CNTL_P2S_BAR4_SNOOP | NTB_CNTL_S2P_BAR4_SNOOP);
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR))
cntl &= ~(NTB_CNTL_P2S_BAR5_SNOOP | NTB_CNTL_S2P_BAR5_SNOOP);
cntl |= NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK;
intel_ntb_reg_write(4, ntb->reg->ntb_ctl, cntl);
return (0);
}
static bool
intel_ntb_link_enabled(device_t dev)
{
struct ntb_softc *ntb = device_get_softc(dev);
uint32_t cntl;
if (ntb->type == NTB_ATOM) {
cntl = pci_read_config(ntb->device, NTB_PPD_OFFSET, 4);
return ((cntl & ATOM_PPD_INIT_LINK) != 0);
}
if (ntb->conn_type == NTB_CONN_TRANSPARENT)
return (true);
if (ntb->type == NTB_XEON_GEN4) {
cntl = intel_ntb_reg_read(2, XEON_GEN4_REG_LINK_CTRL);
return ((cntl & GEN4_LINK_CTRL_LINK_DISABLE) == 0);
}
cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl);
return ((cntl & NTB_CNTL_LINK_DISABLE) == 0);
}
static void
recover_atom_link(void *arg)
{
struct ntb_softc *ntb = arg;
unsigned speed, width, oldspeed, oldwidth;
uint32_t status32;
atom_perform_link_restart(ntb);
/*
* There is a potential race between the 2 NTB devices recovering at
* the same time. If the times are the same, the link will not recover
* and the driver will be stuck in this loop forever. Add a random
* interval to the recovery time to prevent this race.
*/
status32 = arc4random() % ATOM_LINK_RECOVERY_TIME;
pause("Link", (ATOM_LINK_RECOVERY_TIME + status32) * hz / 1000);
if (atom_link_is_err(ntb))
goto retry;
status32 = intel_ntb_reg_read(4, ntb->reg->ntb_ctl);
if ((status32 & ATOM_CNTL_LINK_DOWN) != 0)
goto out;
status32 = intel_ntb_reg_read(4, ntb->reg->lnk_sta);
width = NTB_LNK_STA_WIDTH(status32);
speed = status32 & NTB_LINK_SPEED_MASK;
oldwidth = NTB_LNK_STA_WIDTH(ntb->lnk_sta);
oldspeed = ntb->lnk_sta & NTB_LINK_SPEED_MASK;
if (oldwidth != width || oldspeed != speed)
goto retry;
out:
callout_reset(&ntb->heartbeat_timer, NTB_HB_TIMEOUT * hz, atom_link_hb,
ntb);
return;
retry:
callout_reset(&ntb->lr_timer, NTB_HB_TIMEOUT * hz, recover_atom_link,
ntb);
}
/*
* Polls the HW link status register(s); returns true if something has changed.
*/
static bool
intel_ntb_atom_poll_link(struct ntb_softc *ntb)
{
uint32_t ntb_cntl;
ntb_cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl);
if (ntb_cntl == ntb->ntb_ctl)
return (false);
ntb->ntb_ctl = ntb_cntl;
ntb->lnk_sta = intel_ntb_reg_read(4, ntb->reg->lnk_sta);
return (true);
}
static bool
intel_ntb_xeon_gen1_poll_link(struct ntb_softc *ntb)
{
uint16_t reg_val;
if (ntb->type == NTB_XEON_GEN1)
db_iowrite_raw(ntb, ntb->self_reg->db_bell,
ntb->db_link_mask);
reg_val = pci_read_config(ntb->device, ntb->reg->lnk_sta, 2);
if (reg_val == ntb->lnk_sta)
return (false);
ntb->lnk_sta = reg_val;
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
if (_xeon_link_is_up(ntb)) {
if (!ntb->peer_msix_good) {
callout_reset(&ntb->peer_msix_work, 0,
intel_ntb_exchange_msix, ntb);
return (false);
}
} else {
ntb->peer_msix_good = false;
ntb->peer_msix_done = false;
}
}
return (true);
}
static bool
intel_ntb_xeon_gen4_poll_link(struct ntb_softc *ntb)
{
uint16_t reg_val;
/*
* We need to write to DLLSCS bit in the SLOTSTS before we
* can clear the hardware link interrupt on ICX NTB.
*/
intel_ntb_reg_write(2, XEON_GEN4_REG_SLOTSTS, GEN4_SLOTSTS_DLLSCS);
db_iowrite_raw(ntb, ntb->self_reg->db_clear, ntb->db_link_mask);
reg_val = intel_ntb_reg_read(2, ntb->reg->lnk_sta);
if (reg_val == ntb->lnk_sta)
return (false);
ntb->lnk_sta = reg_val;
return (true);
}
static bool
intel_ntb_poll_link(struct ntb_softc *ntb)
{
bool val;
switch(ntb->type) {
case NTB_ATOM:
val = intel_ntb_atom_poll_link(ntb);
break;
case NTB_XEON_GEN4:
val = intel_ntb_xeon_gen4_poll_link(ntb);
break;
default:
val = intel_ntb_xeon_gen1_poll_link(ntb);
break;
}
return (val);
}
static inline enum ntb_speed
intel_ntb_link_sta_speed(struct ntb_softc *ntb)
{
if (!link_is_up(ntb))
return (NTB_SPEED_NONE);
return (ntb->lnk_sta & NTB_LINK_SPEED_MASK);
}
static inline enum ntb_width
intel_ntb_link_sta_width(struct ntb_softc *ntb)
{
if (!link_is_up(ntb))
return (NTB_WIDTH_NONE);
return (NTB_LNK_STA_WIDTH(ntb->lnk_sta));
}
SYSCTL_NODE(_hw_ntb, OID_AUTO, debug_info, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Driver state, statistics, and HW registers");
#define NTB_REGSZ_MASK (3ul << 30)
#define NTB_REG_64 (1ul << 30)
#define NTB_REG_32 (2ul << 30)
#define NTB_REG_16 (3ul << 30)
#define NTB_REG_8 (0ul << 30)
#define NTB_DB_READ (1ul << 29)
#define NTB_PCI_REG (1ul << 28)
#define NTB_REGFLAGS_MASK (NTB_REGSZ_MASK | NTB_DB_READ | NTB_PCI_REG)
static void
intel_ntb_sysctl_init(struct ntb_softc *ntb)
{
struct sysctl_oid_list *globals, *tree_par, *regpar, *statpar, *errpar;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree, *tmptree;
ctx = device_get_sysctl_ctx(ntb->device);
globals = SYSCTL_CHILDREN(device_get_sysctl_tree(ntb->device));
SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "link_status",
CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, ntb, 0,
sysctl_handle_link_status_human, "A",
"Link status (human readable)");
SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "active",
CTLFLAG_RD | CTLTYPE_UINT | CTLFLAG_MPSAFE, ntb, 0,
sysctl_handle_link_status, "IU",
"Link status (1=active, 0=inactive)");
SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "admin_up",
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_MPSAFE, ntb, 0,
sysctl_handle_link_admin, "IU",
"Set/get interface status (1=UP, 0=DOWN)");
tree = SYSCTL_ADD_NODE(ctx, globals, OID_AUTO, "debug_info",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"Driver state, statistics, and HW registers");
tree_par = SYSCTL_CHILDREN(tree);
SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "conn_type", CTLFLAG_RD,
&ntb->conn_type, 0, "0 - Transparent; 1 - B2B; 2 - Root Port");
SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "dev_type", CTLFLAG_RD,
&ntb->dev_type, 0, "0 - USD; 1 - DSD");
SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "ppd", CTLFLAG_RD,
&ntb->ppd, 0, "Raw PPD register (cached)");
if (ntb->b2b_mw_idx != B2B_MW_DISABLED) {
SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "b2b_idx", CTLFLAG_RD,
&ntb->b2b_mw_idx, 0,
"Index of the MW used for B2B remote register access");
SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "b2b_off",
CTLFLAG_RD, &ntb->b2b_off,
"If non-zero, offset of B2B register region in shared MW");
}
SYSCTL_ADD_PROC(ctx, tree_par, OID_AUTO, "features",
CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, ntb, 0,
sysctl_handle_features, "A", "Features/errata of this NTB device");
SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "ntb_ctl", CTLFLAG_RD,
__DEVOLATILE(uint32_t *, &ntb->ntb_ctl), 0,
"NTB CTL register (cached)");
SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "lnk_sta", CTLFLAG_RD,
__DEVOLATILE(uint32_t *, &ntb->lnk_sta), 0,
"LNK STA register (cached)");
SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "mw_count", CTLFLAG_RD,
&ntb->mw_count, 0, "MW count");
SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "spad_count", CTLFLAG_RD,
&ntb->spad_count, 0, "Scratchpad count");
SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_count", CTLFLAG_RD,
&ntb->db_count, 0, "Doorbell count");
SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_vec_count", CTLFLAG_RD,
&ntb->db_vec_count, 0, "Doorbell vector count");
SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_vec_shift", CTLFLAG_RD,
&ntb->db_vec_shift, 0, "Doorbell vector shift");
SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_valid_mask", CTLFLAG_RD,
&ntb->db_valid_mask, "Doorbell valid mask");
SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_link_mask", CTLFLAG_RD,
&ntb->db_link_mask, "Doorbell link mask");
SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_mask", CTLFLAG_RD,
&ntb->db_mask, "Doorbell mask (cached)");
tmptree = SYSCTL_ADD_NODE(ctx, tree_par, OID_AUTO, "registers",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"Raw HW registers (big-endian)");
regpar = SYSCTL_CHILDREN(tmptree);
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "ntbcntl",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | ntb->reg->ntb_ctl, sysctl_handle_register, "IU",
"NTB Control register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnkcap",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | 0x19c, sysctl_handle_register, "IU",
"NTB Link Capabilities");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnkcon",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | 0x1a0, sysctl_handle_register, "IU",
"NTB Link Control register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "db_mask",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | NTB_DB_READ | ntb->self_reg->db_mask,
sysctl_handle_register, "QU", "Doorbell mask register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "db_bell",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | NTB_DB_READ | ntb->self_reg->db_bell,
sysctl_handle_register, "QU", "Doorbell register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat23",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | ntb->xlat_reg->bar2_xlat,
sysctl_handle_register, "QU", "Incoming XLAT23 register");
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat4",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | ntb->xlat_reg->bar4_xlat,
sysctl_handle_register, "IU", "Incoming XLAT4 register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat5",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | ntb->xlat_reg->bar5_xlat,
sysctl_handle_register, "IU", "Incoming XLAT5 register");
} else {
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat45",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | ntb->xlat_reg->bar4_xlat,
sysctl_handle_register, "QU", "Incoming XLAT45 register");
}
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt23",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | ntb->xlat_reg->bar2_limit,
sysctl_handle_register, "QU", "Incoming LMT23 register");
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt4",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | ntb->xlat_reg->bar4_limit,
sysctl_handle_register, "IU", "Incoming LMT4 register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt5",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | ntb->xlat_reg->bar5_limit,
sysctl_handle_register, "IU", "Incoming LMT5 register");
} else {
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt45",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | ntb->xlat_reg->bar4_limit,
sysctl_handle_register, "QU", "Incoming LMT45 register");
}
if (ntb->type == NTB_ATOM)
return;
tmptree = SYSCTL_ADD_NODE(ctx, regpar, OID_AUTO, "xeon_stats",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Xeon HW statistics");
statpar = SYSCTL_CHILDREN(tmptree);
SYSCTL_ADD_PROC(ctx, statpar, OID_AUTO, "upstream_mem_miss",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_16 | XEON_USMEMMISS_OFFSET,
sysctl_handle_register, "SU", "Upstream Memory Miss");
tmptree = SYSCTL_ADD_NODE(ctx, regpar, OID_AUTO, "xeon_hw_err",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Xeon HW errors");
errpar = SYSCTL_CHILDREN(tmptree);
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "ppd",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_8 | NTB_PCI_REG | NTB_PPD_OFFSET,
sysctl_handle_register, "CU", "PPD");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar23_sz",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_8 | NTB_PCI_REG | XEON_PBAR23SZ_OFFSET,
sysctl_handle_register, "CU", "PBAR23 SZ (log2)");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar4_sz",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_8 | NTB_PCI_REG | XEON_PBAR4SZ_OFFSET,
sysctl_handle_register, "CU", "PBAR4 SZ (log2)");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar5_sz",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_8 | NTB_PCI_REG | XEON_PBAR5SZ_OFFSET,
sysctl_handle_register, "CU", "PBAR5 SZ (log2)");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar23_sz",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_8 | NTB_PCI_REG | XEON_SBAR23SZ_OFFSET,
sysctl_handle_register, "CU", "SBAR23 SZ (log2)");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar4_sz",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_8 | NTB_PCI_REG | XEON_SBAR4SZ_OFFSET,
sysctl_handle_register, "CU", "SBAR4 SZ (log2)");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar5_sz",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_8 | NTB_PCI_REG | XEON_SBAR5SZ_OFFSET,
sysctl_handle_register, "CU", "SBAR5 SZ (log2)");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "devsts",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_16 | NTB_PCI_REG | XEON_DEVSTS_OFFSET,
sysctl_handle_register, "SU", "DEVSTS");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnksts",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_16 | NTB_PCI_REG | XEON_LINK_STATUS_OFFSET,
sysctl_handle_register, "SU", "LNKSTS");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "slnksts",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_16 | NTB_PCI_REG | XEON_SLINK_STATUS_OFFSET,
sysctl_handle_register, "SU", "SLNKSTS");
SYSCTL_ADD_PROC(ctx, errpar, OID_AUTO, "uncerrsts",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | NTB_PCI_REG | XEON_UNCERRSTS_OFFSET,
sysctl_handle_register, "IU", "UNCERRSTS");
SYSCTL_ADD_PROC(ctx, errpar, OID_AUTO, "corerrsts",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | NTB_PCI_REG | XEON_CORERRSTS_OFFSET,
sysctl_handle_register, "IU", "CORERRSTS");
if (ntb->conn_type != NTB_CONN_B2B)
return;
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat01l",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | XEON_B2B_XLAT_OFFSETL,
sysctl_handle_register, "IU", "Outgoing XLAT0L register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat01u",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | XEON_B2B_XLAT_OFFSETU,
sysctl_handle_register, "IU", "Outgoing XLAT0U register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat23",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | ntb->bar_info[NTB_B2B_BAR_1].pbarxlat_off,
sysctl_handle_register, "QU", "Outgoing XLAT23 register");
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat4",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | ntb->bar_info[NTB_B2B_BAR_2].pbarxlat_off,
sysctl_handle_register, "IU", "Outgoing XLAT4 register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat5",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | ntb->bar_info[NTB_B2B_BAR_3].pbarxlat_off,
sysctl_handle_register, "IU", "Outgoing XLAT5 register");
} else {
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat45",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | ntb->bar_info[NTB_B2B_BAR_2].pbarxlat_off,
sysctl_handle_register, "QU", "Outgoing XLAT45 register");
}
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt23",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | XEON_PBAR2LMT_OFFSET,
sysctl_handle_register, "QU", "Outgoing LMT23 register");
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt4",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | XEON_PBAR4LMT_OFFSET,
sysctl_handle_register, "IU", "Outgoing LMT4 register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt5",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | XEON_PBAR5LMT_OFFSET,
sysctl_handle_register, "IU", "Outgoing LMT5 register");
} else {
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt45",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | XEON_PBAR4LMT_OFFSET,
sysctl_handle_register, "QU", "Outgoing LMT45 register");
}
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar01_base",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | ntb->xlat_reg->bar0_base,
sysctl_handle_register, "QU", "Secondary BAR01 base register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar23_base",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | ntb->xlat_reg->bar2_base,
sysctl_handle_register, "QU", "Secondary BAR23 base register");
if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar4_base",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | ntb->xlat_reg->bar4_base,
sysctl_handle_register, "IU",
"Secondary BAR4 base register");
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar5_base",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_32 | ntb->xlat_reg->bar5_base,
sysctl_handle_register, "IU",
"Secondary BAR5 base register");
} else {
SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar45_base",
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
NTB_REG_64 | ntb->xlat_reg->bar4_base,
sysctl_handle_register, "QU",
"Secondary BAR45 base register");
}
}
static int
sysctl_handle_features(SYSCTL_HANDLER_ARGS)
{
struct ntb_softc *ntb = arg1;
struct sbuf sb;
int error;
sbuf_new_for_sysctl(&sb, NULL, 256, req);
sbuf_printf(&sb, "%b", ntb->features, NTB_FEATURES_STR);
error = sbuf_finish(&sb);
sbuf_delete(&sb);
if (error || !req->newptr)
return (error);
return (EINVAL);
}
static int
sysctl_handle_link_admin(SYSCTL_HANDLER_ARGS)
{
struct ntb_softc *ntb = arg1;
unsigned old, new;
int error;
old = intel_ntb_link_enabled(ntb->device);
error = SYSCTL_OUT(req, &old, sizeof(old));
if (error != 0 || req->newptr == NULL)
return (error);
error = SYSCTL_IN(req, &new, sizeof(new));
if (error != 0)
return (error);
intel_ntb_printf(0, "Admin set interface state to '%sabled'\n",
(new != 0)? "en" : "dis");
if (new != 0)
error = intel_ntb_link_enable(ntb->device, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
else
error = intel_ntb_link_disable(ntb->device);
return (error);
}
static int
sysctl_handle_link_status_human(SYSCTL_HANDLER_ARGS)
{
struct ntb_softc *ntb = arg1;
struct sbuf sb;
enum ntb_speed speed;
enum ntb_width width;
int error;
sbuf_new_for_sysctl(&sb, NULL, 32, req);
if (intel_ntb_link_is_up(ntb->device, &speed, &width))
sbuf_printf(&sb, "up / PCIe Gen %u / Width x%u",
(unsigned)speed, (unsigned)width);
else
sbuf_printf(&sb, "down");
error = sbuf_finish(&sb);
sbuf_delete(&sb);
if (error || !req->newptr)
return (error);
return (EINVAL);
}
static int
sysctl_handle_link_status(SYSCTL_HANDLER_ARGS)
{
struct ntb_softc *ntb = arg1;
unsigned res;
int error;
res = intel_ntb_link_is_up(ntb->device, NULL, NULL);
error = SYSCTL_OUT(req, &res, sizeof(res));
if (error || !req->newptr)
return (error);
return (EINVAL);
}
static int
sysctl_handle_register(SYSCTL_HANDLER_ARGS)
{
struct ntb_softc *ntb;
const void *outp;
uintptr_t sz;
uint64_t umv;
char be[sizeof(umv)];
size_t outsz;
uint32_t reg;
bool db, pci;
int error;
ntb = arg1;
reg = arg2 & ~NTB_REGFLAGS_MASK;
sz = arg2 & NTB_REGSZ_MASK;
db = (arg2 & NTB_DB_READ) != 0;
pci = (arg2 & NTB_PCI_REG) != 0;
KASSERT(!(db && pci), ("bogus"));
if (db) {
KASSERT(sz == NTB_REG_64, ("bogus"));
umv = db_ioread(ntb, reg);
outsz = sizeof(uint64_t);
} else {
switch (sz) {
case NTB_REG_64:
if (pci)
umv = pci_read_config(ntb->device, reg, 8);
else
umv = intel_ntb_reg_read(8, reg);
outsz = sizeof(uint64_t);
break;
case NTB_REG_32:
if (pci)
umv = pci_read_config(ntb->device, reg, 4);
else
umv = intel_ntb_reg_read(4, reg);
outsz = sizeof(uint32_t);
break;
case NTB_REG_16:
if (pci)
umv = pci_read_config(ntb->device, reg, 2);
else
umv = intel_ntb_reg_read(2, reg);
outsz = sizeof(uint16_t);
break;
case NTB_REG_8:
if (pci)
umv = pci_read_config(ntb->device, reg, 1);
else
umv = intel_ntb_reg_read(1, reg);
outsz = sizeof(uint8_t);
break;
default:
panic("bogus");
break;
}
}
/* Encode bigendian so that sysctl -x is legible. */
be64enc(be, umv);
outp = ((char *)be) + sizeof(umv) - outsz;
error = SYSCTL_OUT(req, outp, outsz);
if (error || !req->newptr)
return (error);
return (EINVAL);
}
static unsigned
intel_ntb_user_mw_to_idx(struct ntb_softc *ntb, unsigned uidx)
{
if ((ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0 &&
uidx >= ntb->b2b_mw_idx) ||
(ntb->msix_mw_idx != B2B_MW_DISABLED && uidx >= ntb->msix_mw_idx))
uidx++;
if ((ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0 &&
uidx >= ntb->b2b_mw_idx) &&
(ntb->msix_mw_idx != B2B_MW_DISABLED && uidx >= ntb->msix_mw_idx))
uidx++;
return (uidx);
}
#ifndef EARLY_AP_STARTUP
static int msix_ready;
static void
intel_ntb_msix_ready(void *arg __unused)
{
msix_ready = 1;
}
SYSINIT(intel_ntb_msix_ready, SI_SUB_SMP, SI_ORDER_ANY,
intel_ntb_msix_ready, NULL);
#endif
static void
intel_ntb_exchange_msix(void *ctx)
{
struct ntb_softc *ntb;
uint32_t val;
unsigned i;
ntb = ctx;
if (ntb->peer_msix_good)
goto msix_good;
if (ntb->peer_msix_done)
goto msix_done;
#ifndef EARLY_AP_STARTUP
/* Block MSIX negotiation until SMP started and IRQ reshuffled. */
if (!msix_ready)
goto reschedule;
#endif
intel_ntb_get_msix_info(ntb);
for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_DATA0 + i,
ntb->msix_data[i].nmd_data);
intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_OFS0 + i,
ntb->msix_data[i].nmd_ofs - ntb->msix_xlat);
}
intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_GUARD, NTB_MSIX_VER_GUARD);
intel_ntb_spad_read(ntb->device, NTB_MSIX_GUARD, &val);
if (val != NTB_MSIX_VER_GUARD)
goto reschedule;
for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
intel_ntb_spad_read(ntb->device, NTB_MSIX_DATA0 + i, &val);
intel_ntb_printf(2, "remote MSIX data(%u): 0x%x\n", i, val);
ntb->peer_msix_data[i].nmd_data = val;
intel_ntb_spad_read(ntb->device, NTB_MSIX_OFS0 + i, &val);
intel_ntb_printf(2, "remote MSIX addr(%u): 0x%x\n", i, val);
ntb->peer_msix_data[i].nmd_ofs = val;
}
ntb->peer_msix_done = true;
msix_done:
intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_DONE, NTB_MSIX_RECEIVED);
intel_ntb_spad_read(ntb->device, NTB_MSIX_DONE, &val);
if (val != NTB_MSIX_RECEIVED)
goto reschedule;
intel_ntb_spad_clear(ntb->device);
ntb->peer_msix_good = true;
/* Give peer time to see our NTB_MSIX_RECEIVED. */
goto reschedule;
msix_good:
intel_ntb_poll_link(ntb);
ntb_link_event(ntb->device);
return;
reschedule:
ntb->lnk_sta = pci_read_config(ntb->device, ntb->reg->lnk_sta, 2);
if (_xeon_link_is_up(ntb)) {
callout_reset(&ntb->peer_msix_work,
hz * (ntb->peer_msix_good ? 2 : 1) / 10,
intel_ntb_exchange_msix, ntb);
} else
intel_ntb_spad_clear(ntb->device);
}
/*
* Public API to the rest of the OS
*/
static uint8_t
intel_ntb_spad_count(device_t dev)
{
struct ntb_softc *ntb = device_get_softc(dev);
return (ntb->spad_count);
}
static uint8_t
intel_ntb_mw_count(device_t dev)
{
struct ntb_softc *ntb = device_get_softc(dev);
uint8_t res;
res = ntb->mw_count;
if (ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0)
res--;
if (ntb->msix_mw_idx != B2B_MW_DISABLED)
res--;
return (res);
}
static int
intel_ntb_spad_write(device_t dev, unsigned int idx, uint32_t val)
{
struct ntb_softc *ntb = device_get_softc(dev);
if (idx >= ntb->spad_count)
return (EINVAL);
intel_ntb_reg_write(4, ntb->self_reg->spad + idx * 4, val);
return (0);
}
/*
* Zeros the local scratchpad.
*/
static void
intel_ntb_spad_clear(device_t dev)
{
struct ntb_softc *ntb = device_get_softc(dev);
unsigned i;
for (i = 0; i < ntb->spad_count; i++)
intel_ntb_spad_write(dev, i, 0);
}
static int
intel_ntb_spad_read(device_t dev, unsigned int idx, uint32_t *val)
{
struct ntb_softc *ntb = device_get_softc(dev);
if (idx >= ntb->spad_count)
return (EINVAL);
*val = intel_ntb_reg_read(4, ntb->self_reg->spad + idx * 4);
return (0);
}
static int
intel_ntb_peer_spad_write(device_t dev, unsigned int idx, uint32_t val)
{
struct ntb_softc *ntb = device_get_softc(dev);
if (idx >= ntb->spad_count)
return (EINVAL);
if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP))
intel_ntb_mw_write(4, XEON_SPAD_OFFSET + idx * 4, val);
else
intel_ntb_reg_write(4, ntb->peer_reg->spad + idx * 4, val);
return (0);
}
static int
intel_ntb_peer_spad_read(device_t dev, unsigned int idx, uint32_t *val)
{
struct ntb_softc *ntb = device_get_softc(dev);
if (idx >= ntb->spad_count)
return (EINVAL);
if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP))
*val = intel_ntb_mw_read(4, XEON_SPAD_OFFSET + idx * 4);
else
*val = intel_ntb_reg_read(4, ntb->peer_reg->spad + idx * 4);
return (0);
}
static int
intel_ntb_mw_get_range(device_t dev, unsigned mw_idx, vm_paddr_t *base,
caddr_t *vbase, size_t *size, size_t *align, size_t *align_size,
bus_addr_t *plimit)
{
struct ntb_softc *ntb = device_get_softc(dev);
struct ntb_pci_bar_info *bar;
bus_addr_t limit;
size_t bar_b2b_off;
enum ntb_bar bar_num;
if (mw_idx >= intel_ntb_mw_count(dev))
return (EINVAL);
mw_idx = intel_ntb_user_mw_to_idx(ntb, mw_idx);
bar_num = intel_ntb_mw_to_bar(ntb, mw_idx);
bar = &ntb->bar_info[bar_num];
bar_b2b_off = 0;
if (mw_idx == ntb->b2b_mw_idx) {
KASSERT(ntb->b2b_off != 0,
("user shouldn't get non-shared b2b mw"));
bar_b2b_off = ntb->b2b_off;
}
if (bar_is_64bit(ntb, bar_num))
limit = BUS_SPACE_MAXADDR;
else
limit = BUS_SPACE_MAXADDR_32BIT;
if (base != NULL)
*base = bar->pbase + bar_b2b_off;
if (vbase != NULL)
*vbase = bar->vbase + bar_b2b_off;
if (size != NULL)
*size = bar->size - bar_b2b_off;
if (align != NULL)
*align = bar->size;
if (align_size != NULL)
*align_size = 1;
if (plimit != NULL)
*plimit = limit;
return (0);
}
static int
intel_ntb_mw_set_trans(device_t dev, unsigned idx, bus_addr_t addr, size_t size)
{
struct ntb_softc *ntb = device_get_softc(dev);
struct ntb_pci_bar_info *bar;
uint64_t base, limit, reg_val;
size_t bar_size, mw_size;
uint32_t base_reg, xlat_reg, limit_reg;
enum ntb_bar bar_num;
if (idx >= intel_ntb_mw_count(dev))
return (EINVAL);
idx = intel_ntb_user_mw_to_idx(ntb, idx);
bar_num = intel_ntb_mw_to_bar(ntb, idx);
bar = &ntb->bar_info[bar_num];
bar_size = bar->size;
if (idx == ntb->b2b_mw_idx)
mw_size = bar_size - ntb->b2b_off;
else
mw_size = bar_size;
/* Hardware requires that addr is aligned to bar size */
if ((addr & (bar_size - 1)) != 0)
return (EINVAL);
if (size > mw_size)
return (EINVAL);
bar_get_xlat_params(ntb, bar_num, &base_reg, &xlat_reg, &limit_reg);
limit = 0;
if (bar_is_64bit(ntb, bar_num)) {
if (ntb->type == NTB_XEON_GEN3 || ntb->type == NTB_XEON_GEN4)
base = addr;
else
base = intel_ntb_reg_read(8, base_reg) & BAR_HIGH_MASK;
if (limit_reg != 0 && size != mw_size)
limit = base + size;
else
limit = base + mw_size;
/* Set and verify translation address */
intel_ntb_reg_write(8, xlat_reg, addr);
reg_val = intel_ntb_reg_read(8, xlat_reg) & BAR_HIGH_MASK;
if (reg_val != addr) {
intel_ntb_reg_write(8, xlat_reg, 0);
return (EIO);
}
/* Set and verify the limit */
intel_ntb_reg_write(8, limit_reg, limit);
reg_val = intel_ntb_reg_read(8, limit_reg) & BAR_HIGH_MASK;
if (reg_val != limit) {
intel_ntb_reg_write(8, limit_reg, base);
intel_ntb_reg_write(8, xlat_reg, 0);
return (EIO);
}
} else {
/* Configure 32-bit (split) BAR MW */
if (ntb->type == NTB_XEON_GEN3 || ntb->type == NTB_XEON_GEN4)
return (EIO);
if ((addr & UINT32_MAX) != addr)
return (ERANGE);
if (((addr + size) & UINT32_MAX) != (addr + size))
return (ERANGE);
base = intel_ntb_reg_read(4, base_reg) & BAR_HIGH_MASK;
if (limit_reg != 0 && size != mw_size)
limit = base + size;
/* Set and verify translation address */
intel_ntb_reg_write(4, xlat_reg, addr);
reg_val = intel_ntb_reg_read(4, xlat_reg) & BAR_HIGH_MASK;
if (reg_val != addr) {
intel_ntb_reg_write(4, xlat_reg, 0);
return (EIO);
}
/* Set and verify the limit */
intel_ntb_reg_write(4, limit_reg, limit);
reg_val = intel_ntb_reg_read(4, limit_reg) & BAR_HIGH_MASK;
if (reg_val != limit) {
intel_ntb_reg_write(4, limit_reg, base);
intel_ntb_reg_write(4, xlat_reg, 0);
return (EIO);
}
}
return (0);
}
static int
intel_ntb_mw_clear_trans(device_t dev, unsigned mw_idx)
{
return (intel_ntb_mw_set_trans(dev, mw_idx, 0, 0));
}
static int
intel_ntb_mw_get_wc(device_t dev, unsigned idx, vm_memattr_t *mode)
{
struct ntb_softc *ntb = device_get_softc(dev);
struct ntb_pci_bar_info *bar;
if (idx >= intel_ntb_mw_count(dev))
return (EINVAL);
idx = intel_ntb_user_mw_to_idx(ntb, idx);
bar = &ntb->bar_info[intel_ntb_mw_to_bar(ntb, idx)];
*mode = bar->map_mode;
return (0);
}
static int
intel_ntb_mw_set_wc(device_t dev, unsigned idx, vm_memattr_t mode)
{
struct ntb_softc *ntb = device_get_softc(dev);
if (idx >= intel_ntb_mw_count(dev))
return (EINVAL);
idx = intel_ntb_user_mw_to_idx(ntb, idx);
return (intel_ntb_mw_set_wc_internal(ntb, idx, mode));
}
static int
intel_ntb_mw_set_wc_internal(struct ntb_softc *ntb, unsigned idx, vm_memattr_t mode)
{
struct ntb_pci_bar_info *bar;
int rc;
bar = &ntb->bar_info[intel_ntb_mw_to_bar(ntb, idx)];
if (bar->map_mode == mode)
return (0);
rc = pmap_change_attr((vm_offset_t)bar->vbase, bar->size, mode);
if (rc == 0)
bar->map_mode = mode;
return (rc);
}
static void
intel_ntb_peer_db_set(device_t dev, uint64_t bits)
{
struct ntb_softc *ntb = device_get_softc(dev);
uint64_t db;
if ((bits & ~ntb->db_valid_mask) != 0) {
device_printf(ntb->device, "Invalid doorbell bits %#jx\n",
(uintmax_t)bits);
return;
}
if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
struct ntb_pci_bar_info *lapic;
unsigned i;
lapic = ntb->peer_lapic_bar;
for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
if ((bits & intel_ntb_db_vector_mask(dev, i)) != 0)
bus_space_write_4(lapic->pci_bus_tag,
lapic->pci_bus_handle,
ntb->peer_msix_data[i].nmd_ofs,
ntb->peer_msix_data[i].nmd_data);
}
return;
}
if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP)) {
intel_ntb_mw_write(2, XEON_PDOORBELL_OFFSET, bits);
return;
}
if (ntb->type == NTB_XEON_GEN3 || ntb->type == NTB_XEON_GEN4) {
while (bits != 0) {
db = ffsll(bits);
intel_ntb_reg_write(1,
ntb->peer_reg->db_bell + (db - 1) * 4, 0x1);
bits = bits & (bits - 1);
}
} else {
db_iowrite(ntb, ntb->peer_reg->db_bell, bits);
}
}
static int
intel_ntb_peer_db_addr(device_t dev, bus_addr_t *db_addr, vm_size_t *db_size)
{
struct ntb_softc *ntb = device_get_softc(dev);
struct ntb_pci_bar_info *bar;
uint64_t regoff;
KASSERT((db_addr != NULL && db_size != NULL), ("must be non-NULL"));
if (!HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP)) {
bar = &ntb->bar_info[NTB_CONFIG_BAR];
regoff = ntb->peer_reg->db_bell;
} else {
KASSERT(ntb->b2b_mw_idx != B2B_MW_DISABLED,
("invalid b2b idx"));
bar = &ntb->bar_info[intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx)];
regoff = XEON_PDOORBELL_OFFSET;
}
KASSERT(bar->pci_bus_tag != X86_BUS_SPACE_IO, ("uh oh"));
/* HACK: Specific to current x86 bus implementation. */
*db_addr = ((uint64_t)bar->pci_bus_handle + regoff);
*db_size = ntb->reg->db_size;
return (0);
}
static uint64_t
intel_ntb_db_valid_mask(device_t dev)
{
struct ntb_softc *ntb = device_get_softc(dev);
return (ntb->db_valid_mask);
}
static int
intel_ntb_db_vector_count(device_t dev)
{
struct ntb_softc *ntb = device_get_softc(dev);
return (ntb->db_vec_count);
}
static uint64_t
intel_ntb_db_vector_mask(device_t dev, uint32_t vector)
{
struct ntb_softc *ntb = device_get_softc(dev);
if (vector > ntb->db_vec_count)
return (0);
return (ntb->db_valid_mask & intel_ntb_vec_mask(ntb, vector));
}
static bool
intel_ntb_link_is_up(device_t dev, enum ntb_speed *speed, enum ntb_width *width)
{
struct ntb_softc *ntb = device_get_softc(dev);
if (speed != NULL)
*speed = intel_ntb_link_sta_speed(ntb);
if (width != NULL)
*width = intel_ntb_link_sta_width(ntb);
return (link_is_up(ntb));
}
static void
save_bar_parameters(struct ntb_pci_bar_info *bar)
{
bar->pci_bus_tag = rman_get_bustag(bar->pci_resource);
bar->pci_bus_handle = rman_get_bushandle(bar->pci_resource);
bar->pbase = rman_get_start(bar->pci_resource);
bar->size = rman_get_size(bar->pci_resource);
bar->vbase = rman_get_virtual(bar->pci_resource);
}
static device_method_t ntb_intel_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, intel_ntb_probe),
DEVMETHOD(device_attach, intel_ntb_attach),
DEVMETHOD(device_detach, intel_ntb_detach),
/* Bus interface */
DEVMETHOD(bus_child_location, ntb_child_location),
DEVMETHOD(bus_print_child, ntb_print_child),
DEVMETHOD(bus_get_dma_tag, ntb_get_dma_tag),
/* NTB interface */
DEVMETHOD(ntb_port_number, intel_ntb_port_number),
DEVMETHOD(ntb_peer_port_count, intel_ntb_peer_port_count),
DEVMETHOD(ntb_peer_port_number, intel_ntb_peer_port_number),
DEVMETHOD(ntb_peer_port_idx, intel_ntb_peer_port_idx),
DEVMETHOD(ntb_link_is_up, intel_ntb_link_is_up),
DEVMETHOD(ntb_link_enable, intel_ntb_link_enable),
DEVMETHOD(ntb_link_disable, intel_ntb_link_disable),
DEVMETHOD(ntb_link_enabled, intel_ntb_link_enabled),
DEVMETHOD(ntb_mw_count, intel_ntb_mw_count),
DEVMETHOD(ntb_mw_get_range, intel_ntb_mw_get_range),
DEVMETHOD(ntb_mw_set_trans, intel_ntb_mw_set_trans),
DEVMETHOD(ntb_mw_clear_trans, intel_ntb_mw_clear_trans),
DEVMETHOD(ntb_mw_get_wc, intel_ntb_mw_get_wc),
DEVMETHOD(ntb_mw_set_wc, intel_ntb_mw_set_wc),
DEVMETHOD(ntb_spad_count, intel_ntb_spad_count),
DEVMETHOD(ntb_spad_clear, intel_ntb_spad_clear),
DEVMETHOD(ntb_spad_write, intel_ntb_spad_write),
DEVMETHOD(ntb_spad_read, intel_ntb_spad_read),
DEVMETHOD(ntb_peer_spad_write, intel_ntb_peer_spad_write),
DEVMETHOD(ntb_peer_spad_read, intel_ntb_peer_spad_read),
DEVMETHOD(ntb_db_valid_mask, intel_ntb_db_valid_mask),
DEVMETHOD(ntb_db_vector_count, intel_ntb_db_vector_count),
DEVMETHOD(ntb_db_vector_mask, intel_ntb_db_vector_mask),
DEVMETHOD(ntb_db_clear, intel_ntb_db_clear),
DEVMETHOD(ntb_db_clear_mask, intel_ntb_db_clear_mask),
DEVMETHOD(ntb_db_read, intel_ntb_db_read),
DEVMETHOD(ntb_db_set_mask, intel_ntb_db_set_mask),
DEVMETHOD(ntb_peer_db_addr, intel_ntb_peer_db_addr),
DEVMETHOD(ntb_peer_db_set, intel_ntb_peer_db_set),
DEVMETHOD_END
};
static DEFINE_CLASS_0(ntb_hw, ntb_intel_driver, ntb_intel_methods,
sizeof(struct ntb_softc));
DRIVER_MODULE(ntb_hw_intel, pci, ntb_intel_driver, NULL, NULL);
MODULE_DEPEND(ntb_hw_intel, ntb, 1, 1, 1);
MODULE_VERSION(ntb_hw_intel, 1);
MODULE_PNP_INFO("W32:vendor/device;D:#", pci, ntb_hw_intel, pci_ids,
nitems(pci_ids));