freebsd-src/sys/vm/vm_page.c
Jason A. Harmening 2619c5ccfe Avoid waiting on physical allocations that can't possibly be satisfied
- Change vm_page_reclaim_contig[_domain] to return an errno instead
  of a boolean.  0 indicates a successful reclaim, ENOMEM indicates
  lack of available memory to reclaim, with any other error (currently
  only ERANGE) indicating that reclamation is impossible for the
  specified address range.  Change all callers to only follow
  up with vm_page_wait* in the ENOMEM case.

- Introduce vm_domainset_iter_ignore(), which marks the specified
  domain as unavailable for further use by the iterator.  Use this
  function to ignore domains that can't possibly satisfy a physical
  allocation request.  Since WAITOK allocations run the iterators
  repeatedly, this avoids the possibility of infinitely spinning
  in domain iteration if no available domain can satisfy the
  allocation request.

PR:		274252
Reported by:	kevans
Tested by:	kevans
Reviewed by:	markj
Differential Revision: https://reviews.freebsd.org/D42706
2023-12-23 23:01:40 -06:00

5692 lines
149 KiB
C

/*-
* SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Resident memory management module.
*/
#include <sys/cdefs.h>
#include "opt_vm.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/counter.h>
#include <sys/domainset.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sleepqueue.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_param.h>
#include <vm/vm_domainset.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_phys.h>
#include <vm/vm_pagequeue.h>
#include <vm/vm_pager.h>
#include <vm/vm_radix.h>
#include <vm/vm_reserv.h>
#include <vm/vm_extern.h>
#include <vm/vm_dumpset.h>
#include <vm/uma.h>
#include <vm/uma_int.h>
#include <machine/md_var.h>
struct vm_domain vm_dom[MAXMEMDOM];
DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
/* The following fields are protected by the domainset lock. */
domainset_t __exclusive_cache_line vm_min_domains;
domainset_t __exclusive_cache_line vm_severe_domains;
static int vm_min_waiters;
static int vm_severe_waiters;
static int vm_pageproc_waiters;
static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"VM page statistics");
static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
CTLFLAG_RD, &pqstate_commit_retries,
"Number of failed per-page atomic queue state updates");
static COUNTER_U64_DEFINE_EARLY(queue_ops);
SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
CTLFLAG_RD, &queue_ops,
"Number of batched queue operations");
static COUNTER_U64_DEFINE_EARLY(queue_nops);
SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
CTLFLAG_RD, &queue_nops,
"Number of batched queue operations with no effects");
/*
* bogus page -- for I/O to/from partially complete buffers,
* or for paging into sparsely invalid regions.
*/
vm_page_t bogus_page;
vm_page_t vm_page_array;
long vm_page_array_size;
long first_page;
struct bitset *vm_page_dump;
long vm_page_dump_pages;
static TAILQ_HEAD(, vm_page) blacklist_head;
static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
static uma_zone_t fakepg_zone;
static void vm_page_alloc_check(vm_page_t m);
static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
static void vm_page_enqueue(vm_page_t m, uint8_t queue);
static bool vm_page_free_prep(vm_page_t m);
static void vm_page_free_toq(vm_page_t m);
static void vm_page_init(void *dummy);
static int vm_page_insert_after(vm_page_t m, vm_object_t object,
vm_pindex_t pindex, vm_page_t mpred);
static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
vm_page_t mpred);
static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
const uint16_t nflag);
static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
vm_page_t m_run, vm_paddr_t high);
static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
int req);
static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
int flags);
static void vm_page_zone_release(void *arg, void **store, int cnt);
SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
static void
vm_page_init(void *dummy)
{
fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED);
}
static int pgcache_zone_max_pcpu;
SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
"Per-CPU page cache size");
/*
* The cache page zone is initialized later since we need to be able to allocate
* pages before UMA is fully initialized.
*/
static void
vm_page_init_cache_zones(void *dummy __unused)
{
struct vm_domain *vmd;
struct vm_pgcache *pgcache;
int cache, domain, maxcache, pool;
TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
maxcache = pgcache_zone_max_pcpu * mp_ncpus;
for (domain = 0; domain < vm_ndomains; domain++) {
vmd = VM_DOMAIN(domain);
for (pool = 0; pool < VM_NFREEPOOL; pool++) {
pgcache = &vmd->vmd_pgcache[pool];
pgcache->domain = domain;
pgcache->pool = pool;
pgcache->zone = uma_zcache_create("vm pgcache",
PAGE_SIZE, NULL, NULL, NULL, NULL,
vm_page_zone_import, vm_page_zone_release, pgcache,
UMA_ZONE_VM);
/*
* Limit each pool's zone to 0.1% of the pages in the
* domain.
*/
cache = maxcache != 0 ? maxcache :
vmd->vmd_page_count / 1000;
uma_zone_set_maxcache(pgcache->zone, cache);
}
}
}
SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
#if PAGE_SIZE == 32768
#ifdef CTASSERT
CTASSERT(sizeof(u_long) >= 8);
#endif
#endif
/*
* vm_set_page_size:
*
* Sets the page size, perhaps based upon the memory
* size. Must be called before any use of page-size
* dependent functions.
*/
void
vm_set_page_size(void)
{
if (vm_cnt.v_page_size == 0)
vm_cnt.v_page_size = PAGE_SIZE;
if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
panic("vm_set_page_size: page size not a power of two");
}
/*
* vm_page_blacklist_next:
*
* Find the next entry in the provided string of blacklist
* addresses. Entries are separated by space, comma, or newline.
* If an invalid integer is encountered then the rest of the
* string is skipped. Updates the list pointer to the next
* character, or NULL if the string is exhausted or invalid.
*/
static vm_paddr_t
vm_page_blacklist_next(char **list, char *end)
{
vm_paddr_t bad;
char *cp, *pos;
if (list == NULL || *list == NULL)
return (0);
if (**list =='\0') {
*list = NULL;
return (0);
}
/*
* If there's no end pointer then the buffer is coming from
* the kenv and we know it's null-terminated.
*/
if (end == NULL)
end = *list + strlen(*list);
/* Ensure that strtoq() won't walk off the end */
if (*end != '\0') {
if (*end == '\n' || *end == ' ' || *end == ',')
*end = '\0';
else {
printf("Blacklist not terminated, skipping\n");
*list = NULL;
return (0);
}
}
for (pos = *list; *pos != '\0'; pos = cp) {
bad = strtoq(pos, &cp, 0);
if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
if (bad == 0) {
if (++cp < end)
continue;
else
break;
}
} else
break;
if (*cp == '\0' || ++cp >= end)
*list = NULL;
else
*list = cp;
return (trunc_page(bad));
}
printf("Garbage in RAM blacklist, skipping\n");
*list = NULL;
return (0);
}
bool
vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
{
struct vm_domain *vmd;
vm_page_t m;
bool found;
m = vm_phys_paddr_to_vm_page(pa);
if (m == NULL)
return (true); /* page does not exist, no failure */
vmd = vm_pagequeue_domain(m);
vm_domain_free_lock(vmd);
found = vm_phys_unfree_page(m);
vm_domain_free_unlock(vmd);
if (found) {
vm_domain_freecnt_inc(vmd, -1);
TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
if (verbose)
printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
}
return (found);
}
/*
* vm_page_blacklist_check:
*
* Iterate through the provided string of blacklist addresses, pulling
* each entry out of the physical allocator free list and putting it
* onto a list for reporting via the vm.page_blacklist sysctl.
*/
static void
vm_page_blacklist_check(char *list, char *end)
{
vm_paddr_t pa;
char *next;
next = list;
while (next != NULL) {
if ((pa = vm_page_blacklist_next(&next, end)) == 0)
continue;
vm_page_blacklist_add(pa, bootverbose);
}
}
/*
* vm_page_blacklist_load:
*
* Search for a special module named "ram_blacklist". It'll be a
* plain text file provided by the user via the loader directive
* of the same name.
*/
static void
vm_page_blacklist_load(char **list, char **end)
{
void *mod;
u_char *ptr;
u_int len;
mod = NULL;
ptr = NULL;
mod = preload_search_by_type("ram_blacklist");
if (mod != NULL) {
ptr = preload_fetch_addr(mod);
len = preload_fetch_size(mod);
}
*list = ptr;
if (ptr != NULL)
*end = ptr + len;
else
*end = NULL;
return;
}
static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
{
vm_page_t m;
struct sbuf sbuf;
int error, first;
first = 1;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
TAILQ_FOREACH(m, &blacklist_head, listq) {
sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
(uintmax_t)m->phys_addr);
first = 0;
}
error = sbuf_finish(&sbuf);
sbuf_delete(&sbuf);
return (error);
}
/*
* Initialize a dummy page for use in scans of the specified paging queue.
* In principle, this function only needs to set the flag PG_MARKER.
* Nonetheless, it write busies the page as a safety precaution.
*/
void
vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
{
bzero(marker, sizeof(*marker));
marker->flags = PG_MARKER;
marker->a.flags = aflags;
marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
marker->a.queue = queue;
}
static void
vm_page_domain_init(int domain)
{
struct vm_domain *vmd;
struct vm_pagequeue *pq;
int i;
vmd = VM_DOMAIN(domain);
bzero(vmd, sizeof(*vmd));
*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
"vm inactive pagequeue";
*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
"vm active pagequeue";
*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
"vm laundry pagequeue";
*__DECONST(const char **,
&vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
"vm unswappable pagequeue";
vmd->vmd_domain = domain;
vmd->vmd_page_count = 0;
vmd->vmd_free_count = 0;
vmd->vmd_segs = 0;
vmd->vmd_oom = FALSE;
for (i = 0; i < PQ_COUNT; i++) {
pq = &vmd->vmd_pagequeues[i];
TAILQ_INIT(&pq->pq_pl);
mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
MTX_DEF | MTX_DUPOK);
pq->pq_pdpages = 0;
vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
}
mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
/*
* inacthead is used to provide FIFO ordering for LRU-bypassing
* insertions.
*/
vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
&vmd->vmd_inacthead, plinks.q);
/*
* The clock pages are used to implement active queue scanning without
* requeues. Scans start at clock[0], which is advanced after the scan
* ends. When the two clock hands meet, they are reset and scanning
* resumes from the head of the queue.
*/
vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
&vmd->vmd_clock[0], plinks.q);
TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
&vmd->vmd_clock[1], plinks.q);
}
/*
* Initialize a physical page in preparation for adding it to the free
* lists.
*/
void
vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
{
m->object = NULL;
m->ref_count = 0;
m->busy_lock = VPB_FREED;
m->flags = m->a.flags = 0;
m->phys_addr = pa;
m->a.queue = PQ_NONE;
m->psind = 0;
m->segind = segind;
m->order = VM_NFREEORDER;
m->pool = VM_FREEPOOL_DEFAULT;
m->valid = m->dirty = 0;
pmap_page_init(m);
}
#ifndef PMAP_HAS_PAGE_ARRAY
static vm_paddr_t
vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
{
vm_paddr_t new_end;
/*
* Reserve an unmapped guard page to trap access to vm_page_array[-1].
* However, because this page is allocated from KVM, out-of-bounds
* accesses using the direct map will not be trapped.
*/
*vaddr += PAGE_SIZE;
/*
* Allocate physical memory for the page structures, and map it.
*/
new_end = trunc_page(end - page_range * sizeof(struct vm_page));
vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
VM_PROT_READ | VM_PROT_WRITE);
vm_page_array_size = page_range;
return (new_end);
}
#endif
/*
* vm_page_startup:
*
* Initializes the resident memory module. Allocates physical memory for
* bootstrapping UMA and some data structures that are used to manage
* physical pages. Initializes these structures, and populates the free
* page queues.
*/
vm_offset_t
vm_page_startup(vm_offset_t vaddr)
{
struct vm_phys_seg *seg;
struct vm_domain *vmd;
vm_page_t m;
char *list, *listend;
vm_paddr_t end, high_avail, low_avail, new_end, size;
vm_paddr_t page_range __unused;
vm_paddr_t last_pa, pa, startp, endp;
u_long pagecount;
#if MINIDUMP_PAGE_TRACKING
u_long vm_page_dump_size;
#endif
int biggestone, i, segind;
#ifdef WITNESS
vm_offset_t mapped;
int witness_size;
#endif
#if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
long ii;
#endif
vaddr = round_page(vaddr);
vm_phys_early_startup();
biggestone = vm_phys_avail_largest();
end = phys_avail[biggestone+1];
/*
* Initialize the page and queue locks.
*/
mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
for (i = 0; i < PA_LOCK_COUNT; i++)
mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
for (i = 0; i < vm_ndomains; i++)
vm_page_domain_init(i);
new_end = end;
#ifdef WITNESS
witness_size = round_page(witness_startup_count());
new_end -= witness_size;
mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
VM_PROT_READ | VM_PROT_WRITE);
bzero((void *)mapped, witness_size);
witness_startup((void *)mapped);
#endif
#if MINIDUMP_PAGE_TRACKING
/*
* Allocate a bitmap to indicate that a random physical page
* needs to be included in a minidump.
*
* The amd64 port needs this to indicate which direct map pages
* need to be dumped, via calls to dump_add_page()/dump_drop_page().
*
* However, i386 still needs this workspace internally within the
* minidump code. In theory, they are not needed on i386, but are
* included should the sf_buf code decide to use them.
*/
last_pa = 0;
vm_page_dump_pages = 0;
for (i = 0; dump_avail[i + 1] != 0; i += 2) {
vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
dump_avail[i] / PAGE_SIZE;
if (dump_avail[i + 1] > last_pa)
last_pa = dump_avail[i + 1];
}
vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
new_end -= vm_page_dump_size;
vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
bzero((void *)vm_page_dump, vm_page_dump_size);
#else
(void)last_pa;
#endif
#if defined(__aarch64__) || defined(__amd64__) || \
defined(__riscv) || defined(__powerpc64__)
/*
* Include the UMA bootstrap pages, witness pages and vm_page_dump
* in a crash dump. When pmap_map() uses the direct map, they are
* not automatically included.
*/
for (pa = new_end; pa < end; pa += PAGE_SIZE)
dump_add_page(pa);
#endif
phys_avail[biggestone + 1] = new_end;
#ifdef __amd64__
/*
* Request that the physical pages underlying the message buffer be
* included in a crash dump. Since the message buffer is accessed
* through the direct map, they are not automatically included.
*/
pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
last_pa = pa + round_page(msgbufsize);
while (pa < last_pa) {
dump_add_page(pa);
pa += PAGE_SIZE;
}
#endif
/*
* Compute the number of pages of memory that will be available for
* use, taking into account the overhead of a page structure per page.
* In other words, solve
* "available physical memory" - round_page(page_range *
* sizeof(struct vm_page)) = page_range * PAGE_SIZE
* for page_range.
*/
low_avail = phys_avail[0];
high_avail = phys_avail[1];
for (i = 0; i < vm_phys_nsegs; i++) {
if (vm_phys_segs[i].start < low_avail)
low_avail = vm_phys_segs[i].start;
if (vm_phys_segs[i].end > high_avail)
high_avail = vm_phys_segs[i].end;
}
/* Skip the first chunk. It is already accounted for. */
for (i = 2; phys_avail[i + 1] != 0; i += 2) {
if (phys_avail[i] < low_avail)
low_avail = phys_avail[i];
if (phys_avail[i + 1] > high_avail)
high_avail = phys_avail[i + 1];
}
first_page = low_avail / PAGE_SIZE;
#ifdef VM_PHYSSEG_SPARSE
size = 0;
for (i = 0; i < vm_phys_nsegs; i++)
size += vm_phys_segs[i].end - vm_phys_segs[i].start;
for (i = 0; phys_avail[i + 1] != 0; i += 2)
size += phys_avail[i + 1] - phys_avail[i];
#elif defined(VM_PHYSSEG_DENSE)
size = high_avail - low_avail;
#else
#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
#endif
#ifdef PMAP_HAS_PAGE_ARRAY
pmap_page_array_startup(size / PAGE_SIZE);
biggestone = vm_phys_avail_largest();
end = new_end = phys_avail[biggestone + 1];
#else
#ifdef VM_PHYSSEG_DENSE
/*
* In the VM_PHYSSEG_DENSE case, the number of pages can account for
* the overhead of a page structure per page only if vm_page_array is
* allocated from the last physical memory chunk. Otherwise, we must
* allocate page structures representing the physical memory
* underlying vm_page_array, even though they will not be used.
*/
if (new_end != high_avail)
page_range = size / PAGE_SIZE;
else
#endif
{
page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
/*
* If the partial bytes remaining are large enough for
* a page (PAGE_SIZE) without a corresponding
* 'struct vm_page', then new_end will contain an
* extra page after subtracting the length of the VM
* page array. Compensate by subtracting an extra
* page from new_end.
*/
if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
if (new_end == high_avail)
high_avail -= PAGE_SIZE;
new_end -= PAGE_SIZE;
}
}
end = new_end;
new_end = vm_page_array_alloc(&vaddr, end, page_range);
#endif
#if VM_NRESERVLEVEL > 0
/*
* Allocate physical memory for the reservation management system's
* data structures, and map it.
*/
new_end = vm_reserv_startup(&vaddr, new_end);
#endif
#if defined(__aarch64__) || defined(__amd64__) || \
defined(__riscv) || defined(__powerpc64__)
/*
* Include vm_page_array and vm_reserv_array in a crash dump.
*/
for (pa = new_end; pa < end; pa += PAGE_SIZE)
dump_add_page(pa);
#endif
phys_avail[biggestone + 1] = new_end;
/*
* Add physical memory segments corresponding to the available
* physical pages.
*/
for (i = 0; phys_avail[i + 1] != 0; i += 2)
if (vm_phys_avail_size(i) != 0)
vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
/*
* Initialize the physical memory allocator.
*/
vm_phys_init();
/*
* Initialize the page structures and add every available page to the
* physical memory allocator's free lists.
*/
#if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
for (ii = 0; ii < vm_page_array_size; ii++) {
m = &vm_page_array[ii];
vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
m->flags = PG_FICTITIOUS;
}
#endif
vm_cnt.v_page_count = 0;
for (segind = 0; segind < vm_phys_nsegs; segind++) {
seg = &vm_phys_segs[segind];
for (m = seg->first_page, pa = seg->start; pa < seg->end;
m++, pa += PAGE_SIZE)
vm_page_init_page(m, pa, segind);
/*
* Add the segment's pages that are covered by one of
* phys_avail's ranges to the free lists.
*/
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
if (seg->end <= phys_avail[i] ||
seg->start >= phys_avail[i + 1])
continue;
startp = MAX(seg->start, phys_avail[i]);
endp = MIN(seg->end, phys_avail[i + 1]);
pagecount = (u_long)atop(endp - startp);
if (pagecount == 0)
continue;
m = seg->first_page + atop(startp - seg->start);
vmd = VM_DOMAIN(seg->domain);
vm_domain_free_lock(vmd);
vm_phys_enqueue_contig(m, pagecount);
vm_domain_free_unlock(vmd);
vm_domain_freecnt_inc(vmd, pagecount);
vm_cnt.v_page_count += (u_int)pagecount;
vmd->vmd_page_count += (u_int)pagecount;
vmd->vmd_segs |= 1UL << segind;
}
}
/*
* Remove blacklisted pages from the physical memory allocator.
*/
TAILQ_INIT(&blacklist_head);
vm_page_blacklist_load(&list, &listend);
vm_page_blacklist_check(list, listend);
list = kern_getenv("vm.blacklist");
vm_page_blacklist_check(list, NULL);
freeenv(list);
#if VM_NRESERVLEVEL > 0
/*
* Initialize the reservation management system.
*/
vm_reserv_init();
#endif
return (vaddr);
}
void
vm_page_reference(vm_page_t m)
{
vm_page_aflag_set(m, PGA_REFERENCED);
}
/*
* vm_page_trybusy
*
* Helper routine for grab functions to trylock busy.
*
* Returns true on success and false on failure.
*/
static bool
vm_page_trybusy(vm_page_t m, int allocflags)
{
if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
return (vm_page_trysbusy(m));
else
return (vm_page_tryxbusy(m));
}
/*
* vm_page_tryacquire
*
* Helper routine for grab functions to trylock busy and wire.
*
* Returns true on success and false on failure.
*/
static inline bool
vm_page_tryacquire(vm_page_t m, int allocflags)
{
bool locked;
locked = vm_page_trybusy(m, allocflags);
if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
vm_page_wire(m);
return (locked);
}
/*
* vm_page_busy_acquire:
*
* Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
* and drop the object lock if necessary.
*/
bool
vm_page_busy_acquire(vm_page_t m, int allocflags)
{
vm_object_t obj;
bool locked;
/*
* The page-specific object must be cached because page
* identity can change during the sleep, causing the
* re-lock of a different object.
* It is assumed that a reference to the object is already
* held by the callers.
*/
obj = atomic_load_ptr(&m->object);
for (;;) {
if (vm_page_tryacquire(m, allocflags))
return (true);
if ((allocflags & VM_ALLOC_NOWAIT) != 0)
return (false);
if (obj != NULL)
locked = VM_OBJECT_WOWNED(obj);
else
locked = false;
MPASS(locked || vm_page_wired(m));
if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
locked) && locked)
VM_OBJECT_WLOCK(obj);
if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
return (false);
KASSERT(m->object == obj || m->object == NULL,
("vm_page_busy_acquire: page %p does not belong to %p",
m, obj));
}
}
/*
* vm_page_busy_downgrade:
*
* Downgrade an exclusive busy page into a single shared busy page.
*/
void
vm_page_busy_downgrade(vm_page_t m)
{
u_int x;
vm_page_assert_xbusied(m);
x = vm_page_busy_fetch(m);
for (;;) {
if (atomic_fcmpset_rel_int(&m->busy_lock,
&x, VPB_SHARERS_WORD(1)))
break;
}
if ((x & VPB_BIT_WAITERS) != 0)
wakeup(m);
}
/*
*
* vm_page_busy_tryupgrade:
*
* Attempt to upgrade a single shared busy into an exclusive busy.
*/
int
vm_page_busy_tryupgrade(vm_page_t m)
{
u_int ce, x;
vm_page_assert_sbusied(m);
x = vm_page_busy_fetch(m);
ce = VPB_CURTHREAD_EXCLUSIVE;
for (;;) {
if (VPB_SHARERS(x) > 1)
return (0);
KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
("vm_page_busy_tryupgrade: invalid lock state"));
if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
ce | (x & VPB_BIT_WAITERS)))
continue;
return (1);
}
}
/*
* vm_page_sbusied:
*
* Return a positive value if the page is shared busied, 0 otherwise.
*/
int
vm_page_sbusied(vm_page_t m)
{
u_int x;
x = vm_page_busy_fetch(m);
return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
}
/*
* vm_page_sunbusy:
*
* Shared unbusy a page.
*/
void
vm_page_sunbusy(vm_page_t m)
{
u_int x;
vm_page_assert_sbusied(m);
x = vm_page_busy_fetch(m);
for (;;) {
KASSERT(x != VPB_FREED,
("vm_page_sunbusy: Unlocking freed page."));
if (VPB_SHARERS(x) > 1) {
if (atomic_fcmpset_int(&m->busy_lock, &x,
x - VPB_ONE_SHARER))
break;
continue;
}
KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
("vm_page_sunbusy: invalid lock state"));
if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
continue;
if ((x & VPB_BIT_WAITERS) == 0)
break;
wakeup(m);
break;
}
}
/*
* vm_page_busy_sleep:
*
* Sleep if the page is busy, using the page pointer as wchan.
* This is used to implement the hard-path of the busying mechanism.
*
* If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
* will not sleep if the page is shared-busy.
*
* The object lock must be held on entry.
*
* Returns true if it slept and dropped the object lock, or false
* if there was no sleep and the lock is still held.
*/
bool
vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
{
vm_object_t obj;
obj = m->object;
VM_OBJECT_ASSERT_LOCKED(obj);
return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
true));
}
/*
* vm_page_busy_sleep_unlocked:
*
* Sleep if the page is busy, using the page pointer as wchan.
* This is used to implement the hard-path of busying mechanism.
*
* If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
* will not sleep if the page is shared-busy.
*
* The object lock must not be held on entry. The operation will
* return if the page changes identity.
*/
void
vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
const char *wmesg, int allocflags)
{
VM_OBJECT_ASSERT_UNLOCKED(obj);
(void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
}
/*
* _vm_page_busy_sleep:
*
* Internal busy sleep function. Verifies the page identity and
* lockstate against parameters. Returns true if it sleeps and
* false otherwise.
*
* allocflags uses VM_ALLOC_* flags to specify the lock required.
*
* If locked is true the lock will be dropped for any true returns
* and held for any false returns.
*/
static bool
_vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
const char *wmesg, int allocflags, bool locked)
{
bool xsleep;
u_int x;
/*
* If the object is busy we must wait for that to drain to zero
* before trying the page again.
*/
if (obj != NULL && vm_object_busied(obj)) {
if (locked)
VM_OBJECT_DROP(obj);
vm_object_busy_wait(obj, wmesg);
return (true);
}
if (!vm_page_busied(m))
return (false);
xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
sleepq_lock(m);
x = vm_page_busy_fetch(m);
do {
/*
* If the page changes objects or becomes unlocked we can
* simply return.
*/
if (x == VPB_UNBUSIED ||
(xsleep && (x & VPB_BIT_SHARED) != 0) ||
m->object != obj || m->pindex != pindex) {
sleepq_release(m);
return (false);
}
if ((x & VPB_BIT_WAITERS) != 0)
break;
} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
if (locked)
VM_OBJECT_DROP(obj);
DROP_GIANT();
sleepq_add(m, NULL, wmesg, 0, 0);
sleepq_wait(m, PVM);
PICKUP_GIANT();
return (true);
}
/*
* vm_page_trysbusy:
*
* Try to shared busy a page.
* If the operation succeeds 1 is returned otherwise 0.
* The operation never sleeps.
*/
int
vm_page_trysbusy(vm_page_t m)
{
vm_object_t obj;
u_int x;
obj = m->object;
x = vm_page_busy_fetch(m);
for (;;) {
if ((x & VPB_BIT_SHARED) == 0)
return (0);
/*
* Reduce the window for transient busies that will trigger
* false negatives in vm_page_ps_test().
*/
if (obj != NULL && vm_object_busied(obj))
return (0);
if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
x + VPB_ONE_SHARER))
break;
}
/* Refetch the object now that we're guaranteed that it is stable. */
obj = m->object;
if (obj != NULL && vm_object_busied(obj)) {
vm_page_sunbusy(m);
return (0);
}
return (1);
}
/*
* vm_page_tryxbusy:
*
* Try to exclusive busy a page.
* If the operation succeeds 1 is returned otherwise 0.
* The operation never sleeps.
*/
int
vm_page_tryxbusy(vm_page_t m)
{
vm_object_t obj;
if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
VPB_CURTHREAD_EXCLUSIVE) == 0)
return (0);
obj = m->object;
if (obj != NULL && vm_object_busied(obj)) {
vm_page_xunbusy(m);
return (0);
}
return (1);
}
static void
vm_page_xunbusy_hard_tail(vm_page_t m)
{
atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
/* Wake the waiter. */
wakeup(m);
}
/*
* vm_page_xunbusy_hard:
*
* Called when unbusy has failed because there is a waiter.
*/
void
vm_page_xunbusy_hard(vm_page_t m)
{
vm_page_assert_xbusied(m);
vm_page_xunbusy_hard_tail(m);
}
void
vm_page_xunbusy_hard_unchecked(vm_page_t m)
{
vm_page_assert_xbusied_unchecked(m);
vm_page_xunbusy_hard_tail(m);
}
static void
vm_page_busy_free(vm_page_t m)
{
u_int x;
atomic_thread_fence_rel();
x = atomic_swap_int(&m->busy_lock, VPB_FREED);
if ((x & VPB_BIT_WAITERS) != 0)
wakeup(m);
}
/*
* vm_page_unhold_pages:
*
* Unhold each of the pages that is referenced by the given array.
*/
void
vm_page_unhold_pages(vm_page_t *ma, int count)
{
for (; count != 0; count--) {
vm_page_unwire(*ma, PQ_ACTIVE);
ma++;
}
}
vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)
{
vm_page_t m;
#ifdef VM_PHYSSEG_SPARSE
m = vm_phys_paddr_to_vm_page(pa);
if (m == NULL)
m = vm_phys_fictitious_to_vm_page(pa);
return (m);
#elif defined(VM_PHYSSEG_DENSE)
long pi;
pi = atop(pa);
if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
m = &vm_page_array[pi - first_page];
return (m);
}
return (vm_phys_fictitious_to_vm_page(pa));
#else
#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
#endif
}
/*
* vm_page_getfake:
*
* Create a fictitious page with the specified physical address and
* memory attribute. The memory attribute is the only the machine-
* dependent aspect of a fictitious page that must be initialized.
*/
vm_page_t
vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
{
vm_page_t m;
m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
vm_page_initfake(m, paddr, memattr);
return (m);
}
void
vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
{
if ((m->flags & PG_FICTITIOUS) != 0) {
/*
* The page's memattr might have changed since the
* previous initialization. Update the pmap to the
* new memattr.
*/
goto memattr;
}
m->phys_addr = paddr;
m->a.queue = PQ_NONE;
/* Fictitious pages don't use "segind". */
m->flags = PG_FICTITIOUS;
/* Fictitious pages don't use "order" or "pool". */
m->oflags = VPO_UNMANAGED;
m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
/* Fictitious pages are unevictable. */
m->ref_count = 1;
pmap_page_init(m);
memattr:
pmap_page_set_memattr(m, memattr);
}
/*
* vm_page_putfake:
*
* Release a fictitious page.
*/
void
vm_page_putfake(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
KASSERT((m->flags & PG_FICTITIOUS) != 0,
("vm_page_putfake: bad page %p", m));
vm_page_assert_xbusied(m);
vm_page_busy_free(m);
uma_zfree(fakepg_zone, m);
}
/*
* vm_page_updatefake:
*
* Update the given fictitious page to the specified physical address and
* memory attribute.
*/
void
vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
{
KASSERT((m->flags & PG_FICTITIOUS) != 0,
("vm_page_updatefake: bad page %p", m));
m->phys_addr = paddr;
pmap_page_set_memattr(m, memattr);
}
/*
* vm_page_free:
*
* Free a page.
*/
void
vm_page_free(vm_page_t m)
{
m->flags &= ~PG_ZERO;
vm_page_free_toq(m);
}
/*
* vm_page_free_zero:
*
* Free a page to the zerod-pages queue
*/
void
vm_page_free_zero(vm_page_t m)
{
m->flags |= PG_ZERO;
vm_page_free_toq(m);
}
/*
* Unbusy and handle the page queueing for a page from a getpages request that
* was optionally read ahead or behind.
*/
void
vm_page_readahead_finish(vm_page_t m)
{
/* We shouldn't put invalid pages on queues. */
KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
/*
* Since the page is not the actually needed one, whether it should
* be activated or deactivated is not obvious. Empirical results
* have shown that deactivating the page is usually the best choice,
* unless the page is wanted by another thread.
*/
if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
vm_page_activate(m);
else
vm_page_deactivate(m);
vm_page_xunbusy_unchecked(m);
}
/*
* Destroy the identity of an invalid page and free it if possible.
* This is intended to be used when reading a page from backing store fails.
*/
void
vm_page_free_invalid(vm_page_t m)
{
KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
KASSERT(m->object != NULL, ("page %p has no object", m));
VM_OBJECT_ASSERT_WLOCKED(m->object);
/*
* We may be attempting to free the page as part of the handling for an
* I/O error, in which case the page was xbusied by a different thread.
*/
vm_page_xbusy_claim(m);
/*
* If someone has wired this page while the object lock
* was not held, then the thread that unwires is responsible
* for freeing the page. Otherwise just free the page now.
* The wire count of this unmapped page cannot change while
* we have the page xbusy and the page's object wlocked.
*/
if (vm_page_remove(m))
vm_page_free(m);
}
/*
* vm_page_dirty_KBI: [ internal use only ]
*
* Set all bits in the page's dirty field.
*
* The object containing the specified page must be locked if the
* call is made from the machine-independent layer.
*
* See vm_page_clear_dirty_mask().
*
* This function should only be called by vm_page_dirty().
*/
void
vm_page_dirty_KBI(vm_page_t m)
{
/* Refer to this operation by its public name. */
KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
m->dirty = VM_PAGE_BITS_ALL;
}
/*
* vm_page_insert: [ internal use only ]
*
* Inserts the given mem entry into the object and object list.
*
* The object must be locked.
*/
int
vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
{
vm_page_t mpred;
VM_OBJECT_ASSERT_WLOCKED(object);
mpred = vm_radix_lookup_le(&object->rtree, pindex);
return (vm_page_insert_after(m, object, pindex, mpred));
}
/*
* vm_page_insert_after:
*
* Inserts the page "m" into the specified object at offset "pindex".
*
* The page "mpred" must immediately precede the offset "pindex" within
* the specified object.
*
* The object must be locked.
*/
static int
vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
vm_page_t mpred)
{
vm_page_t msucc;
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(m->object == NULL,
("vm_page_insert_after: page already inserted"));
if (mpred != NULL) {
KASSERT(mpred->object == object,
("vm_page_insert_after: object doesn't contain mpred"));
KASSERT(mpred->pindex < pindex,
("vm_page_insert_after: mpred doesn't precede pindex"));
msucc = TAILQ_NEXT(mpred, listq);
} else
msucc = TAILQ_FIRST(&object->memq);
if (msucc != NULL)
KASSERT(msucc->pindex > pindex,
("vm_page_insert_after: msucc doesn't succeed pindex"));
/*
* Record the object/offset pair in this page.
*/
m->object = object;
m->pindex = pindex;
m->ref_count |= VPRC_OBJREF;
/*
* Now link into the object's ordered list of backed pages.
*/
if (vm_radix_insert(&object->rtree, m)) {
m->object = NULL;
m->pindex = 0;
m->ref_count &= ~VPRC_OBJREF;
return (1);
}
vm_page_insert_radixdone(m, object, mpred);
vm_pager_page_inserted(object, m);
return (0);
}
/*
* vm_page_insert_radixdone:
*
* Complete page "m" insertion into the specified object after the
* radix trie hooking.
*
* The page "mpred" must precede the offset "m->pindex" within the
* specified object.
*
* The object must be locked.
*/
static void
vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
{
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(object != NULL && m->object == object,
("vm_page_insert_radixdone: page %p has inconsistent object", m));
KASSERT((m->ref_count & VPRC_OBJREF) != 0,
("vm_page_insert_radixdone: page %p is missing object ref", m));
if (mpred != NULL) {
KASSERT(mpred->object == object,
("vm_page_insert_radixdone: object doesn't contain mpred"));
KASSERT(mpred->pindex < m->pindex,
("vm_page_insert_radixdone: mpred doesn't precede pindex"));
}
if (mpred != NULL)
TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
else
TAILQ_INSERT_HEAD(&object->memq, m, listq);
/*
* Show that the object has one more resident page.
*/
object->resident_page_count++;
/*
* Hold the vnode until the last page is released.
*/
if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
vhold(object->handle);
/*
* Since we are inserting a new and possibly dirty page,
* update the object's generation count.
*/
if (pmap_page_is_write_mapped(m))
vm_object_set_writeable_dirty(object);
}
/*
* Do the work to remove a page from its object. The caller is responsible for
* updating the page's fields to reflect this removal.
*/
static void
vm_page_object_remove(vm_page_t m)
{
vm_object_t object;
vm_page_t mrem __diagused;
vm_page_assert_xbusied(m);
object = m->object;
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT((m->ref_count & VPRC_OBJREF) != 0,
("page %p is missing its object ref", m));
/* Deferred free of swap space. */
if ((m->a.flags & PGA_SWAP_FREE) != 0)
vm_pager_page_unswapped(m);
vm_pager_page_removed(object, m);
m->object = NULL;
mrem = vm_radix_remove(&object->rtree, m->pindex);
KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
/*
* Now remove from the object's list of backed pages.
*/
TAILQ_REMOVE(&object->memq, m, listq);
/*
* And show that the object has one fewer resident page.
*/
object->resident_page_count--;
/*
* The vnode may now be recycled.
*/
if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
vdrop(object->handle);
}
/*
* vm_page_remove:
*
* Removes the specified page from its containing object, but does not
* invalidate any backing storage. Returns true if the object's reference
* was the last reference to the page, and false otherwise.
*
* The object must be locked and the page must be exclusively busied.
* The exclusive busy will be released on return. If this is not the
* final ref and the caller does not hold a wire reference it may not
* continue to access the page.
*/
bool
vm_page_remove(vm_page_t m)
{
bool dropped;
dropped = vm_page_remove_xbusy(m);
vm_page_xunbusy(m);
return (dropped);
}
/*
* vm_page_remove_xbusy
*
* Removes the page but leaves the xbusy held. Returns true if this
* removed the final ref and false otherwise.
*/
bool
vm_page_remove_xbusy(vm_page_t m)
{
vm_page_object_remove(m);
return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
}
/*
* vm_page_lookup:
*
* Returns the page associated with the object/offset
* pair specified; if none is found, NULL is returned.
*
* The object must be locked.
*/
vm_page_t
vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
{
VM_OBJECT_ASSERT_LOCKED(object);
return (vm_radix_lookup(&object->rtree, pindex));
}
/*
* vm_page_lookup_unlocked:
*
* Returns the page associated with the object/offset pair specified;
* if none is found, NULL is returned. The page may be no longer be
* present in the object at the time that this function returns. Only
* useful for opportunistic checks such as inmem().
*/
vm_page_t
vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
{
return (vm_radix_lookup_unlocked(&object->rtree, pindex));
}
/*
* vm_page_relookup:
*
* Returns a page that must already have been busied by
* the caller. Used for bogus page replacement.
*/
vm_page_t
vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
{
vm_page_t m;
m = vm_radix_lookup_unlocked(&object->rtree, pindex);
KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
m->object == object && m->pindex == pindex,
("vm_page_relookup: Invalid page %p", m));
return (m);
}
/*
* This should only be used by lockless functions for releasing transient
* incorrect acquires. The page may have been freed after we acquired a
* busy lock. In this case busy_lock == VPB_FREED and we have nothing
* further to do.
*/
static void
vm_page_busy_release(vm_page_t m)
{
u_int x;
x = vm_page_busy_fetch(m);
for (;;) {
if (x == VPB_FREED)
break;
if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
if (atomic_fcmpset_int(&m->busy_lock, &x,
x - VPB_ONE_SHARER))
break;
continue;
}
KASSERT((x & VPB_BIT_SHARED) != 0 ||
(x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
("vm_page_busy_release: %p xbusy not owned.", m));
if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
continue;
if ((x & VPB_BIT_WAITERS) != 0)
wakeup(m);
break;
}
}
/*
* vm_page_find_least:
*
* Returns the page associated with the object with least pindex
* greater than or equal to the parameter pindex, or NULL.
*
* The object must be locked.
*/
vm_page_t
vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
{
vm_page_t m;
VM_OBJECT_ASSERT_LOCKED(object);
if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
m = vm_radix_lookup_ge(&object->rtree, pindex);
return (m);
}
/*
* Returns the given page's successor (by pindex) within the object if it is
* resident; if none is found, NULL is returned.
*
* The object must be locked.
*/
vm_page_t
vm_page_next(vm_page_t m)
{
vm_page_t next;
VM_OBJECT_ASSERT_LOCKED(m->object);
if ((next = TAILQ_NEXT(m, listq)) != NULL) {
MPASS(next->object == m->object);
if (next->pindex != m->pindex + 1)
next = NULL;
}
return (next);
}
/*
* Returns the given page's predecessor (by pindex) within the object if it is
* resident; if none is found, NULL is returned.
*
* The object must be locked.
*/
vm_page_t
vm_page_prev(vm_page_t m)
{
vm_page_t prev;
VM_OBJECT_ASSERT_LOCKED(m->object);
if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
MPASS(prev->object == m->object);
if (prev->pindex != m->pindex - 1)
prev = NULL;
}
return (prev);
}
/*
* Uses the page mnew as a replacement for an existing page at index
* pindex which must be already present in the object.
*
* Both pages must be exclusively busied on enter. The old page is
* unbusied on exit.
*
* A return value of true means mold is now free. If this is not the
* final ref and the caller does not hold a wire reference it may not
* continue to access the page.
*/
static bool
vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
vm_page_t mold)
{
vm_page_t mret __diagused;
bool dropped;
VM_OBJECT_ASSERT_WLOCKED(object);
vm_page_assert_xbusied(mold);
KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
("vm_page_replace: page %p already in object", mnew));
/*
* This function mostly follows vm_page_insert() and
* vm_page_remove() without the radix, object count and vnode
* dance. Double check such functions for more comments.
*/
mnew->object = object;
mnew->pindex = pindex;
atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
mret = vm_radix_replace(&object->rtree, mnew);
KASSERT(mret == mold,
("invalid page replacement, mold=%p, mret=%p", mold, mret));
KASSERT((mold->oflags & VPO_UNMANAGED) ==
(mnew->oflags & VPO_UNMANAGED),
("vm_page_replace: mismatched VPO_UNMANAGED"));
/* Keep the resident page list in sorted order. */
TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
TAILQ_REMOVE(&object->memq, mold, listq);
mold->object = NULL;
/*
* The object's resident_page_count does not change because we have
* swapped one page for another, but the generation count should
* change if the page is dirty.
*/
if (pmap_page_is_write_mapped(mnew))
vm_object_set_writeable_dirty(object);
dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
vm_page_xunbusy(mold);
return (dropped);
}
void
vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
vm_page_t mold)
{
vm_page_assert_xbusied(mnew);
if (vm_page_replace_hold(mnew, object, pindex, mold))
vm_page_free(mold);
}
/*
* vm_page_rename:
*
* Move the given memory entry from its
* current object to the specified target object/offset.
*
* Note: swap associated with the page must be invalidated by the move. We
* have to do this for several reasons: (1) we aren't freeing the
* page, (2) we are dirtying the page, (3) the VM system is probably
* moving the page from object A to B, and will then later move
* the backing store from A to B and we can't have a conflict.
*
* Note: we *always* dirty the page. It is necessary both for the
* fact that we moved it, and because we may be invalidating
* swap.
*
* The objects must be locked.
*/
int
vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
{
vm_page_t mpred;
vm_pindex_t opidx;
VM_OBJECT_ASSERT_WLOCKED(new_object);
KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
KASSERT(mpred == NULL || mpred->pindex != new_pindex,
("vm_page_rename: pindex already renamed"));
/*
* Create a custom version of vm_page_insert() which does not depend
* by m_prev and can cheat on the implementation aspects of the
* function.
*/
opidx = m->pindex;
m->pindex = new_pindex;
if (vm_radix_insert(&new_object->rtree, m)) {
m->pindex = opidx;
return (1);
}
/*
* The operation cannot fail anymore. The removal must happen before
* the listq iterator is tainted.
*/
m->pindex = opidx;
vm_page_object_remove(m);
/* Return back to the new pindex to complete vm_page_insert(). */
m->pindex = new_pindex;
m->object = new_object;
vm_page_insert_radixdone(m, new_object, mpred);
vm_page_dirty(m);
vm_pager_page_inserted(new_object, m);
return (0);
}
/*
* vm_page_alloc:
*
* Allocate and return a page that is associated with the specified
* object and offset pair. By default, this page is exclusive busied.
*
* The caller must always specify an allocation class.
*
* allocation classes:
* VM_ALLOC_NORMAL normal process request
* VM_ALLOC_SYSTEM system *really* needs a page
* VM_ALLOC_INTERRUPT interrupt time request
*
* optional allocation flags:
* VM_ALLOC_COUNT(number) the number of additional pages that the caller
* intends to allocate
* VM_ALLOC_NOBUSY do not exclusive busy the page
* VM_ALLOC_NODUMP do not include the page in a kernel core dump
* VM_ALLOC_SBUSY shared busy the allocated page
* VM_ALLOC_WIRED wire the allocated page
* VM_ALLOC_ZERO prefer a zeroed page
*/
vm_page_t
vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
{
return (vm_page_alloc_after(object, pindex, req,
vm_radix_lookup_le(&object->rtree, pindex)));
}
vm_page_t
vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
int req)
{
return (vm_page_alloc_domain_after(object, pindex, domain, req,
vm_radix_lookup_le(&object->rtree, pindex)));
}
/*
* Allocate a page in the specified object with the given page index. To
* optimize insertion of the page into the object, the caller must also specifiy
* the resident page in the object with largest index smaller than the given
* page index, or NULL if no such page exists.
*/
vm_page_t
vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
int req, vm_page_t mpred)
{
struct vm_domainset_iter di;
vm_page_t m;
int domain;
vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
do {
m = vm_page_alloc_domain_after(object, pindex, domain, req,
mpred);
if (m != NULL)
break;
} while (vm_domainset_iter_page(&di, object, &domain) == 0);
return (m);
}
/*
* Returns true if the number of free pages exceeds the minimum
* for the request class and false otherwise.
*/
static int
_vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
{
u_int limit, old, new;
if (req_class == VM_ALLOC_INTERRUPT)
limit = 0;
else if (req_class == VM_ALLOC_SYSTEM)
limit = vmd->vmd_interrupt_free_min;
else
limit = vmd->vmd_free_reserved;
/*
* Attempt to reserve the pages. Fail if we're below the limit.
*/
limit += npages;
old = vmd->vmd_free_count;
do {
if (old < limit)
return (0);
new = old - npages;
} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
/* Wake the page daemon if we've crossed the threshold. */
if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
pagedaemon_wakeup(vmd->vmd_domain);
/* Only update bitsets on transitions. */
if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
(old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
vm_domain_set(vmd);
return (1);
}
int
vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
{
int req_class;
/*
* The page daemon is allowed to dig deeper into the free page list.
*/
req_class = req & VM_ALLOC_CLASS_MASK;
if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
req_class = VM_ALLOC_SYSTEM;
return (_vm_domain_allocate(vmd, req_class, npages));
}
vm_page_t
vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
int req, vm_page_t mpred)
{
struct vm_domain *vmd;
vm_page_t m;
int flags;
#define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \
VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \
VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
KASSERT((req & ~VPA_FLAGS) == 0,
("invalid request %#x", req));
KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
("invalid request %#x", req));
KASSERT(mpred == NULL || mpred->pindex < pindex,
("mpred %p doesn't precede pindex 0x%jx", mpred,
(uintmax_t)pindex));
VM_OBJECT_ASSERT_WLOCKED(object);
flags = 0;
m = NULL;
if (!vm_pager_can_alloc_page(object, pindex))
return (NULL);
again:
#if VM_NRESERVLEVEL > 0
/*
* Can we allocate the page from a reservation?
*/
if (vm_object_reserv(object) &&
(m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
NULL) {
goto found;
}
#endif
vmd = VM_DOMAIN(domain);
if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
M_NOWAIT | M_NOVM);
if (m != NULL) {
flags |= PG_PCPU_CACHE;
goto found;
}
}
if (vm_domain_allocate(vmd, req, 1)) {
/*
* If not, allocate it from the free page queues.
*/
vm_domain_free_lock(vmd);
m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
vm_domain_free_unlock(vmd);
if (m == NULL) {
vm_domain_freecnt_inc(vmd, 1);
#if VM_NRESERVLEVEL > 0
if (vm_reserv_reclaim_inactive(domain))
goto again;
#endif
}
}
if (m == NULL) {
/*
* Not allocatable, give up.
*/
if (vm_domain_alloc_fail(vmd, object, req))
goto again;
return (NULL);
}
/*
* At this point we had better have found a good page.
*/
found:
vm_page_dequeue(m);
vm_page_alloc_check(m);
/*
* Initialize the page. Only the PG_ZERO flag is inherited.
*/
flags |= m->flags & PG_ZERO;
if ((req & VM_ALLOC_NODUMP) != 0)
flags |= PG_NODUMP;
m->flags = flags;
m->a.flags = 0;
m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
else if ((req & VM_ALLOC_SBUSY) != 0)
m->busy_lock = VPB_SHARERS_WORD(1);
else
m->busy_lock = VPB_UNBUSIED;
if (req & VM_ALLOC_WIRED) {
vm_wire_add(1);
m->ref_count = 1;
}
m->a.act_count = 0;
if (vm_page_insert_after(m, object, pindex, mpred)) {
if (req & VM_ALLOC_WIRED) {
vm_wire_sub(1);
m->ref_count = 0;
}
KASSERT(m->object == NULL, ("page %p has object", m));
m->oflags = VPO_UNMANAGED;
m->busy_lock = VPB_UNBUSIED;
/* Don't change PG_ZERO. */
vm_page_free_toq(m);
if (req & VM_ALLOC_WAITFAIL) {
VM_OBJECT_WUNLOCK(object);
vm_radix_wait();
VM_OBJECT_WLOCK(object);
}
return (NULL);
}
/* Ignore device objects; the pager sets "memattr" for them. */
if (object->memattr != VM_MEMATTR_DEFAULT &&
(object->flags & OBJ_FICTITIOUS) == 0)
pmap_page_set_memattr(m, object->memattr);
return (m);
}
/*
* vm_page_alloc_contig:
*
* Allocate a contiguous set of physical pages of the given size "npages"
* from the free lists. All of the physical pages must be at or above
* the given physical address "low" and below the given physical address
* "high". The given value "alignment" determines the alignment of the
* first physical page in the set. If the given value "boundary" is
* non-zero, then the set of physical pages cannot cross any physical
* address boundary that is a multiple of that value. Both "alignment"
* and "boundary" must be a power of two.
*
* If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
* then the memory attribute setting for the physical pages is configured
* to the object's memory attribute setting. Otherwise, the memory
* attribute setting for the physical pages is configured to "memattr",
* overriding the object's memory attribute setting. However, if the
* object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
* memory attribute setting for the physical pages cannot be configured
* to VM_MEMATTR_DEFAULT.
*
* The specified object may not contain fictitious pages.
*
* The caller must always specify an allocation class.
*
* allocation classes:
* VM_ALLOC_NORMAL normal process request
* VM_ALLOC_SYSTEM system *really* needs a page
* VM_ALLOC_INTERRUPT interrupt time request
*
* optional allocation flags:
* VM_ALLOC_NOBUSY do not exclusive busy the page
* VM_ALLOC_NODUMP do not include the page in a kernel core dump
* VM_ALLOC_SBUSY shared busy the allocated page
* VM_ALLOC_WIRED wire the allocated page
* VM_ALLOC_ZERO prefer a zeroed page
*/
vm_page_t
vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
vm_paddr_t boundary, vm_memattr_t memattr)
{
struct vm_domainset_iter di;
vm_page_t bounds[2];
vm_page_t m;
int domain;
int start_segind;
start_segind = -1;
vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
do {
m = vm_page_alloc_contig_domain(object, pindex, domain, req,
npages, low, high, alignment, boundary, memattr);
if (m != NULL)
break;
if (start_segind == -1)
start_segind = vm_phys_lookup_segind(low);
if (vm_phys_find_range(bounds, start_segind, domain,
npages, low, high) == -1) {
vm_domainset_iter_ignore(&di, domain);
}
} while (vm_domainset_iter_page(&di, object, &domain) == 0);
return (m);
}
static vm_page_t
vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
{
struct vm_domain *vmd;
vm_page_t m_ret;
/*
* Can we allocate the pages without the number of free pages falling
* below the lower bound for the allocation class?
*/
vmd = VM_DOMAIN(domain);
if (!vm_domain_allocate(vmd, req, npages))
return (NULL);
/*
* Try to allocate the pages from the free page queues.
*/
vm_domain_free_lock(vmd);
m_ret = vm_phys_alloc_contig(domain, npages, low, high,
alignment, boundary);
vm_domain_free_unlock(vmd);
if (m_ret != NULL)
return (m_ret);
#if VM_NRESERVLEVEL > 0
/*
* Try to break a reservation to allocate the pages.
*/
if ((req & VM_ALLOC_NORECLAIM) == 0) {
m_ret = vm_reserv_reclaim_contig(domain, npages, low,
high, alignment, boundary);
if (m_ret != NULL)
return (m_ret);
}
#endif
vm_domain_freecnt_inc(vmd, npages);
return (NULL);
}
vm_page_t
vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
vm_paddr_t boundary, vm_memattr_t memattr)
{
vm_page_t m, m_ret, mpred;
u_int busy_lock, flags, oflags;
#define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM)
KASSERT((req & ~VPAC_FLAGS) == 0,
("invalid request %#x", req));
KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
("invalid request %#x", req));
KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
(VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
("invalid request %#x", req));
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
("vm_page_alloc_contig: object %p has fictitious pages",
object));
KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
mpred = vm_radix_lookup_le(&object->rtree, pindex);
KASSERT(mpred == NULL || mpred->pindex != pindex,
("vm_page_alloc_contig: pindex already allocated"));
for (;;) {
#if VM_NRESERVLEVEL > 0
/*
* Can we allocate the pages from a reservation?
*/
if (vm_object_reserv(object) &&
(m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
mpred, npages, low, high, alignment, boundary)) != NULL) {
break;
}
#endif
if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
low, high, alignment, boundary)) != NULL)
break;
if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
return (NULL);
}
for (m = m_ret; m < &m_ret[npages]; m++) {
vm_page_dequeue(m);
vm_page_alloc_check(m);
}
/*
* Initialize the pages. Only the PG_ZERO flag is inherited.
*/
flags = PG_ZERO;
if ((req & VM_ALLOC_NODUMP) != 0)
flags |= PG_NODUMP;
oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
busy_lock = VPB_CURTHREAD_EXCLUSIVE;
else if ((req & VM_ALLOC_SBUSY) != 0)
busy_lock = VPB_SHARERS_WORD(1);
else
busy_lock = VPB_UNBUSIED;
if ((req & VM_ALLOC_WIRED) != 0)
vm_wire_add(npages);
if (object->memattr != VM_MEMATTR_DEFAULT &&
memattr == VM_MEMATTR_DEFAULT)
memattr = object->memattr;
for (m = m_ret; m < &m_ret[npages]; m++) {
m->a.flags = 0;
m->flags = (m->flags | PG_NODUMP) & flags;
m->busy_lock = busy_lock;
if ((req & VM_ALLOC_WIRED) != 0)
m->ref_count = 1;
m->a.act_count = 0;
m->oflags = oflags;
if (vm_page_insert_after(m, object, pindex, mpred)) {
if ((req & VM_ALLOC_WIRED) != 0)
vm_wire_sub(npages);
KASSERT(m->object == NULL,
("page %p has object", m));
mpred = m;
for (m = m_ret; m < &m_ret[npages]; m++) {
if (m <= mpred &&
(req & VM_ALLOC_WIRED) != 0)
m->ref_count = 0;
m->oflags = VPO_UNMANAGED;
m->busy_lock = VPB_UNBUSIED;
/* Don't change PG_ZERO. */
vm_page_free_toq(m);
}
if (req & VM_ALLOC_WAITFAIL) {
VM_OBJECT_WUNLOCK(object);
vm_radix_wait();
VM_OBJECT_WLOCK(object);
}
return (NULL);
}
mpred = m;
if (memattr != VM_MEMATTR_DEFAULT)
pmap_page_set_memattr(m, memattr);
pindex++;
}
return (m_ret);
}
/*
* Allocate a physical page that is not intended to be inserted into a VM
* object. If the "freelist" parameter is not equal to VM_NFREELIST, then only
* pages from the specified vm_phys freelist will be returned.
*/
static __always_inline vm_page_t
_vm_page_alloc_noobj_domain(int domain, const int freelist, int req)
{
struct vm_domain *vmd;
vm_page_t m;
int flags;
#define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \
VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \
VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
KASSERT((req & ~VPAN_FLAGS) == 0,
("invalid request %#x", req));
flags = (req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0;
vmd = VM_DOMAIN(domain);
again:
if (freelist == VM_NFREELIST &&
vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
M_NOWAIT | M_NOVM);
if (m != NULL) {
flags |= PG_PCPU_CACHE;
goto found;
}
}
if (vm_domain_allocate(vmd, req, 1)) {
vm_domain_free_lock(vmd);
if (freelist == VM_NFREELIST)
m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
else
m = vm_phys_alloc_freelist_pages(domain, freelist,
VM_FREEPOOL_DIRECT, 0);
vm_domain_free_unlock(vmd);
if (m == NULL) {
vm_domain_freecnt_inc(vmd, 1);
#if VM_NRESERVLEVEL > 0
if (freelist == VM_NFREELIST &&
vm_reserv_reclaim_inactive(domain))
goto again;
#endif
}
}
if (m == NULL) {
if (vm_domain_alloc_fail(vmd, NULL, req))
goto again;
return (NULL);
}
found:
vm_page_dequeue(m);
vm_page_alloc_check(m);
/*
* Consumers should not rely on a useful default pindex value.
*/
m->pindex = 0xdeadc0dedeadc0de;
m->flags = (m->flags & PG_ZERO) | flags;
m->a.flags = 0;
m->oflags = VPO_UNMANAGED;
m->busy_lock = VPB_UNBUSIED;
if ((req & VM_ALLOC_WIRED) != 0) {
vm_wire_add(1);
m->ref_count = 1;
}
if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
return (m);
}
vm_page_t
vm_page_alloc_freelist(int freelist, int req)
{
struct vm_domainset_iter di;
vm_page_t m;
int domain;
vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
do {
m = vm_page_alloc_freelist_domain(domain, freelist, req);
if (m != NULL)
break;
} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
return (m);
}
vm_page_t
vm_page_alloc_freelist_domain(int domain, int freelist, int req)
{
KASSERT(freelist >= 0 && freelist < VM_NFREELIST,
("%s: invalid freelist %d", __func__, freelist));
return (_vm_page_alloc_noobj_domain(domain, freelist, req));
}
vm_page_t
vm_page_alloc_noobj(int req)
{
struct vm_domainset_iter di;
vm_page_t m;
int domain;
vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
do {
m = vm_page_alloc_noobj_domain(domain, req);
if (m != NULL)
break;
} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
return (m);
}
vm_page_t
vm_page_alloc_noobj_domain(int domain, int req)
{
return (_vm_page_alloc_noobj_domain(domain, VM_NFREELIST, req));
}
vm_page_t
vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
vm_memattr_t memattr)
{
struct vm_domainset_iter di;
vm_page_t m;
int domain;
vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
do {
m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
high, alignment, boundary, memattr);
if (m != NULL)
break;
} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
return (m);
}
vm_page_t
vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
vm_memattr_t memattr)
{
vm_page_t m, m_ret;
u_int flags;
#define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM)
KASSERT((req & ~VPANC_FLAGS) == 0,
("invalid request %#x", req));
KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
(VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
("invalid request %#x", req));
KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
("invalid request %#x", req));
KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
low, high, alignment, boundary)) == NULL) {
if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
return (NULL);
}
/*
* Initialize the pages. Only the PG_ZERO flag is inherited.
*/
flags = PG_ZERO;
if ((req & VM_ALLOC_NODUMP) != 0)
flags |= PG_NODUMP;
if ((req & VM_ALLOC_WIRED) != 0)
vm_wire_add(npages);
for (m = m_ret; m < &m_ret[npages]; m++) {
vm_page_dequeue(m);
vm_page_alloc_check(m);
/*
* Consumers should not rely on a useful default pindex value.
*/
m->pindex = 0xdeadc0dedeadc0de;
m->a.flags = 0;
m->flags = (m->flags | PG_NODUMP) & flags;
m->busy_lock = VPB_UNBUSIED;
if ((req & VM_ALLOC_WIRED) != 0)
m->ref_count = 1;
m->a.act_count = 0;
m->oflags = VPO_UNMANAGED;
/*
* Zero the page before updating any mappings since the page is
* not yet shared with any devices which might require the
* non-default memory attribute. pmap_page_set_memattr()
* flushes data caches before returning.
*/
if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
if (memattr != VM_MEMATTR_DEFAULT)
pmap_page_set_memattr(m, memattr);
}
return (m_ret);
}
/*
* Check a page that has been freshly dequeued from a freelist.
*/
static void
vm_page_alloc_check(vm_page_t m)
{
KASSERT(m->object == NULL, ("page %p has object", m));
KASSERT(m->a.queue == PQ_NONE &&
(m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
("page %p has unexpected queue %d, flags %#x",
m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
KASSERT(m->ref_count == 0, ("page %p has references", m));
KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
KASSERT(m->dirty == 0, ("page %p is dirty", m));
KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
("page %p has unexpected memattr %d",
m, pmap_page_get_memattr(m)));
KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
pmap_vm_page_alloc_check(m);
}
static int
vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
{
struct vm_domain *vmd;
struct vm_pgcache *pgcache;
int i;
pgcache = arg;
vmd = VM_DOMAIN(pgcache->domain);
/*
* The page daemon should avoid creating extra memory pressure since its
* main purpose is to replenish the store of free pages.
*/
if (vmd->vmd_severeset || curproc == pageproc ||
!_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
return (0);
domain = vmd->vmd_domain;
vm_domain_free_lock(vmd);
i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
(vm_page_t *)store);
vm_domain_free_unlock(vmd);
if (cnt != i)
vm_domain_freecnt_inc(vmd, cnt - i);
return (i);
}
static void
vm_page_zone_release(void *arg, void **store, int cnt)
{
struct vm_domain *vmd;
struct vm_pgcache *pgcache;
vm_page_t m;
int i;
pgcache = arg;
vmd = VM_DOMAIN(pgcache->domain);
vm_domain_free_lock(vmd);
for (i = 0; i < cnt; i++) {
m = (vm_page_t)store[i];
vm_phys_free_pages(m, 0);
}
vm_domain_free_unlock(vmd);
vm_domain_freecnt_inc(vmd, cnt);
}
#define VPSC_ANY 0 /* No restrictions. */
#define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
#define VPSC_NOSUPER 2 /* Skip superpages. */
/*
* vm_page_scan_contig:
*
* Scan vm_page_array[] between the specified entries "m_start" and
* "m_end" for a run of contiguous physical pages that satisfy the
* specified conditions, and return the lowest page in the run. The
* specified "alignment" determines the alignment of the lowest physical
* page in the run. If the specified "boundary" is non-zero, then the
* run of physical pages cannot span a physical address that is a
* multiple of "boundary".
*
* "m_end" is never dereferenced, so it need not point to a vm_page
* structure within vm_page_array[].
*
* "npages" must be greater than zero. "m_start" and "m_end" must not
* span a hole (or discontiguity) in the physical address space. Both
* "alignment" and "boundary" must be a power of two.
*/
static vm_page_t
vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
u_long alignment, vm_paddr_t boundary, int options)
{
vm_object_t object;
vm_paddr_t pa;
vm_page_t m, m_run;
#if VM_NRESERVLEVEL > 0
int level;
#endif
int m_inc, order, run_ext, run_len;
KASSERT(npages > 0, ("npages is 0"));
KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
m_run = NULL;
run_len = 0;
for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
KASSERT((m->flags & PG_MARKER) == 0,
("page %p is PG_MARKER", m));
KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
("fictitious page %p has invalid ref count", m));
/*
* If the current page would be the start of a run, check its
* physical address against the end, alignment, and boundary
* conditions. If it doesn't satisfy these conditions, either
* terminate the scan or advance to the next page that
* satisfies the failed condition.
*/
if (run_len == 0) {
KASSERT(m_run == NULL, ("m_run != NULL"));
if (m + npages > m_end)
break;
pa = VM_PAGE_TO_PHYS(m);
if (!vm_addr_align_ok(pa, alignment)) {
m_inc = atop(roundup2(pa, alignment) - pa);
continue;
}
if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
m_inc = atop(roundup2(pa, boundary) - pa);
continue;
}
} else
KASSERT(m_run != NULL, ("m_run == NULL"));
retry:
m_inc = 1;
if (vm_page_wired(m))
run_ext = 0;
#if VM_NRESERVLEVEL > 0
else if ((level = vm_reserv_level(m)) >= 0 &&
(options & VPSC_NORESERV) != 0) {
run_ext = 0;
/* Advance to the end of the reservation. */
pa = VM_PAGE_TO_PHYS(m);
m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
pa);
}
#endif
else if ((object = atomic_load_ptr(&m->object)) != NULL) {
/*
* The page is considered eligible for relocation if
* and only if it could be laundered or reclaimed by
* the page daemon.
*/
VM_OBJECT_RLOCK(object);
if (object != m->object) {
VM_OBJECT_RUNLOCK(object);
goto retry;
}
/* Don't care: PG_NODUMP, PG_ZERO. */
if ((object->flags & OBJ_SWAP) == 0 &&
object->type != OBJT_VNODE) {
run_ext = 0;
#if VM_NRESERVLEVEL > 0
} else if ((options & VPSC_NOSUPER) != 0 &&
(level = vm_reserv_level_iffullpop(m)) >= 0) {
run_ext = 0;
/* Advance to the end of the superpage. */
pa = VM_PAGE_TO_PHYS(m);
m_inc = atop(roundup2(pa + 1,
vm_reserv_size(level)) - pa);
#endif
} else if (object->memattr == VM_MEMATTR_DEFAULT &&
vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
/*
* The page is allocated but eligible for
* relocation. Extend the current run by one
* page.
*/
KASSERT(pmap_page_get_memattr(m) ==
VM_MEMATTR_DEFAULT,
("page %p has an unexpected memattr", m));
KASSERT((m->oflags & (VPO_SWAPINPROG |
VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
("page %p has unexpected oflags", m));
/* Don't care: PGA_NOSYNC. */
run_ext = 1;
} else
run_ext = 0;
VM_OBJECT_RUNLOCK(object);
#if VM_NRESERVLEVEL > 0
} else if (level >= 0) {
/*
* The page is reserved but not yet allocated. In
* other words, it is still free. Extend the current
* run by one page.
*/
run_ext = 1;
#endif
} else if ((order = m->order) < VM_NFREEORDER) {
/*
* The page is enqueued in the physical memory
* allocator's free page queues. Moreover, it is the
* first page in a power-of-two-sized run of
* contiguous free pages. Add these pages to the end
* of the current run, and jump ahead.
*/
run_ext = 1 << order;
m_inc = 1 << order;
} else {
/*
* Skip the page for one of the following reasons: (1)
* It is enqueued in the physical memory allocator's
* free page queues. However, it is not the first
* page in a run of contiguous free pages. (This case
* rarely occurs because the scan is performed in
* ascending order.) (2) It is not reserved, and it is
* transitioning from free to allocated. (Conversely,
* the transition from allocated to free for managed
* pages is blocked by the page busy lock.) (3) It is
* allocated but not contained by an object and not
* wired, e.g., allocated by Xen's balloon driver.
*/
run_ext = 0;
}
/*
* Extend or reset the current run of pages.
*/
if (run_ext > 0) {
if (run_len == 0)
m_run = m;
run_len += run_ext;
} else {
if (run_len > 0) {
m_run = NULL;
run_len = 0;
}
}
}
if (run_len >= npages)
return (m_run);
return (NULL);
}
/*
* vm_page_reclaim_run:
*
* Try to relocate each of the allocated virtual pages within the
* specified run of physical pages to a new physical address. Free the
* physical pages underlying the relocated virtual pages. A virtual page
* is relocatable if and only if it could be laundered or reclaimed by
* the page daemon. Whenever possible, a virtual page is relocated to a
* physical address above "high".
*
* Returns 0 if every physical page within the run was already free or
* just freed by a successful relocation. Otherwise, returns a non-zero
* value indicating why the last attempt to relocate a virtual page was
* unsuccessful.
*
* "req_class" must be an allocation class.
*/
static int
vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
vm_paddr_t high)
{
struct vm_domain *vmd;
struct spglist free;
vm_object_t object;
vm_paddr_t pa;
vm_page_t m, m_end, m_new;
int error, order, req;
KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
("req_class is not an allocation class"));
SLIST_INIT(&free);
error = 0;
m = m_run;
m_end = m_run + npages;
for (; error == 0 && m < m_end; m++) {
KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
("page %p is PG_FICTITIOUS or PG_MARKER", m));
/*
* Racily check for wirings. Races are handled once the object
* lock is held and the page is unmapped.
*/
if (vm_page_wired(m))
error = EBUSY;
else if ((object = atomic_load_ptr(&m->object)) != NULL) {
/*
* The page is relocated if and only if it could be
* laundered or reclaimed by the page daemon.
*/
VM_OBJECT_WLOCK(object);
/* Don't care: PG_NODUMP, PG_ZERO. */
if (m->object != object ||
((object->flags & OBJ_SWAP) == 0 &&
object->type != OBJT_VNODE))
error = EINVAL;
else if (object->memattr != VM_MEMATTR_DEFAULT)
error = EINVAL;
else if (vm_page_queue(m) != PQ_NONE &&
vm_page_tryxbusy(m) != 0) {
if (vm_page_wired(m)) {
vm_page_xunbusy(m);
error = EBUSY;
goto unlock;
}
KASSERT(pmap_page_get_memattr(m) ==
VM_MEMATTR_DEFAULT,
("page %p has an unexpected memattr", m));
KASSERT(m->oflags == 0,
("page %p has unexpected oflags", m));
/* Don't care: PGA_NOSYNC. */
if (!vm_page_none_valid(m)) {
/*
* First, try to allocate a new page
* that is above "high". Failing
* that, try to allocate a new page
* that is below "m_run". Allocate
* the new page between the end of
* "m_run" and "high" only as a last
* resort.
*/
req = req_class;
if ((m->flags & PG_NODUMP) != 0)
req |= VM_ALLOC_NODUMP;
if (trunc_page(high) !=
~(vm_paddr_t)PAGE_MASK) {
m_new =
vm_page_alloc_noobj_contig(
req, 1, round_page(high),
~(vm_paddr_t)0, PAGE_SIZE,
0, VM_MEMATTR_DEFAULT);
} else
m_new = NULL;
if (m_new == NULL) {
pa = VM_PAGE_TO_PHYS(m_run);
m_new =
vm_page_alloc_noobj_contig(
req, 1, 0, pa - 1,
PAGE_SIZE, 0,
VM_MEMATTR_DEFAULT);
}
if (m_new == NULL) {
pa += ptoa(npages);
m_new =
vm_page_alloc_noobj_contig(
req, 1, pa, high, PAGE_SIZE,
0, VM_MEMATTR_DEFAULT);
}
if (m_new == NULL) {
vm_page_xunbusy(m);
error = ENOMEM;
goto unlock;
}
/*
* Unmap the page and check for new
* wirings that may have been acquired
* through a pmap lookup.
*/
if (object->ref_count != 0 &&
!vm_page_try_remove_all(m)) {
vm_page_xunbusy(m);
vm_page_free(m_new);
error = EBUSY;
goto unlock;
}
/*
* Replace "m" with the new page. For
* vm_page_replace(), "m" must be busy
* and dequeued. Finally, change "m"
* as if vm_page_free() was called.
*/
m_new->a.flags = m->a.flags &
~PGA_QUEUE_STATE_MASK;
KASSERT(m_new->oflags == VPO_UNMANAGED,
("page %p is managed", m_new));
m_new->oflags = 0;
pmap_copy_page(m, m_new);
m_new->valid = m->valid;
m_new->dirty = m->dirty;
m->flags &= ~PG_ZERO;
vm_page_dequeue(m);
if (vm_page_replace_hold(m_new, object,
m->pindex, m) &&
vm_page_free_prep(m))
SLIST_INSERT_HEAD(&free, m,
plinks.s.ss);
/*
* The new page must be deactivated
* before the object is unlocked.
*/
vm_page_deactivate(m_new);
} else {
m->flags &= ~PG_ZERO;
vm_page_dequeue(m);
if (vm_page_free_prep(m))
SLIST_INSERT_HEAD(&free, m,
plinks.s.ss);
KASSERT(m->dirty == 0,
("page %p is dirty", m));
}
} else
error = EBUSY;
unlock:
VM_OBJECT_WUNLOCK(object);
} else {
MPASS(vm_page_domain(m) == domain);
vmd = VM_DOMAIN(domain);
vm_domain_free_lock(vmd);
order = m->order;
if (order < VM_NFREEORDER) {
/*
* The page is enqueued in the physical memory
* allocator's free page queues. Moreover, it
* is the first page in a power-of-two-sized
* run of contiguous free pages. Jump ahead
* to the last page within that run, and
* continue from there.
*/
m += (1 << order) - 1;
}
#if VM_NRESERVLEVEL > 0
else if (vm_reserv_is_page_free(m))
order = 0;
#endif
vm_domain_free_unlock(vmd);
if (order == VM_NFREEORDER)
error = EINVAL;
}
}
if ((m = SLIST_FIRST(&free)) != NULL) {
int cnt;
vmd = VM_DOMAIN(domain);
cnt = 0;
vm_domain_free_lock(vmd);
do {
MPASS(vm_page_domain(m) == domain);
SLIST_REMOVE_HEAD(&free, plinks.s.ss);
vm_phys_free_pages(m, 0);
cnt++;
} while ((m = SLIST_FIRST(&free)) != NULL);
vm_domain_free_unlock(vmd);
vm_domain_freecnt_inc(vmd, cnt);
}
return (error);
}
#define NRUNS 16
#define RUN_INDEX(count, nruns) ((count) % (nruns))
#define MIN_RECLAIM 8
/*
* vm_page_reclaim_contig:
*
* Reclaim allocated, contiguous physical memory satisfying the specified
* conditions by relocating the virtual pages using that physical memory.
* Returns true if reclamation is successful and false otherwise. Since
* relocation requires the allocation of physical pages, reclamation may
* fail due to a shortage of free pages. When reclamation fails, callers
* are expected to perform vm_wait() before retrying a failed allocation
* operation, e.g., vm_page_alloc_contig().
*
* The caller must always specify an allocation class through "req".
*
* allocation classes:
* VM_ALLOC_NORMAL normal process request
* VM_ALLOC_SYSTEM system *really* needs a page
* VM_ALLOC_INTERRUPT interrupt time request
*
* The optional allocation flags are ignored.
*
* "npages" must be greater than zero. Both "alignment" and "boundary"
* must be a power of two.
*/
int
vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
int desired_runs)
{
struct vm_domain *vmd;
vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
u_long count, minalign, reclaimed;
int error, i, min_reclaim, nruns, options, req_class;
int segind, start_segind;
int ret;
KASSERT(npages > 0, ("npages is 0"));
KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
ret = ENOMEM;
/*
* If the caller wants to reclaim multiple runs, try to allocate
* space to store the runs. If that fails, fall back to the old
* behavior of just reclaiming MIN_RECLAIM pages.
*/
if (desired_runs > 1)
m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
M_TEMP, M_NOWAIT);
else
m_runs = NULL;
if (m_runs == NULL) {
m_runs = _m_runs;
nruns = NRUNS;
} else {
nruns = NRUNS + desired_runs - 1;
}
min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
/*
* The caller will attempt an allocation after some runs have been
* reclaimed and added to the vm_phys buddy lists. Due to limitations
* of vm_phys_alloc_contig(), round up the requested length to the next
* power of two or maximum chunk size, and ensure that each run is
* suitably aligned.
*/
minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
npages = roundup2(npages, minalign);
if (alignment < ptoa(minalign))
alignment = ptoa(minalign);
/*
* The page daemon is allowed to dig deeper into the free page list.
*/
req_class = req & VM_ALLOC_CLASS_MASK;
if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
req_class = VM_ALLOC_SYSTEM;
start_segind = vm_phys_lookup_segind(low);
/*
* Return if the number of free pages cannot satisfy the requested
* allocation.
*/
vmd = VM_DOMAIN(domain);
count = vmd->vmd_free_count;
if (count < npages + vmd->vmd_free_reserved || (count < npages +
vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
(count < npages && req_class == VM_ALLOC_INTERRUPT))
goto done;
/*
* Scan up to three times, relaxing the restrictions ("options") on
* the reclamation of reservations and superpages each time.
*/
for (options = VPSC_NORESERV;;) {
bool phys_range_exists = false;
/*
* Find the highest runs that satisfy the given constraints
* and restrictions, and record them in "m_runs".
*/
count = 0;
segind = start_segind;
while ((segind = vm_phys_find_range(bounds, segind, domain,
npages, low, high)) != -1) {
phys_range_exists = true;
while ((m_run = vm_page_scan_contig(npages, bounds[0],
bounds[1], alignment, boundary, options))) {
bounds[0] = m_run + npages;
m_runs[RUN_INDEX(count, nruns)] = m_run;
count++;
}
segind++;
}
if (!phys_range_exists) {
ret = ERANGE;
goto done;
}
/*
* Reclaim the highest runs in LIFO (descending) order until
* the number of reclaimed pages, "reclaimed", is at least
* "min_reclaim". Reset "reclaimed" each time because each
* reclamation is idempotent, and runs will (likely) recur
* from one scan to the next as restrictions are relaxed.
*/
reclaimed = 0;
for (i = 0; count > 0 && i < nruns; i++) {
count--;
m_run = m_runs[RUN_INDEX(count, nruns)];
error = vm_page_reclaim_run(req_class, domain, npages,
m_run, high);
if (error == 0) {
reclaimed += npages;
if (reclaimed >= min_reclaim) {
ret = 0;
goto done;
}
}
}
/*
* Either relax the restrictions on the next scan or return if
* the last scan had no restrictions.
*/
if (options == VPSC_NORESERV)
options = VPSC_NOSUPER;
else if (options == VPSC_NOSUPER)
options = VPSC_ANY;
else if (options == VPSC_ANY) {
if (reclaimed != 0)
ret = 0;
goto done;
}
}
done:
if (m_runs != _m_runs)
free(m_runs, M_TEMP);
return (ret);
}
int
vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
{
return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high,
alignment, boundary, 1));
}
int
vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
u_long alignment, vm_paddr_t boundary)
{
struct vm_domainset_iter di;
int domain, ret, status;
ret = ERANGE;
vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
do {
status = vm_page_reclaim_contig_domain(domain, req, npages, low,
high, alignment, boundary);
if (status == 0)
return (0);
else if (status == ERANGE)
vm_domainset_iter_ignore(&di, domain);
else {
KASSERT(status == ENOMEM, ("Unrecognized error %d "
"from vm_page_reclaim_contig_domain()", status));
ret = ENOMEM;
}
} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
return (ret);
}
/*
* Set the domain in the appropriate page level domainset.
*/
void
vm_domain_set(struct vm_domain *vmd)
{
mtx_lock(&vm_domainset_lock);
if (!vmd->vmd_minset && vm_paging_min(vmd)) {
vmd->vmd_minset = 1;
DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
}
if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
vmd->vmd_severeset = 1;
DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
}
mtx_unlock(&vm_domainset_lock);
}
/*
* Clear the domain from the appropriate page level domainset.
*/
void
vm_domain_clear(struct vm_domain *vmd)
{
mtx_lock(&vm_domainset_lock);
if (vmd->vmd_minset && !vm_paging_min(vmd)) {
vmd->vmd_minset = 0;
DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
if (vm_min_waiters != 0) {
vm_min_waiters = 0;
wakeup(&vm_min_domains);
}
}
if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
vmd->vmd_severeset = 0;
DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
if (vm_severe_waiters != 0) {
vm_severe_waiters = 0;
wakeup(&vm_severe_domains);
}
}
/*
* If pageout daemon needs pages, then tell it that there are
* some free.
*/
if (vmd->vmd_pageout_pages_needed &&
vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
wakeup(&vmd->vmd_pageout_pages_needed);
vmd->vmd_pageout_pages_needed = 0;
}
/* See comments in vm_wait_doms(). */
if (vm_pageproc_waiters) {
vm_pageproc_waiters = 0;
wakeup(&vm_pageproc_waiters);
}
mtx_unlock(&vm_domainset_lock);
}
/*
* Wait for free pages to exceed the min threshold globally.
*/
void
vm_wait_min(void)
{
mtx_lock(&vm_domainset_lock);
while (vm_page_count_min()) {
vm_min_waiters++;
msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
}
mtx_unlock(&vm_domainset_lock);
}
/*
* Wait for free pages to exceed the severe threshold globally.
*/
void
vm_wait_severe(void)
{
mtx_lock(&vm_domainset_lock);
while (vm_page_count_severe()) {
vm_severe_waiters++;
msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
"vmwait", 0);
}
mtx_unlock(&vm_domainset_lock);
}
u_int
vm_wait_count(void)
{
return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
}
int
vm_wait_doms(const domainset_t *wdoms, int mflags)
{
int error;
error = 0;
/*
* We use racey wakeup synchronization to avoid expensive global
* locking for the pageproc when sleeping with a non-specific vm_wait.
* To handle this, we only sleep for one tick in this instance. It
* is expected that most allocations for the pageproc will come from
* kmem or vm_page_grab* which will use the more specific and
* race-free vm_wait_domain().
*/
if (curproc == pageproc) {
mtx_lock(&vm_domainset_lock);
vm_pageproc_waiters++;
error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
PVM | PDROP | mflags, "pageprocwait", 1);
} else {
/*
* XXX Ideally we would wait only until the allocation could
* be satisfied. This condition can cause new allocators to
* consume all freed pages while old allocators wait.
*/
mtx_lock(&vm_domainset_lock);
if (vm_page_count_min_set(wdoms)) {
if (pageproc == NULL)
panic("vm_wait in early boot");
vm_min_waiters++;
error = msleep(&vm_min_domains, &vm_domainset_lock,
PVM | PDROP | mflags, "vmwait", 0);
} else
mtx_unlock(&vm_domainset_lock);
}
return (error);
}
/*
* vm_wait_domain:
*
* Sleep until free pages are available for allocation.
* - Called in various places after failed memory allocations.
*/
void
vm_wait_domain(int domain)
{
struct vm_domain *vmd;
domainset_t wdom;
vmd = VM_DOMAIN(domain);
vm_domain_free_assert_unlocked(vmd);
if (curproc == pageproc) {
mtx_lock(&vm_domainset_lock);
if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
vmd->vmd_pageout_pages_needed = 1;
msleep(&vmd->vmd_pageout_pages_needed,
&vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
} else
mtx_unlock(&vm_domainset_lock);
} else {
DOMAINSET_ZERO(&wdom);
DOMAINSET_SET(vmd->vmd_domain, &wdom);
vm_wait_doms(&wdom, 0);
}
}
static int
vm_wait_flags(vm_object_t obj, int mflags)
{
struct domainset *d;
d = NULL;
/*
* Carefully fetch pointers only once: the struct domainset
* itself is ummutable but the pointer might change.
*/
if (obj != NULL)
d = obj->domain.dr_policy;
if (d == NULL)
d = curthread->td_domain.dr_policy;
return (vm_wait_doms(&d->ds_mask, mflags));
}
/*
* vm_wait:
*
* Sleep until free pages are available for allocation in the
* affinity domains of the obj. If obj is NULL, the domain set
* for the calling thread is used.
* Called in various places after failed memory allocations.
*/
void
vm_wait(vm_object_t obj)
{
(void)vm_wait_flags(obj, 0);
}
int
vm_wait_intr(vm_object_t obj)
{
return (vm_wait_flags(obj, PCATCH));
}
/*
* vm_domain_alloc_fail:
*
* Called when a page allocation function fails. Informs the
* pagedaemon and performs the requested wait. Requires the
* domain_free and object lock on entry. Returns with the
* object lock held and free lock released. Returns an error when
* retry is necessary.
*
*/
static int
vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
{
vm_domain_free_assert_unlocked(vmd);
atomic_add_int(&vmd->vmd_pageout_deficit,
max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
if (object != NULL)
VM_OBJECT_WUNLOCK(object);
vm_wait_domain(vmd->vmd_domain);
if (object != NULL)
VM_OBJECT_WLOCK(object);
if (req & VM_ALLOC_WAITOK)
return (EAGAIN);
}
return (0);
}
/*
* vm_waitpfault:
*
* Sleep until free pages are available for allocation.
* - Called only in vm_fault so that processes page faulting
* can be easily tracked.
* - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
* processes will be able to grab memory first. Do not change
* this balance without careful testing first.
*/
void
vm_waitpfault(struct domainset *dset, int timo)
{
/*
* XXX Ideally we would wait only until the allocation could
* be satisfied. This condition can cause new allocators to
* consume all freed pages while old allocators wait.
*/
mtx_lock(&vm_domainset_lock);
if (vm_page_count_min_set(&dset->ds_mask)) {
vm_min_waiters++;
msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
"pfault", timo);
} else
mtx_unlock(&vm_domainset_lock);
}
static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m, uint8_t queue)
{
return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
}
#ifdef INVARIANTS
static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)
{
return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
}
#endif
static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
{
vm_page_astate_t tmp;
tmp = *old;
do {
if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
return (true);
counter_u64_add(pqstate_commit_retries, 1);
} while (old->_bits == tmp._bits);
return (false);
}
/*
* Do the work of committing a queue state update that moves the page out of
* its current queue.
*/
static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
vm_page_astate_t *old, vm_page_astate_t new)
{
vm_page_t next;
vm_pagequeue_assert_locked(pq);
KASSERT(vm_page_pagequeue(m) == pq,
("%s: queue %p does not match page %p", __func__, pq, m));
KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
("%s: invalid queue indices %d %d",
__func__, old->queue, new.queue));
/*
* Once the queue index of the page changes there is nothing
* synchronizing with further updates to the page's physical
* queue state. Therefore we must speculatively remove the page
* from the queue now and be prepared to roll back if the queue
* state update fails. If the page is not physically enqueued then
* we just update its queue index.
*/
if ((old->flags & PGA_ENQUEUED) != 0) {
new.flags &= ~PGA_ENQUEUED;
next = TAILQ_NEXT(m, plinks.q);
TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
vm_pagequeue_cnt_dec(pq);
if (!vm_page_pqstate_fcmpset(m, old, new)) {
if (next == NULL)
TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
else
TAILQ_INSERT_BEFORE(next, m, plinks.q);
vm_pagequeue_cnt_inc(pq);
return (false);
} else {
return (true);
}
} else {
return (vm_page_pqstate_fcmpset(m, old, new));
}
}
static bool
vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
vm_page_astate_t new)
{
struct vm_pagequeue *pq;
vm_page_astate_t as;
bool ret;
pq = _vm_page_pagequeue(m, old->queue);
/*
* The queue field and PGA_ENQUEUED flag are stable only so long as the
* corresponding page queue lock is held.
*/
vm_pagequeue_lock(pq);
as = vm_page_astate_load(m);
if (__predict_false(as._bits != old->_bits)) {
*old = as;
ret = false;
} else {
ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
}
vm_pagequeue_unlock(pq);
return (ret);
}
/*
* Commit a queue state update that enqueues or requeues a page.
*/
static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
vm_page_astate_t *old, vm_page_astate_t new)
{
struct vm_domain *vmd;
vm_pagequeue_assert_locked(pq);
KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
("%s: invalid queue indices %d %d",
__func__, old->queue, new.queue));
new.flags |= PGA_ENQUEUED;
if (!vm_page_pqstate_fcmpset(m, old, new))
return (false);
if ((old->flags & PGA_ENQUEUED) != 0)
TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
else
vm_pagequeue_cnt_inc(pq);
/*
* Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
* both flags are set in close succession, only PGA_REQUEUE_HEAD will be
* applied, even if it was set first.
*/
if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
vmd = vm_pagequeue_domain(m);
KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
("%s: invalid page queue for page %p", __func__, m));
TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
} else {
TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
}
return (true);
}
/*
* Commit a queue state update that encodes a request for a deferred queue
* operation.
*/
static bool
vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
vm_page_astate_t new)
{
KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
("%s: invalid state, queue %d flags %x",
__func__, new.queue, new.flags));
if (old->_bits != new._bits &&
!vm_page_pqstate_fcmpset(m, old, new))
return (false);
vm_page_pqbatch_submit(m, new.queue);
return (true);
}
/*
* A generic queue state update function. This handles more cases than the
* specialized functions above.
*/
bool
vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
{
if (old->_bits == new._bits)
return (true);
if (old->queue != PQ_NONE && new.queue != old->queue) {
if (!vm_page_pqstate_commit_dequeue(m, old, new))
return (false);
if (new.queue != PQ_NONE)
vm_page_pqbatch_submit(m, new.queue);
} else {
if (!vm_page_pqstate_fcmpset(m, old, new))
return (false);
if (new.queue != PQ_NONE &&
((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
vm_page_pqbatch_submit(m, new.queue);
}
return (true);
}
/*
* Apply deferred queue state updates to a page.
*/
static inline void
vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
{
vm_page_astate_t new, old;
CRITICAL_ASSERT(curthread);
vm_pagequeue_assert_locked(pq);
KASSERT(queue < PQ_COUNT,
("%s: invalid queue index %d", __func__, queue));
KASSERT(pq == _vm_page_pagequeue(m, queue),
("%s: page %p does not belong to queue %p", __func__, m, pq));
for (old = vm_page_astate_load(m);;) {
if (__predict_false(old.queue != queue ||
(old.flags & PGA_QUEUE_OP_MASK) == 0)) {
counter_u64_add(queue_nops, 1);
break;
}
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("%s: page %p is unmanaged", __func__, m));
new = old;
if ((old.flags & PGA_DEQUEUE) != 0) {
new.flags &= ~PGA_QUEUE_OP_MASK;
new.queue = PQ_NONE;
if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
m, &old, new))) {
counter_u64_add(queue_ops, 1);
break;
}
} else {
new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
m, &old, new))) {
counter_u64_add(queue_ops, 1);
break;
}
}
}
}
static void
vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
uint8_t queue)
{
int i;
for (i = 0; i < bq->bq_cnt; i++)
vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
vm_batchqueue_init(bq);
}
/*
* vm_page_pqbatch_submit: [ internal use only ]
*
* Enqueue a page in the specified page queue's batched work queue.
* The caller must have encoded the requested operation in the page
* structure's a.flags field.
*/
void
vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
{
struct vm_batchqueue *bq;
struct vm_pagequeue *pq;
int domain, slots_remaining;
KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
domain = vm_page_domain(m);
critical_enter();
bq = DPCPU_PTR(pqbatch[domain][queue]);
slots_remaining = vm_batchqueue_insert(bq, m);
if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
/* keep building the bq */
critical_exit();
return;
} else if (slots_remaining > 0 ) {
/* Try to process the bq if we can get the lock */
pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
if (vm_pagequeue_trylock(pq)) {
vm_pqbatch_process(pq, bq, queue);
vm_pagequeue_unlock(pq);
}
critical_exit();
return;
}
critical_exit();
/* if we make it here, the bq is full so wait for the lock */
pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
vm_pagequeue_lock(pq);
critical_enter();
bq = DPCPU_PTR(pqbatch[domain][queue]);
vm_pqbatch_process(pq, bq, queue);
vm_pqbatch_process_page(pq, m, queue);
vm_pagequeue_unlock(pq);
critical_exit();
}
/*
* vm_page_pqbatch_drain: [ internal use only ]
*
* Force all per-CPU page queue batch queues to be drained. This is
* intended for use in severe memory shortages, to ensure that pages
* do not remain stuck in the batch queues.
*/
void
vm_page_pqbatch_drain(void)
{
struct thread *td;
struct vm_domain *vmd;
struct vm_pagequeue *pq;
int cpu, domain, queue;
td = curthread;
CPU_FOREACH(cpu) {
thread_lock(td);
sched_bind(td, cpu);
thread_unlock(td);
for (domain = 0; domain < vm_ndomains; domain++) {
vmd = VM_DOMAIN(domain);
for (queue = 0; queue < PQ_COUNT; queue++) {
pq = &vmd->vmd_pagequeues[queue];
vm_pagequeue_lock(pq);
critical_enter();
vm_pqbatch_process(pq,
DPCPU_PTR(pqbatch[domain][queue]), queue);
critical_exit();
vm_pagequeue_unlock(pq);
}
}
}
thread_lock(td);
sched_unbind(td);
thread_unlock(td);
}
/*
* vm_page_dequeue_deferred: [ internal use only ]
*
* Request removal of the given page from its current page
* queue. Physical removal from the queue may be deferred
* indefinitely.
*/
void
vm_page_dequeue_deferred(vm_page_t m)
{
vm_page_astate_t new, old;
old = vm_page_astate_load(m);
do {
if (old.queue == PQ_NONE) {
KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
("%s: page %p has unexpected queue state",
__func__, m));
break;
}
new = old;
new.flags |= PGA_DEQUEUE;
} while (!vm_page_pqstate_commit_request(m, &old, new));
}
/*
* vm_page_dequeue:
*
* Remove the page from whichever page queue it's in, if any, before
* returning.
*/
void
vm_page_dequeue(vm_page_t m)
{
vm_page_astate_t new, old;
old = vm_page_astate_load(m);
do {
if (old.queue == PQ_NONE) {
KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
("%s: page %p has unexpected queue state",
__func__, m));
break;
}
new = old;
new.flags &= ~PGA_QUEUE_OP_MASK;
new.queue = PQ_NONE;
} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
}
/*
* Schedule the given page for insertion into the specified page queue.
* Physical insertion of the page may be deferred indefinitely.
*/
static void
vm_page_enqueue(vm_page_t m, uint8_t queue)
{
KASSERT(m->a.queue == PQ_NONE &&
(m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
("%s: page %p is already enqueued", __func__, m));
KASSERT(m->ref_count > 0,
("%s: page %p does not carry any references", __func__, m));
m->a.queue = queue;
if ((m->a.flags & PGA_REQUEUE) == 0)
vm_page_aflag_set(m, PGA_REQUEUE);
vm_page_pqbatch_submit(m, queue);
}
/*
* vm_page_free_prep:
*
* Prepares the given page to be put on the free list,
* disassociating it from any VM object. The caller may return
* the page to the free list only if this function returns true.
*
* The object, if it exists, must be locked, and then the page must
* be xbusy. Otherwise the page must be not busied. A managed
* page must be unmapped.
*/
static bool
vm_page_free_prep(vm_page_t m)
{
/*
* Synchronize with threads that have dropped a reference to this
* page.
*/
atomic_thread_fence_acq();
#if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
uint64_t *p;
int i;
p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
m, i, (uintmax_t)*p));
}
#endif
if ((m->oflags & VPO_UNMANAGED) == 0) {
KASSERT(!pmap_page_is_mapped(m),
("vm_page_free_prep: freeing mapped page %p", m));
KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
("vm_page_free_prep: mapping flags set in page %p", m));
} else {
KASSERT(m->a.queue == PQ_NONE,
("vm_page_free_prep: unmanaged page %p is queued", m));
}
VM_CNT_INC(v_tfree);
if (m->object != NULL) {
KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
((m->object->flags & OBJ_UNMANAGED) != 0),
("vm_page_free_prep: managed flag mismatch for page %p",
m));
vm_page_assert_xbusied(m);
/*
* The object reference can be released without an atomic
* operation.
*/
KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
m->ref_count == VPRC_OBJREF,
("vm_page_free_prep: page %p has unexpected ref_count %u",
m, m->ref_count));
vm_page_object_remove(m);
m->ref_count -= VPRC_OBJREF;
} else
vm_page_assert_unbusied(m);
vm_page_busy_free(m);
/*
* If fictitious remove object association and
* return.
*/
if ((m->flags & PG_FICTITIOUS) != 0) {
KASSERT(m->ref_count == 1,
("fictitious page %p is referenced", m));
KASSERT(m->a.queue == PQ_NONE,
("fictitious page %p is queued", m));
return (false);
}
/*
* Pages need not be dequeued before they are returned to the physical
* memory allocator, but they must at least be marked for a deferred
* dequeue.
*/
if ((m->oflags & VPO_UNMANAGED) == 0)
vm_page_dequeue_deferred(m);
m->valid = 0;
vm_page_undirty(m);
if (m->ref_count != 0)
panic("vm_page_free_prep: page %p has references", m);
/*
* Restore the default memory attribute to the page.
*/
if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
#if VM_NRESERVLEVEL > 0
/*
* Determine whether the page belongs to a reservation. If the page was
* allocated from a per-CPU cache, it cannot belong to a reservation, so
* as an optimization, we avoid the check in that case.
*/
if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
return (false);
#endif
return (true);
}
/*
* vm_page_free_toq:
*
* Returns the given page to the free list, disassociating it
* from any VM object.
*
* The object must be locked. The page must be exclusively busied if it
* belongs to an object.
*/
static void
vm_page_free_toq(vm_page_t m)
{
struct vm_domain *vmd;
uma_zone_t zone;
if (!vm_page_free_prep(m))
return;
vmd = vm_pagequeue_domain(m);
zone = vmd->vmd_pgcache[m->pool].zone;
if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
uma_zfree(zone, m);
return;
}
vm_domain_free_lock(vmd);
vm_phys_free_pages(m, 0);
vm_domain_free_unlock(vmd);
vm_domain_freecnt_inc(vmd, 1);
}
/*
* vm_page_free_pages_toq:
*
* Returns a list of pages to the free list, disassociating it
* from any VM object. In other words, this is equivalent to
* calling vm_page_free_toq() for each page of a list of VM objects.
*/
void
vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
{
vm_page_t m;
int count;
if (SLIST_EMPTY(free))
return;
count = 0;
while ((m = SLIST_FIRST(free)) != NULL) {
count++;
SLIST_REMOVE_HEAD(free, plinks.s.ss);
vm_page_free_toq(m);
}
if (update_wire_count)
vm_wire_sub(count);
}
/*
* Mark this page as wired down. For managed pages, this prevents reclamation
* by the page daemon, or when the containing object, if any, is destroyed.
*/
void
vm_page_wire(vm_page_t m)
{
u_int old;
#ifdef INVARIANTS
if (m->object != NULL && !vm_page_busied(m) &&
!vm_object_busied(m->object))
VM_OBJECT_ASSERT_LOCKED(m->object);
#endif
KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
VPRC_WIRE_COUNT(m->ref_count) >= 1,
("vm_page_wire: fictitious page %p has zero wirings", m));
old = atomic_fetchadd_int(&m->ref_count, 1);
KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
("vm_page_wire: counter overflow for page %p", m));
if (VPRC_WIRE_COUNT(old) == 0) {
if ((m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(m, PGA_DEQUEUE);
vm_wire_add(1);
}
}
/*
* Attempt to wire a mapped page following a pmap lookup of that page.
* This may fail if a thread is concurrently tearing down mappings of the page.
* The transient failure is acceptable because it translates to the
* failure of the caller pmap_extract_and_hold(), which should be then
* followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
*/
bool
vm_page_wire_mapped(vm_page_t m)
{
u_int old;
old = m->ref_count;
do {
KASSERT(old > 0,
("vm_page_wire_mapped: wiring unreferenced page %p", m));
if ((old & VPRC_BLOCKED) != 0)
return (false);
} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
if (VPRC_WIRE_COUNT(old) == 0) {
if ((m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(m, PGA_DEQUEUE);
vm_wire_add(1);
}
return (true);
}
/*
* Release a wiring reference to a managed page. If the page still belongs to
* an object, update its position in the page queues to reflect the reference.
* If the wiring was the last reference to the page, free the page.
*/
static void
vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
{
u_int old;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("%s: page %p is unmanaged", __func__, m));
/*
* Update LRU state before releasing the wiring reference.
* Use a release store when updating the reference count to
* synchronize with vm_page_free_prep().
*/
old = m->ref_count;
do {
KASSERT(VPRC_WIRE_COUNT(old) > 0,
("vm_page_unwire: wire count underflow for page %p", m));
if (old > VPRC_OBJREF + 1) {
/*
* The page has at least one other wiring reference. An
* earlier iteration of this loop may have called
* vm_page_release_toq() and cleared PGA_DEQUEUE, so
* re-set it if necessary.
*/
if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
vm_page_aflag_set(m, PGA_DEQUEUE);
} else if (old == VPRC_OBJREF + 1) {
/*
* This is the last wiring. Clear PGA_DEQUEUE and
* update the page's queue state to reflect the
* reference. If the page does not belong to an object
* (i.e., the VPRC_OBJREF bit is clear), we only need to
* clear leftover queue state.
*/
vm_page_release_toq(m, nqueue, noreuse);
} else if (old == 1) {
vm_page_aflag_clear(m, PGA_DEQUEUE);
}
} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
if (VPRC_WIRE_COUNT(old) == 1) {
vm_wire_sub(1);
if (old == 1)
vm_page_free(m);
}
}
/*
* Release one wiring of the specified page, potentially allowing it to be
* paged out.
*
* Only managed pages belonging to an object can be paged out. If the number
* of wirings transitions to zero and the page is eligible for page out, then
* the page is added to the specified paging queue. If the released wiring
* represented the last reference to the page, the page is freed.
*/
void
vm_page_unwire(vm_page_t m, uint8_t nqueue)
{
KASSERT(nqueue < PQ_COUNT,
("vm_page_unwire: invalid queue %u request for page %p",
nqueue, m));
if ((m->oflags & VPO_UNMANAGED) != 0) {
if (vm_page_unwire_noq(m) && m->ref_count == 0)
vm_page_free(m);
return;
}
vm_page_unwire_managed(m, nqueue, false);
}
/*
* Unwire a page without (re-)inserting it into a page queue. It is up
* to the caller to enqueue, requeue, or free the page as appropriate.
* In most cases involving managed pages, vm_page_unwire() should be used
* instead.
*/
bool
vm_page_unwire_noq(vm_page_t m)
{
u_int old;
old = vm_page_drop(m, 1);
KASSERT(VPRC_WIRE_COUNT(old) != 0,
("%s: counter underflow for page %p", __func__, m));
KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
("%s: missing ref on fictitious page %p", __func__, m));
if (VPRC_WIRE_COUNT(old) > 1)
return (false);
if ((m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_clear(m, PGA_DEQUEUE);
vm_wire_sub(1);
return (true);
}
/*
* Ensure that the page ends up in the specified page queue. If the page is
* active or being moved to the active queue, ensure that its act_count is
* at least ACT_INIT but do not otherwise mess with it.
*/
static __always_inline void
vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
{
vm_page_astate_t old, new;
KASSERT(m->ref_count > 0,
("%s: page %p does not carry any references", __func__, m));
KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
("%s: invalid flags %x", __func__, nflag));
if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
return;
old = vm_page_astate_load(m);
do {
if ((old.flags & PGA_DEQUEUE) != 0)
break;
new = old;
new.flags &= ~PGA_QUEUE_OP_MASK;
if (nqueue == PQ_ACTIVE)
new.act_count = max(old.act_count, ACT_INIT);
if (old.queue == nqueue) {
/*
* There is no need to requeue pages already in the
* active queue.
*/
if (nqueue != PQ_ACTIVE ||
(old.flags & PGA_ENQUEUED) == 0)
new.flags |= nflag;
} else {
new.flags |= nflag;
new.queue = nqueue;
}
} while (!vm_page_pqstate_commit(m, &old, new));
}
/*
* Put the specified page on the active list (if appropriate).
*/
void
vm_page_activate(vm_page_t m)
{
vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
}
/*
* Move the specified page to the tail of the inactive queue, or requeue
* the page if it is already in the inactive queue.
*/
void
vm_page_deactivate(vm_page_t m)
{
vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
}
void
vm_page_deactivate_noreuse(vm_page_t m)
{
vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
}
/*
* Put a page in the laundry, or requeue it if it is already there.
*/
void
vm_page_launder(vm_page_t m)
{
vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
}
/*
* Put a page in the PQ_UNSWAPPABLE holding queue.
*/
void
vm_page_unswappable(vm_page_t m)
{
VM_OBJECT_ASSERT_LOCKED(m->object);
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("page %p already unswappable", m));
vm_page_dequeue(m);
vm_page_enqueue(m, PQ_UNSWAPPABLE);
}
/*
* Release a page back to the page queues in preparation for unwiring.
*/
static void
vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
{
vm_page_astate_t old, new;
uint16_t nflag;
/*
* Use a check of the valid bits to determine whether we should
* accelerate reclamation of the page. The object lock might not be
* held here, in which case the check is racy. At worst we will either
* accelerate reclamation of a valid page and violate LRU, or
* unnecessarily defer reclamation of an invalid page.
*
* If we were asked to not cache the page, place it near the head of the
* inactive queue so that is reclaimed sooner.
*/
if (noreuse || vm_page_none_valid(m)) {
nqueue = PQ_INACTIVE;
nflag = PGA_REQUEUE_HEAD;
} else {
nflag = PGA_REQUEUE;
}
old = vm_page_astate_load(m);
do {
new = old;
/*
* If the page is already in the active queue and we are not
* trying to accelerate reclamation, simply mark it as
* referenced and avoid any queue operations.
*/
new.flags &= ~PGA_QUEUE_OP_MASK;
if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
(old.flags & PGA_ENQUEUED) != 0)
new.flags |= PGA_REFERENCED;
else {
new.flags |= nflag;
new.queue = nqueue;
}
} while (!vm_page_pqstate_commit(m, &old, new));
}
/*
* Unwire a page and either attempt to free it or re-add it to the page queues.
*/
void
vm_page_release(vm_page_t m, int flags)
{
vm_object_t object;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("vm_page_release: page %p is unmanaged", m));
if ((flags & VPR_TRYFREE) != 0) {
for (;;) {
object = atomic_load_ptr(&m->object);
if (object == NULL)
break;
/* Depends on type-stability. */
if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
break;
if (object == m->object) {
vm_page_release_locked(m, flags);
VM_OBJECT_WUNLOCK(object);
return;
}
VM_OBJECT_WUNLOCK(object);
}
}
vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
}
/* See vm_page_release(). */
void
vm_page_release_locked(vm_page_t m, int flags)
{
VM_OBJECT_ASSERT_WLOCKED(m->object);
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("vm_page_release_locked: page %p is unmanaged", m));
if (vm_page_unwire_noq(m)) {
if ((flags & VPR_TRYFREE) != 0 &&
(m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
m->dirty == 0 && vm_page_tryxbusy(m)) {
/*
* An unlocked lookup may have wired the page before the
* busy lock was acquired, in which case the page must
* not be freed.
*/
if (__predict_true(!vm_page_wired(m))) {
vm_page_free(m);
return;
}
vm_page_xunbusy(m);
} else {
vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
}
}
}
static bool
vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
{
u_int old;
KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
("vm_page_try_blocked_op: page %p has no object", m));
KASSERT(vm_page_busied(m),
("vm_page_try_blocked_op: page %p is not busy", m));
VM_OBJECT_ASSERT_LOCKED(m->object);
old = m->ref_count;
do {
KASSERT(old != 0,
("vm_page_try_blocked_op: page %p has no references", m));
if (VPRC_WIRE_COUNT(old) != 0)
return (false);
} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
(op)(m);
/*
* If the object is read-locked, new wirings may be created via an
* object lookup.
*/
old = vm_page_drop(m, VPRC_BLOCKED);
KASSERT(!VM_OBJECT_WOWNED(m->object) ||
old == (VPRC_BLOCKED | VPRC_OBJREF),
("vm_page_try_blocked_op: unexpected refcount value %u for %p",
old, m));
return (true);
}
/*
* Atomically check for wirings and remove all mappings of the page.
*/
bool
vm_page_try_remove_all(vm_page_t m)
{
return (vm_page_try_blocked_op(m, pmap_remove_all));
}
/*
* Atomically check for wirings and remove all writeable mappings of the page.
*/
bool
vm_page_try_remove_write(vm_page_t m)
{
return (vm_page_try_blocked_op(m, pmap_remove_write));
}
/*
* vm_page_advise
*
* Apply the specified advice to the given page.
*/
void
vm_page_advise(vm_page_t m, int advice)
{
VM_OBJECT_ASSERT_WLOCKED(m->object);
vm_page_assert_xbusied(m);
if (advice == MADV_FREE)
/*
* Mark the page clean. This will allow the page to be freed
* without first paging it out. MADV_FREE pages are often
* quickly reused by malloc(3), so we do not do anything that
* would result in a page fault on a later access.
*/
vm_page_undirty(m);
else if (advice != MADV_DONTNEED) {
if (advice == MADV_WILLNEED)
vm_page_activate(m);
return;
}
if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
vm_page_dirty(m);
/*
* Clear any references to the page. Otherwise, the page daemon will
* immediately reactivate the page.
*/
vm_page_aflag_clear(m, PGA_REFERENCED);
/*
* Place clean pages near the head of the inactive queue rather than
* the tail, thus defeating the queue's LRU operation and ensuring that
* the page will be reused quickly. Dirty pages not already in the
* laundry are moved there.
*/
if (m->dirty == 0)
vm_page_deactivate_noreuse(m);
else if (!vm_page_in_laundry(m))
vm_page_launder(m);
}
/*
* vm_page_grab_release
*
* Helper routine for grab functions to release busy on return.
*/
static inline void
vm_page_grab_release(vm_page_t m, int allocflags)
{
if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
vm_page_sunbusy(m);
else
vm_page_xunbusy(m);
}
}
/*
* vm_page_grab_sleep
*
* Sleep for busy according to VM_ALLOC_ parameters. Returns true
* if the caller should retry and false otherwise.
*
* If the object is locked on entry the object will be unlocked with
* false returns and still locked but possibly having been dropped
* with true returns.
*/
static bool
vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
const char *wmesg, int allocflags, bool locked)
{
if ((allocflags & VM_ALLOC_NOWAIT) != 0)
return (false);
/*
* Reference the page before unlocking and sleeping so that
* the page daemon is less likely to reclaim it.
*/
if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
vm_page_reference(m);
if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
locked)
VM_OBJECT_WLOCK(object);
if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
return (false);
return (true);
}
/*
* Assert that the grab flags are valid.
*/
static inline void
vm_page_grab_check(int allocflags)
{
KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
(allocflags & VM_ALLOC_WIRED) != 0,
("vm_page_grab*: the pages must be busied or wired"));
KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
(allocflags & VM_ALLOC_IGN_SBUSY) != 0,
("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
}
/*
* Calculate the page allocation flags for grab.
*/
static inline int
vm_page_grab_pflags(int allocflags)
{
int pflags;
pflags = allocflags &
~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
if ((allocflags & VM_ALLOC_NOWAIT) == 0)
pflags |= VM_ALLOC_WAITFAIL;
if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
pflags |= VM_ALLOC_SBUSY;
return (pflags);
}
/*
* Grab a page, waiting until we are waken up due to the page
* changing state. We keep on waiting, if the page continues
* to be in the object. If the page doesn't exist, first allocate it
* and then conditionally zero it.
*
* This routine may sleep.
*
* The object must be locked on entry. The lock will, however, be released
* and reacquired if the routine sleeps.
*/
vm_page_t
vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
{
vm_page_t m;
VM_OBJECT_ASSERT_WLOCKED(object);
vm_page_grab_check(allocflags);
retrylookup:
if ((m = vm_page_lookup(object, pindex)) != NULL) {
if (!vm_page_tryacquire(m, allocflags)) {
if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
allocflags, true))
goto retrylookup;
return (NULL);
}
goto out;
}
if ((allocflags & VM_ALLOC_NOCREAT) != 0)
return (NULL);
m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
if (m == NULL) {
if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
return (NULL);
goto retrylookup;
}
if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
out:
vm_page_grab_release(m, allocflags);
return (m);
}
/*
* Locklessly attempt to acquire a page given a (object, pindex) tuple
* and an optional previous page to avoid the radix lookup. The resulting
* page will be validated against the identity tuple and busied or wired
* as requested. A NULL *mp return guarantees that the page was not in
* radix at the time of the call but callers must perform higher level
* synchronization or retry the operation under a lock if they require
* an atomic answer. This is the only lock free validation routine,
* other routines can depend on the resulting page state.
*
* The return value indicates whether the operation failed due to caller
* flags. The return is tri-state with mp:
*
* (true, *mp != NULL) - The operation was successful.
* (true, *mp == NULL) - The page was not found in tree.
* (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
*/
static bool
vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
vm_page_t prev, vm_page_t *mp, int allocflags)
{
vm_page_t m;
vm_page_grab_check(allocflags);
MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
*mp = NULL;
for (;;) {
/*
* We may see a false NULL here because the previous page
* has been removed or just inserted and the list is loaded
* without barriers. Switch to radix to verify.
*/
if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
QMD_IS_TRASHED(m) || m->pindex != pindex ||
atomic_load_ptr(&m->object) != object) {
prev = NULL;
/*
* This guarantees the result is instantaneously
* correct.
*/
m = vm_radix_lookup_unlocked(&object->rtree, pindex);
}
if (m == NULL)
return (true);
if (vm_page_trybusy(m, allocflags)) {
if (m->object == object && m->pindex == pindex)
break;
/* relookup. */
vm_page_busy_release(m);
cpu_spinwait();
continue;
}
if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
allocflags, false))
return (false);
}
if ((allocflags & VM_ALLOC_WIRED) != 0)
vm_page_wire(m);
vm_page_grab_release(m, allocflags);
*mp = m;
return (true);
}
/*
* Try to locklessly grab a page and fall back to the object lock if NOCREAT
* is not set.
*/
vm_page_t
vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
{
vm_page_t m;
vm_page_grab_check(allocflags);
if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
return (NULL);
if (m != NULL)
return (m);
/*
* The radix lockless lookup should never return a false negative
* errors. If the user specifies NOCREAT they are guaranteed there
* was no page present at the instant of the call. A NOCREAT caller
* must handle create races gracefully.
*/
if ((allocflags & VM_ALLOC_NOCREAT) != 0)
return (NULL);
VM_OBJECT_WLOCK(object);
m = vm_page_grab(object, pindex, allocflags);
VM_OBJECT_WUNLOCK(object);
return (m);
}
/*
* Grab a page and make it valid, paging in if necessary. Pages missing from
* their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
* and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
* in simultaneously. Additional pages will be left on a paging queue but
* will neither be wired nor busy regardless of allocflags.
*/
int
vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
{
vm_page_t m;
vm_page_t ma[VM_INITIAL_PAGEIN];
int after, i, pflags, rv;
KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
(allocflags & VM_ALLOC_IGN_SBUSY) != 0,
("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
KASSERT((allocflags &
(VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
VM_OBJECT_ASSERT_WLOCKED(object);
pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
pflags |= VM_ALLOC_WAITFAIL;
retrylookup:
if ((m = vm_page_lookup(object, pindex)) != NULL) {
/*
* If the page is fully valid it can only become invalid
* with the object lock held. If it is not valid it can
* become valid with the busy lock held. Therefore, we
* may unnecessarily lock the exclusive busy here if we
* race with I/O completion not using the object lock.
* However, we will not end up with an invalid page and a
* shared lock.
*/
if (!vm_page_trybusy(m,
vm_page_all_valid(m) ? allocflags : 0)) {
(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
allocflags, true);
goto retrylookup;
}
if (vm_page_all_valid(m))
goto out;
if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
vm_page_busy_release(m);
*mp = NULL;
return (VM_PAGER_FAIL);
}
} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
*mp = NULL;
return (VM_PAGER_FAIL);
} else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
if (!vm_pager_can_alloc_page(object, pindex)) {
*mp = NULL;
return (VM_PAGER_AGAIN);
}
goto retrylookup;
}
vm_page_assert_xbusied(m);
if (vm_pager_has_page(object, pindex, NULL, &after)) {
after = MIN(after, VM_INITIAL_PAGEIN);
after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
after = MAX(after, 1);
ma[0] = m;
for (i = 1; i < after; i++) {
if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
if (vm_page_any_valid(ma[i]) ||
!vm_page_tryxbusy(ma[i]))
break;
} else {
ma[i] = vm_page_alloc(object, m->pindex + i,
VM_ALLOC_NORMAL);
if (ma[i] == NULL)
break;
}
}
after = i;
vm_object_pip_add(object, after);
VM_OBJECT_WUNLOCK(object);
rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
VM_OBJECT_WLOCK(object);
vm_object_pip_wakeupn(object, after);
/* Pager may have replaced a page. */
m = ma[0];
if (rv != VM_PAGER_OK) {
for (i = 0; i < after; i++) {
if (!vm_page_wired(ma[i]))
vm_page_free(ma[i]);
else
vm_page_xunbusy(ma[i]);
}
*mp = NULL;
return (rv);
}
for (i = 1; i < after; i++)
vm_page_readahead_finish(ma[i]);
MPASS(vm_page_all_valid(m));
} else {
vm_page_zero_invalid(m, TRUE);
}
out:
if ((allocflags & VM_ALLOC_WIRED) != 0)
vm_page_wire(m);
if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
vm_page_busy_downgrade(m);
else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
vm_page_busy_release(m);
*mp = m;
return (VM_PAGER_OK);
}
/*
* Locklessly grab a valid page. If the page is not valid or not yet
* allocated this will fall back to the object lock method.
*/
int
vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
vm_pindex_t pindex, int allocflags)
{
vm_page_t m;
int flags;
int error;
KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
(allocflags & VM_ALLOC_IGN_SBUSY) != 0,
("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
"mismatch"));
KASSERT((allocflags &
(VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
/*
* Attempt a lockless lookup and busy. We need at least an sbusy
* before we can inspect the valid field and return a wired page.
*/
flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
return (VM_PAGER_FAIL);
if ((m = *mp) != NULL) {
if (vm_page_all_valid(m)) {
if ((allocflags & VM_ALLOC_WIRED) != 0)
vm_page_wire(m);
vm_page_grab_release(m, allocflags);
return (VM_PAGER_OK);
}
vm_page_busy_release(m);
}
if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
*mp = NULL;
return (VM_PAGER_FAIL);
}
VM_OBJECT_WLOCK(object);
error = vm_page_grab_valid(mp, object, pindex, allocflags);
VM_OBJECT_WUNLOCK(object);
return (error);
}
/*
* Return the specified range of pages from the given object. For each
* page offset within the range, if a page already exists within the object
* at that offset and it is busy, then wait for it to change state. If,
* instead, the page doesn't exist, then allocate it.
*
* The caller must always specify an allocation class.
*
* allocation classes:
* VM_ALLOC_NORMAL normal process request
* VM_ALLOC_SYSTEM system *really* needs the pages
*
* The caller must always specify that the pages are to be busied and/or
* wired.
*
* optional allocation flags:
* VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
* VM_ALLOC_NOBUSY do not exclusive busy the page
* VM_ALLOC_NOWAIT do not sleep
* VM_ALLOC_SBUSY set page to sbusy state
* VM_ALLOC_WIRED wire the pages
* VM_ALLOC_ZERO zero and validate any invalid pages
*
* If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
* may return a partial prefix of the requested range.
*/
int
vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
vm_page_t *ma, int count)
{
vm_page_t m, mpred;
int pflags;
int i;
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
KASSERT(count > 0,
("vm_page_grab_pages: invalid page count %d", count));
vm_page_grab_check(allocflags);
pflags = vm_page_grab_pflags(allocflags);
i = 0;
retrylookup:
m = vm_radix_lookup_le(&object->rtree, pindex + i);
if (m == NULL || m->pindex != pindex + i) {
mpred = m;
m = NULL;
} else
mpred = TAILQ_PREV(m, pglist, listq);
for (; i < count; i++) {
if (m != NULL) {
if (!vm_page_tryacquire(m, allocflags)) {
if (vm_page_grab_sleep(object, m, pindex + i,
"grbmaw", allocflags, true))
goto retrylookup;
break;
}
} else {
if ((allocflags & VM_ALLOC_NOCREAT) != 0)
break;
m = vm_page_alloc_after(object, pindex + i,
pflags | VM_ALLOC_COUNT(count - i), mpred);
if (m == NULL) {
if ((allocflags & (VM_ALLOC_NOWAIT |
VM_ALLOC_WAITFAIL)) != 0)
break;
goto retrylookup;
}
}
if (vm_page_none_valid(m) &&
(allocflags & VM_ALLOC_ZERO) != 0) {
if ((m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
vm_page_valid(m);
}
vm_page_grab_release(m, allocflags);
ma[i] = mpred = m;
m = vm_page_next(m);
}
return (i);
}
/*
* Unlocked variant of vm_page_grab_pages(). This accepts the same flags
* and will fall back to the locked variant to handle allocation.
*/
int
vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
int allocflags, vm_page_t *ma, int count)
{
vm_page_t m, pred;
int flags;
int i;
KASSERT(count > 0,
("vm_page_grab_pages_unlocked: invalid page count %d", count));
vm_page_grab_check(allocflags);
/*
* Modify flags for lockless acquire to hold the page until we
* set it valid if necessary.
*/
flags = allocflags & ~VM_ALLOC_NOBUSY;
pred = NULL;
for (i = 0; i < count; i++, pindex++) {
if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
return (i);
if (m == NULL)
break;
if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
if ((m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
vm_page_valid(m);
}
/* m will still be wired or busy according to flags. */
vm_page_grab_release(m, allocflags);
pred = ma[i] = m;
}
if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
return (i);
count -= i;
VM_OBJECT_WLOCK(object);
i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
VM_OBJECT_WUNLOCK(object);
return (i);
}
/*
* Mapping function for valid or dirty bits in a page.
*
* Inputs are required to range within a page.
*/
vm_page_bits_t
vm_page_bits(int base, int size)
{
int first_bit;
int last_bit;
KASSERT(
base + size <= PAGE_SIZE,
("vm_page_bits: illegal base/size %d/%d", base, size)
);
if (size == 0) /* handle degenerate case */
return (0);
first_bit = base >> DEV_BSHIFT;
last_bit = (base + size - 1) >> DEV_BSHIFT;
return (((vm_page_bits_t)2 << last_bit) -
((vm_page_bits_t)1 << first_bit));
}
void
vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
{
#if PAGE_SIZE == 32768
atomic_set_64((uint64_t *)bits, set);
#elif PAGE_SIZE == 16384
atomic_set_32((uint32_t *)bits, set);
#elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
atomic_set_16((uint16_t *)bits, set);
#elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
atomic_set_8((uint8_t *)bits, set);
#else /* PAGE_SIZE <= 8192 */
uintptr_t addr;
int shift;
addr = (uintptr_t)bits;
/*
* Use a trick to perform a 32-bit atomic on the
* containing aligned word, to not depend on the existence
* of atomic_{set, clear}_{8, 16}.
*/
shift = addr & (sizeof(uint32_t) - 1);
#if BYTE_ORDER == BIG_ENDIAN
shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
#else
shift *= NBBY;
#endif
addr &= ~(sizeof(uint32_t) - 1);
atomic_set_32((uint32_t *)addr, set << shift);
#endif /* PAGE_SIZE */
}
static inline void
vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
{
#if PAGE_SIZE == 32768
atomic_clear_64((uint64_t *)bits, clear);
#elif PAGE_SIZE == 16384
atomic_clear_32((uint32_t *)bits, clear);
#elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
atomic_clear_16((uint16_t *)bits, clear);
#elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
atomic_clear_8((uint8_t *)bits, clear);
#else /* PAGE_SIZE <= 8192 */
uintptr_t addr;
int shift;
addr = (uintptr_t)bits;
/*
* Use a trick to perform a 32-bit atomic on the
* containing aligned word, to not depend on the existence
* of atomic_{set, clear}_{8, 16}.
*/
shift = addr & (sizeof(uint32_t) - 1);
#if BYTE_ORDER == BIG_ENDIAN
shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
#else
shift *= NBBY;
#endif
addr &= ~(sizeof(uint32_t) - 1);
atomic_clear_32((uint32_t *)addr, clear << shift);
#endif /* PAGE_SIZE */
}
static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
{
#if PAGE_SIZE == 32768
uint64_t old;
old = *bits;
while (atomic_fcmpset_64(bits, &old, newbits) == 0);
return (old);
#elif PAGE_SIZE == 16384
uint32_t old;
old = *bits;
while (atomic_fcmpset_32(bits, &old, newbits) == 0);
return (old);
#elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
uint16_t old;
old = *bits;
while (atomic_fcmpset_16(bits, &old, newbits) == 0);
return (old);
#elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
uint8_t old;
old = *bits;
while (atomic_fcmpset_8(bits, &old, newbits) == 0);
return (old);
#else /* PAGE_SIZE <= 4096*/
uintptr_t addr;
uint32_t old, new, mask;
int shift;
addr = (uintptr_t)bits;
/*
* Use a trick to perform a 32-bit atomic on the
* containing aligned word, to not depend on the existence
* of atomic_{set, swap, clear}_{8, 16}.
*/
shift = addr & (sizeof(uint32_t) - 1);
#if BYTE_ORDER == BIG_ENDIAN
shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
#else
shift *= NBBY;
#endif
addr &= ~(sizeof(uint32_t) - 1);
mask = VM_PAGE_BITS_ALL << shift;
old = *bits;
do {
new = old & ~mask;
new |= newbits << shift;
} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
return (old >> shift);
#endif /* PAGE_SIZE */
}
/*
* vm_page_set_valid_range:
*
* Sets portions of a page valid. The arguments are expected
* to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
* of any partial chunks touched by the range. The invalid portion of
* such chunks will be zeroed.
*
* (base + size) must be less then or equal to PAGE_SIZE.
*/
void
vm_page_set_valid_range(vm_page_t m, int base, int size)
{
int endoff, frag;
vm_page_bits_t pagebits;
vm_page_assert_busied(m);
if (size == 0) /* handle degenerate case */
return;
/*
* If the base is not DEV_BSIZE aligned and the valid
* bit is clear, we have to zero out a portion of the
* first block.
*/
if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
(m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, frag, base - frag);
/*
* If the ending offset is not DEV_BSIZE aligned and the
* valid bit is clear, we have to zero out a portion of
* the last block.
*/
endoff = base + size;
if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
(m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, endoff,
DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
/*
* Assert that no previously invalid block that is now being validated
* is already dirty.
*/
KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
("vm_page_set_valid_range: page %p is dirty", m));
/*
* Set valid bits inclusive of any overlap.
*/
pagebits = vm_page_bits(base, size);
if (vm_page_xbusied(m))
m->valid |= pagebits;
else
vm_page_bits_set(m, &m->valid, pagebits);
}
/*
* Set the page dirty bits and free the invalid swap space if
* present. Returns the previous dirty bits.
*/
vm_page_bits_t
vm_page_set_dirty(vm_page_t m)
{
vm_page_bits_t old;
VM_PAGE_OBJECT_BUSY_ASSERT(m);
if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
old = m->dirty;
m->dirty = VM_PAGE_BITS_ALL;
} else
old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
vm_pager_page_unswapped(m);
return (old);
}
/*
* Clear the given bits from the specified page's dirty field.
*/
static __inline void
vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
{
vm_page_assert_busied(m);
/*
* If the page is xbusied and not write mapped we are the
* only thread that can modify dirty bits. Otherwise, The pmap
* layer can call vm_page_dirty() without holding a distinguished
* lock. The combination of page busy and atomic operations
* suffice to guarantee consistency of the page dirty field.
*/
if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
m->dirty &= ~pagebits;
else
vm_page_bits_clear(m, &m->dirty, pagebits);
}
/*
* vm_page_set_validclean:
*
* Sets portions of a page valid and clean. The arguments are expected
* to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
* of any partial chunks touched by the range. The invalid portion of
* such chunks will be zero'd.
*
* (base + size) must be less then or equal to PAGE_SIZE.
*/
void
vm_page_set_validclean(vm_page_t m, int base, int size)
{
vm_page_bits_t oldvalid, pagebits;
int endoff, frag;
vm_page_assert_busied(m);
if (size == 0) /* handle degenerate case */
return;
/*
* If the base is not DEV_BSIZE aligned and the valid
* bit is clear, we have to zero out a portion of the
* first block.
*/
if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
(m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, frag, base - frag);
/*
* If the ending offset is not DEV_BSIZE aligned and the
* valid bit is clear, we have to zero out a portion of
* the last block.
*/
endoff = base + size;
if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
(m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, endoff,
DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
/*
* Set valid, clear dirty bits. If validating the entire
* page we can safely clear the pmap modify bit. We also
* use this opportunity to clear the PGA_NOSYNC flag. If a process
* takes a write fault on a MAP_NOSYNC memory area the flag will
* be set again.
*
* We set valid bits inclusive of any overlap, but we can only
* clear dirty bits for DEV_BSIZE chunks that are fully within
* the range.
*/
oldvalid = m->valid;
pagebits = vm_page_bits(base, size);
if (vm_page_xbusied(m))
m->valid |= pagebits;
else
vm_page_bits_set(m, &m->valid, pagebits);
#if 0 /* NOT YET */
if ((frag = base & (DEV_BSIZE - 1)) != 0) {
frag = DEV_BSIZE - frag;
base += frag;
size -= frag;
if (size < 0)
size = 0;
}
pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
#endif
if (base == 0 && size == PAGE_SIZE) {
/*
* The page can only be modified within the pmap if it is
* mapped, and it can only be mapped if it was previously
* fully valid.
*/
if (oldvalid == VM_PAGE_BITS_ALL)
/*
* Perform the pmap_clear_modify() first. Otherwise,
* a concurrent pmap operation, such as
* pmap_protect(), could clear a modification in the
* pmap and set the dirty field on the page before
* pmap_clear_modify() had begun and after the dirty
* field was cleared here.
*/
pmap_clear_modify(m);
m->dirty = 0;
vm_page_aflag_clear(m, PGA_NOSYNC);
} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
m->dirty &= ~pagebits;
else
vm_page_clear_dirty_mask(m, pagebits);
}
void
vm_page_clear_dirty(vm_page_t m, int base, int size)
{
vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
}
/*
* vm_page_set_invalid:
*
* Invalidates DEV_BSIZE'd chunks within a page. Both the
* valid and dirty bits for the effected areas are cleared.
*/
void
vm_page_set_invalid(vm_page_t m, int base, int size)
{
vm_page_bits_t bits;
vm_object_t object;
/*
* The object lock is required so that pages can't be mapped
* read-only while we're in the process of invalidating them.
*/
object = m->object;
VM_OBJECT_ASSERT_WLOCKED(object);
vm_page_assert_busied(m);
if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
size >= object->un_pager.vnp.vnp_size)
bits = VM_PAGE_BITS_ALL;
else
bits = vm_page_bits(base, size);
if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
pmap_remove_all(m);
KASSERT((bits == 0 && vm_page_all_valid(m)) ||
!pmap_page_is_mapped(m),
("vm_page_set_invalid: page %p is mapped", m));
if (vm_page_xbusied(m)) {
m->valid &= ~bits;
m->dirty &= ~bits;
} else {
vm_page_bits_clear(m, &m->valid, bits);
vm_page_bits_clear(m, &m->dirty, bits);
}
}
/*
* vm_page_invalid:
*
* Invalidates the entire page. The page must be busy, unmapped, and
* the enclosing object must be locked. The object locks protects
* against concurrent read-only pmap enter which is done without
* busy.
*/
void
vm_page_invalid(vm_page_t m)
{
vm_page_assert_busied(m);
VM_OBJECT_ASSERT_WLOCKED(m->object);
MPASS(!pmap_page_is_mapped(m));
if (vm_page_xbusied(m))
m->valid = 0;
else
vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
}
/*
* vm_page_zero_invalid()
*
* The kernel assumes that the invalid portions of a page contain
* garbage, but such pages can be mapped into memory by user code.
* When this occurs, we must zero out the non-valid portions of the
* page so user code sees what it expects.
*
* Pages are most often semi-valid when the end of a file is mapped
* into memory and the file's size is not page aligned.
*/
void
vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
{
int b;
int i;
/*
* Scan the valid bits looking for invalid sections that
* must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
* valid bit may be set ) have already been zeroed by
* vm_page_set_validclean().
*/
for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
if (i == (PAGE_SIZE / DEV_BSIZE) ||
(m->valid & ((vm_page_bits_t)1 << i))) {
if (i > b) {
pmap_zero_page_area(m,
b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
}
b = i + 1;
}
}
/*
* setvalid is TRUE when we can safely set the zero'd areas
* as being valid. We can do this if there are no cache consistency
* issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
*/
if (setvalid)
vm_page_valid(m);
}
/*
* vm_page_is_valid:
*
* Is (partial) page valid? Note that the case where size == 0
* will return FALSE in the degenerate case where the page is
* entirely invalid, and TRUE otherwise.
*
* Some callers envoke this routine without the busy lock held and
* handle races via higher level locks. Typical callers should
* hold a busy lock to prevent invalidation.
*/
int
vm_page_is_valid(vm_page_t m, int base, int size)
{
vm_page_bits_t bits;
bits = vm_page_bits(base, size);
return (vm_page_any_valid(m) && (m->valid & bits) == bits);
}
/*
* Returns true if all of the specified predicates are true for the entire
* (super)page and false otherwise.
*/
bool
vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
{
vm_object_t object;
int i, npages;
object = m->object;
if (skip_m != NULL && skip_m->object != object)
return (false);
VM_OBJECT_ASSERT_LOCKED(object);
npages = atop(pagesizes[m->psind]);
/*
* The physically contiguous pages that make up a superpage, i.e., a
* page with a page size index ("psind") greater than zero, will
* occupy adjacent entries in vm_page_array[].
*/
for (i = 0; i < npages; i++) {
/* Always test object consistency, including "skip_m". */
if (m[i].object != object)
return (false);
if (&m[i] == skip_m)
continue;
if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
return (false);
if ((flags & PS_ALL_DIRTY) != 0) {
/*
* Calling vm_page_test_dirty() or pmap_is_modified()
* might stop this case from spuriously returning
* "false". However, that would require a write lock
* on the object containing "m[i]".
*/
if (m[i].dirty != VM_PAGE_BITS_ALL)
return (false);
}
if ((flags & PS_ALL_VALID) != 0 &&
m[i].valid != VM_PAGE_BITS_ALL)
return (false);
}
return (true);
}
/*
* Set the page's dirty bits if the page is modified.
*/
void
vm_page_test_dirty(vm_page_t m)
{
vm_page_assert_busied(m);
if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
vm_page_dirty(m);
}
void
vm_page_valid(vm_page_t m)
{
vm_page_assert_busied(m);
if (vm_page_xbusied(m))
m->valid = VM_PAGE_BITS_ALL;
else
vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
}
void
vm_page_lock_KBI(vm_page_t m, const char *file, int line)
{
mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
}
void
vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
{
mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
}
int
vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
{
return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
}
#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
void
vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
{
vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
}
void
vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
{
mtx_assert_(vm_page_lockptr(m), a, file, line);
}
#endif
#ifdef INVARIANTS
void
vm_page_object_busy_assert(vm_page_t m)
{
/*
* Certain of the page's fields may only be modified by the
* holder of a page or object busy.
*/
if (m->object != NULL && !vm_page_busied(m))
VM_OBJECT_ASSERT_BUSY(m->object);
}
void
vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
{
if ((bits & PGA_WRITEABLE) == 0)
return;
/*
* The PGA_WRITEABLE flag can only be set if the page is
* managed, is exclusively busied or the object is locked.
* Currently, this flag is only set by pmap_enter().
*/
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("PGA_WRITEABLE on unmanaged page"));
if (!vm_page_xbusied(m))
VM_OBJECT_ASSERT_BUSY(m->object);
}
#endif
#include "opt_ddb.h"
#ifdef DDB
#include <sys/kernel.h>
#include <ddb/ddb.h>
DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
{
db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
}
DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
{
int dom;
db_printf("pq_free %d\n", vm_free_count());
for (dom = 0; dom < vm_ndomains; dom++) {
db_printf(
"dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
dom,
vm_dom[dom].vmd_page_count,
vm_dom[dom].vmd_free_count,
vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
}
}
DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
{
vm_page_t m;
boolean_t phys, virt;
if (!have_addr) {
db_printf("show pginfo addr\n");
return;
}
phys = strchr(modif, 'p') != NULL;
virt = strchr(modif, 'v') != NULL;
if (virt)
m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
else if (phys)
m = PHYS_TO_VM_PAGE(addr);
else
m = (vm_page_t)addr;
db_printf(
"page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
" af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
m->a.queue, m->ref_count, m->a.flags, m->oflags,
m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
}
#endif /* DDB */