freebsd-src/sys/rpc/svc_vc.c
Gleb Smirnoff 0fac350c54 sockets: don't malloc/free sockaddr memory on getpeername/getsockname
Just like it was done for accept(2) in cfb1e92912, use same approach
for two simplier syscalls that return socket addresses.  Although,
these two syscalls aren't performance critical, this change generalizes
some code between 3 syscalls trimming code size.

Following example of accept(2), provide VNET-aware and INVARIANT-checking
wrappers sopeeraddr() and sosockaddr() around protosw methods.

Reviewed by:		tuexen
Differential Revision:	https://reviews.freebsd.org/D42694
2023-11-30 08:31:10 -08:00

1187 lines
30 KiB
C

/* $NetBSD: svc_vc.c,v 1.7 2000/08/03 00:01:53 fvdl Exp $ */
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2009, Sun Microsystems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of Sun Microsystems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
/*
* svc_vc.c, Server side for Connection Oriented based RPC.
*
* Actually implements two flavors of transporter -
* a tcp rendezvouser (a listner and connection establisher)
* and a record/tcp stream.
*/
#include "opt_kern_tls.h"
#include <sys/param.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/ktls.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/systm.h>
#include <sys/uio.h>
#include <net/vnet.h>
#include <netinet/tcp.h>
#include <rpc/rpc.h>
#include <rpc/rpcsec_tls.h>
#include <rpc/krpc.h>
#include <rpc/rpc_com.h>
#include <security/mac/mac_framework.h>
SYSCTL_NODE(_kern, OID_AUTO, rpc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"RPC");
SYSCTL_NODE(_kern_rpc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"TLS");
SYSCTL_NODE(_kern_rpc, OID_AUTO, unenc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"unencrypted");
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_rx_msgbytes) = 0;
SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, rx_msgbytes, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
&KRPC_VNET_NAME(svc_vc_rx_msgbytes), 0, "Count of non-TLS rx bytes");
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_rx_msgcnt) = 0;
SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, rx_msgcnt, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
&KRPC_VNET_NAME(svc_vc_rx_msgcnt), 0, "Count of non-TLS rx messages");
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tx_msgbytes) = 0;
SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, tx_msgbytes, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
&KRPC_VNET_NAME(svc_vc_tx_msgbytes), 0, "Count of non-TLS tx bytes");
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tx_msgcnt) = 0;
SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, tx_msgcnt, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
&KRPC_VNET_NAME(svc_vc_tx_msgcnt), 0, "Count of non-TLS tx messages");
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_alerts) = 0;
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, alerts,
CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_alerts), 0,
"Count of TLS alert messages");
KRPC_VNET_DEFINE(uint64_t, svc_vc_tls_handshake_failed) = 0;
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, handshake_failed,
CTLFLAG_KRPC_VNET | CTLFLAG_RW,
&KRPC_VNET_NAME(svc_vc_tls_handshake_failed), 0,
"Count of TLS failed handshakes");
KRPC_VNET_DEFINE(uint64_t, svc_vc_tls_handshake_success) = 0;
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, handshake_success,
CTLFLAG_KRPC_VNET | CTLFLAG_RW,
&KRPC_VNET_NAME(svc_vc_tls_handshake_success), 0,
"Count of TLS successful handshakes");
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_rx_msgbytes) = 0;
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, rx_msgbytes,
CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_rx_msgbytes), 0,
"Count of TLS rx bytes");
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_rx_msgcnt) = 0;
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, rx_msgcnt,
CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_rx_msgcnt), 0,
"Count of TLS rx messages");
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_tx_msgbytes) = 0;
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, tx_msgbytes,
CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_tx_msgbytes), 0,
"Count of TLS tx bytes");
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_tx_msgcnt) = 0;
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, tx_msgcnt,
CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_tx_msgcnt), 0,
"Count of TLS tx messages");
static bool_t svc_vc_rendezvous_recv(SVCXPRT *, struct rpc_msg *,
struct sockaddr **, struct mbuf **);
static enum xprt_stat svc_vc_rendezvous_stat(SVCXPRT *);
static void svc_vc_rendezvous_destroy(SVCXPRT *);
static bool_t svc_vc_null(void);
static void svc_vc_destroy(SVCXPRT *);
static enum xprt_stat svc_vc_stat(SVCXPRT *);
static bool_t svc_vc_ack(SVCXPRT *, uint32_t *);
static bool_t svc_vc_recv(SVCXPRT *, struct rpc_msg *,
struct sockaddr **, struct mbuf **);
static bool_t svc_vc_reply(SVCXPRT *, struct rpc_msg *,
struct sockaddr *, struct mbuf *, uint32_t *seq);
static bool_t svc_vc_control(SVCXPRT *xprt, const u_int rq, void *in);
static bool_t svc_vc_rendezvous_control (SVCXPRT *xprt, const u_int rq,
void *in);
static void svc_vc_backchannel_destroy(SVCXPRT *);
static enum xprt_stat svc_vc_backchannel_stat(SVCXPRT *);
static bool_t svc_vc_backchannel_recv(SVCXPRT *, struct rpc_msg *,
struct sockaddr **, struct mbuf **);
static bool_t svc_vc_backchannel_reply(SVCXPRT *, struct rpc_msg *,
struct sockaddr *, struct mbuf *, uint32_t *);
static bool_t svc_vc_backchannel_control(SVCXPRT *xprt, const u_int rq,
void *in);
static SVCXPRT *svc_vc_create_conn(SVCPOOL *pool, struct socket *so,
struct sockaddr *raddr);
static int svc_vc_accept(struct socket *head, struct socket **sop);
static int svc_vc_soupcall(struct socket *so, void *arg, int waitflag);
static int svc_vc_rendezvous_soupcall(struct socket *, void *, int);
static const struct xp_ops svc_vc_rendezvous_ops = {
.xp_recv = svc_vc_rendezvous_recv,
.xp_stat = svc_vc_rendezvous_stat,
.xp_reply = (bool_t (*)(SVCXPRT *, struct rpc_msg *,
struct sockaddr *, struct mbuf *, uint32_t *))svc_vc_null,
.xp_destroy = svc_vc_rendezvous_destroy,
.xp_control = svc_vc_rendezvous_control
};
static const struct xp_ops svc_vc_ops = {
.xp_recv = svc_vc_recv,
.xp_stat = svc_vc_stat,
.xp_ack = svc_vc_ack,
.xp_reply = svc_vc_reply,
.xp_destroy = svc_vc_destroy,
.xp_control = svc_vc_control
};
static const struct xp_ops svc_vc_backchannel_ops = {
.xp_recv = svc_vc_backchannel_recv,
.xp_stat = svc_vc_backchannel_stat,
.xp_reply = svc_vc_backchannel_reply,
.xp_destroy = svc_vc_backchannel_destroy,
.xp_control = svc_vc_backchannel_control
};
/*
* Usage:
* xprt = svc_vc_create(sock, send_buf_size, recv_buf_size);
*
* Creates, registers, and returns a (rpc) tcp based transporter.
* Once *xprt is initialized, it is registered as a transporter
* see (svc.h, xprt_register). This routine returns
* a NULL if a problem occurred.
*
* The filedescriptor passed in is expected to refer to a bound, but
* not yet connected socket.
*
* Since streams do buffered io similar to stdio, the caller can specify
* how big the send and receive buffers are via the second and third parms;
* 0 => use the system default.
*/
SVCXPRT *
svc_vc_create(SVCPOOL *pool, struct socket *so, size_t sendsize,
size_t recvsize)
{
SVCXPRT *xprt;
int error;
SOCK_LOCK(so);
if (so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED)) {
struct sockaddr_storage ss = { .ss_len = sizeof(ss) };
SOCK_UNLOCK(so);
error = sopeeraddr(so, (struct sockaddr *)&ss);
if (error)
return (NULL);
xprt = svc_vc_create_conn(pool, so, (struct sockaddr *)&ss);
return (xprt);
}
SOCK_UNLOCK(so);
xprt = svc_xprt_alloc();
sx_init(&xprt->xp_lock, "xprt->xp_lock");
xprt->xp_pool = pool;
xprt->xp_socket = so;
xprt->xp_p1 = NULL;
xprt->xp_p2 = NULL;
xprt->xp_ops = &svc_vc_rendezvous_ops;
xprt->xp_ltaddr.ss_len = sizeof(xprt->xp_ltaddr);
error = sosockaddr(so, (struct sockaddr *)&xprt->xp_ltaddr);
if (error) {
goto cleanup_svc_vc_create;
}
xprt_register(xprt);
solisten(so, -1, curthread);
SOLISTEN_LOCK(so);
xprt->xp_upcallset = 1;
solisten_upcall_set(so, svc_vc_rendezvous_soupcall, xprt);
SOLISTEN_UNLOCK(so);
return (xprt);
cleanup_svc_vc_create:
sx_destroy(&xprt->xp_lock);
svc_xprt_free(xprt);
return (NULL);
}
/*
* Create a new transport for a socket optained via soaccept().
*/
SVCXPRT *
svc_vc_create_conn(SVCPOOL *pool, struct socket *so, struct sockaddr *raddr)
{
SVCXPRT *xprt;
struct cf_conn *cd;
struct sockopt opt;
int one = 1;
int error;
bzero(&opt, sizeof(struct sockopt));
opt.sopt_dir = SOPT_SET;
opt.sopt_level = SOL_SOCKET;
opt.sopt_name = SO_KEEPALIVE;
opt.sopt_val = &one;
opt.sopt_valsize = sizeof(one);
error = sosetopt(so, &opt);
if (error) {
return (NULL);
}
if (so->so_proto->pr_protocol == IPPROTO_TCP) {
bzero(&opt, sizeof(struct sockopt));
opt.sopt_dir = SOPT_SET;
opt.sopt_level = IPPROTO_TCP;
opt.sopt_name = TCP_NODELAY;
opt.sopt_val = &one;
opt.sopt_valsize = sizeof(one);
error = sosetopt(so, &opt);
if (error) {
return (NULL);
}
}
cd = mem_alloc(sizeof(*cd));
cd->strm_stat = XPRT_IDLE;
xprt = svc_xprt_alloc();
sx_init(&xprt->xp_lock, "xprt->xp_lock");
xprt->xp_pool = pool;
xprt->xp_socket = so;
xprt->xp_p1 = cd;
xprt->xp_p2 = NULL;
xprt->xp_ops = &svc_vc_ops;
/*
* See http://www.connectathon.org/talks96/nfstcp.pdf - client
* has a 5 minute timer, server has a 6 minute timer.
*/
xprt->xp_idletimeout = 6 * 60;
memcpy(&xprt->xp_rtaddr, raddr, raddr->sa_len);
xprt->xp_ltaddr.ss_len = sizeof(xprt->xp_ltaddr);
error = sosockaddr(so, (struct sockaddr *)&xprt->xp_ltaddr);
if (error)
goto cleanup_svc_vc_create;
xprt_register(xprt);
SOCKBUF_LOCK(&so->so_rcv);
xprt->xp_upcallset = 1;
soupcall_set(so, SO_RCV, svc_vc_soupcall, xprt);
SOCKBUF_UNLOCK(&so->so_rcv);
/*
* Throw the transport into the active list in case it already
* has some data buffered.
*/
sx_xlock(&xprt->xp_lock);
xprt_active(xprt);
sx_xunlock(&xprt->xp_lock);
return (xprt);
cleanup_svc_vc_create:
sx_destroy(&xprt->xp_lock);
svc_xprt_free(xprt);
mem_free(cd, sizeof(*cd));
return (NULL);
}
/*
* Create a new transport for a backchannel on a clnt_vc socket.
*/
SVCXPRT *
svc_vc_create_backchannel(SVCPOOL *pool)
{
SVCXPRT *xprt = NULL;
struct cf_conn *cd = NULL;
cd = mem_alloc(sizeof(*cd));
cd->strm_stat = XPRT_IDLE;
xprt = svc_xprt_alloc();
sx_init(&xprt->xp_lock, "xprt->xp_lock");
xprt->xp_pool = pool;
xprt->xp_socket = NULL;
xprt->xp_p1 = cd;
xprt->xp_p2 = NULL;
xprt->xp_ops = &svc_vc_backchannel_ops;
return (xprt);
}
/*
* This does all of the accept except the final call to soaccept. The
* caller will call soaccept after dropping its locks (soaccept may
* call malloc).
*/
int
svc_vc_accept(struct socket *head, struct socket **sop)
{
struct socket *so;
int error = 0;
short nbio;
KASSERT(SOLISTENING(head),
("%s: socket %p is not listening", __func__, head));
#ifdef MAC
error = mac_socket_check_accept(curthread->td_ucred, head);
if (error != 0)
goto done;
#endif
/*
* XXXGL: we want non-blocking semantics. The socket could be a
* socket created by kernel as well as socket shared with userland,
* so we can't be sure about presense of SS_NBIO. We also shall not
* toggle it on the socket, since that may surprise userland. So we
* set SS_NBIO only temporarily.
*/
SOLISTEN_LOCK(head);
nbio = head->so_state & SS_NBIO;
head->so_state |= SS_NBIO;
error = solisten_dequeue(head, &so, 0);
head->so_state &= (nbio & ~SS_NBIO);
if (error)
goto done;
so->so_state |= nbio;
*sop = so;
/* connection has been removed from the listen queue */
KNOTE_UNLOCKED(&head->so_rdsel.si_note, 0);
done:
return (error);
}
/*ARGSUSED*/
static bool_t
svc_vc_rendezvous_recv(SVCXPRT *xprt, struct rpc_msg *msg,
struct sockaddr **addrp, struct mbuf **mp)
{
struct socket *so = NULL;
struct sockaddr_storage ss = { .ss_len = sizeof(ss) };
int error;
SVCXPRT *new_xprt;
/*
* The socket upcall calls xprt_active() which will eventually
* cause the server to call us here. We attempt to accept a
* connection from the socket and turn it into a new
* transport. If the accept fails, we have drained all pending
* connections so we call xprt_inactive().
*/
sx_xlock(&xprt->xp_lock);
error = svc_vc_accept(xprt->xp_socket, &so);
if (error == EWOULDBLOCK) {
/*
* We must re-test for new connections after taking
* the lock to protect us in the case where a new
* connection arrives after our call to accept fails
* with EWOULDBLOCK.
*/
SOLISTEN_LOCK(xprt->xp_socket);
if (TAILQ_EMPTY(&xprt->xp_socket->sol_comp))
xprt_inactive_self(xprt);
SOLISTEN_UNLOCK(xprt->xp_socket);
sx_xunlock(&xprt->xp_lock);
return (FALSE);
}
if (error) {
SOLISTEN_LOCK(xprt->xp_socket);
if (xprt->xp_upcallset) {
xprt->xp_upcallset = 0;
soupcall_clear(xprt->xp_socket, SO_RCV);
}
SOLISTEN_UNLOCK(xprt->xp_socket);
xprt_inactive_self(xprt);
sx_xunlock(&xprt->xp_lock);
return (FALSE);
}
sx_xunlock(&xprt->xp_lock);
error = soaccept(so, (struct sockaddr *)&ss);
if (error) {
/*
* XXX not sure if I need to call sofree or soclose here.
*/
return (FALSE);
}
/*
* svc_vc_create_conn will call xprt_register - we don't need
* to do anything with the new connection except derefence it.
*/
new_xprt = svc_vc_create_conn(xprt->xp_pool, so,
(struct sockaddr *)&ss);
if (!new_xprt) {
soclose(so);
} else {
SVC_RELEASE(new_xprt);
}
return (FALSE); /* there is never an rpc msg to be processed */
}
/*ARGSUSED*/
static enum xprt_stat
svc_vc_rendezvous_stat(SVCXPRT *xprt)
{
return (XPRT_IDLE);
}
static void
svc_vc_destroy_common(SVCXPRT *xprt)
{
uint32_t reterr;
if (xprt->xp_socket) {
if ((xprt->xp_tls & (RPCTLS_FLAGS_HANDSHAKE |
RPCTLS_FLAGS_HANDSHFAIL)) != 0) {
if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
/*
* If the upcall fails, the socket has
* probably been closed via the rpctlssd
* daemon having crashed or been
* restarted, so just ignore returned stat.
*/
rpctls_srv_disconnect(xprt->xp_sslsec,
xprt->xp_sslusec, xprt->xp_sslrefno,
xprt->xp_sslproc, &reterr);
}
/* Must sorele() to get rid of reference. */
CURVNET_SET(xprt->xp_socket->so_vnet);
sorele(xprt->xp_socket);
CURVNET_RESTORE();
} else
(void)soclose(xprt->xp_socket);
}
if (xprt->xp_netid)
(void) mem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
svc_xprt_free(xprt);
}
static void
svc_vc_rendezvous_destroy(SVCXPRT *xprt)
{
SOLISTEN_LOCK(xprt->xp_socket);
if (xprt->xp_upcallset) {
xprt->xp_upcallset = 0;
solisten_upcall_set(xprt->xp_socket, NULL, NULL);
}
SOLISTEN_UNLOCK(xprt->xp_socket);
svc_vc_destroy_common(xprt);
}
static void
svc_vc_destroy(SVCXPRT *xprt)
{
struct cf_conn *cd = (struct cf_conn *)xprt->xp_p1;
CLIENT *cl = (CLIENT *)xprt->xp_p2;
SOCKBUF_LOCK(&xprt->xp_socket->so_rcv);
if (xprt->xp_upcallset) {
xprt->xp_upcallset = 0;
if (xprt->xp_socket->so_rcv.sb_upcall != NULL)
soupcall_clear(xprt->xp_socket, SO_RCV);
}
SOCKBUF_UNLOCK(&xprt->xp_socket->so_rcv);
if (cl != NULL)
CLNT_RELEASE(cl);
svc_vc_destroy_common(xprt);
if (cd->mreq)
m_freem(cd->mreq);
if (cd->mpending)
m_freem(cd->mpending);
mem_free(cd, sizeof(*cd));
}
static void
svc_vc_backchannel_destroy(SVCXPRT *xprt)
{
struct cf_conn *cd = (struct cf_conn *)xprt->xp_p1;
struct mbuf *m, *m2;
svc_xprt_free(xprt);
m = cd->mreq;
while (m != NULL) {
m2 = m;
m = m->m_nextpkt;
m_freem(m2);
}
mem_free(cd, sizeof(*cd));
}
/*ARGSUSED*/
static bool_t
svc_vc_control(SVCXPRT *xprt, const u_int rq, void *in)
{
return (FALSE);
}
static bool_t
svc_vc_rendezvous_control(SVCXPRT *xprt, const u_int rq, void *in)
{
return (FALSE);
}
static bool_t
svc_vc_backchannel_control(SVCXPRT *xprt, const u_int rq, void *in)
{
return (FALSE);
}
static enum xprt_stat
svc_vc_stat(SVCXPRT *xprt)
{
struct cf_conn *cd;
cd = (struct cf_conn *)(xprt->xp_p1);
if (cd->strm_stat == XPRT_DIED)
return (XPRT_DIED);
if (cd->mreq != NULL && cd->resid == 0 && cd->eor)
return (XPRT_MOREREQS);
if (soreadable(xprt->xp_socket))
return (XPRT_MOREREQS);
return (XPRT_IDLE);
}
static bool_t
svc_vc_ack(SVCXPRT *xprt, uint32_t *ack)
{
*ack = atomic_load_acq_32(&xprt->xp_snt_cnt);
*ack -= sbused(&xprt->xp_socket->so_snd);
return (TRUE);
}
static enum xprt_stat
svc_vc_backchannel_stat(SVCXPRT *xprt)
{
struct cf_conn *cd;
cd = (struct cf_conn *)(xprt->xp_p1);
if (cd->mreq != NULL)
return (XPRT_MOREREQS);
return (XPRT_IDLE);
}
/*
* If we have an mbuf chain in cd->mpending, try to parse a record from it,
* leaving the result in cd->mreq. If we don't have a complete record, leave
* the partial result in cd->mreq and try to read more from the socket.
*/
static int
svc_vc_process_pending(SVCXPRT *xprt)
{
struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
struct socket *so = xprt->xp_socket;
struct mbuf *m;
/*
* If cd->resid is non-zero, we have part of the
* record already, otherwise we are expecting a record
* marker.
*/
if (!cd->resid && cd->mpending) {
/*
* See if there is enough data buffered to
* make up a record marker. Make sure we can
* handle the case where the record marker is
* split across more than one mbuf.
*/
size_t n = 0;
uint32_t header;
m = cd->mpending;
while (n < sizeof(uint32_t) && m) {
n += m->m_len;
m = m->m_next;
}
if (n < sizeof(uint32_t)) {
so->so_rcv.sb_lowat = sizeof(uint32_t) - n;
return (FALSE);
}
m_copydata(cd->mpending, 0, sizeof(header),
(char *)&header);
header = ntohl(header);
cd->eor = (header & 0x80000000) != 0;
cd->resid = header & 0x7fffffff;
m_adj(cd->mpending, sizeof(uint32_t));
}
/*
* Start pulling off mbufs from cd->mpending
* until we either have a complete record or
* we run out of data. We use m_split to pull
* data - it will pull as much as possible and
* split the last mbuf if necessary.
*/
while (cd->mpending && cd->resid) {
m = cd->mpending;
if (cd->mpending->m_next
|| cd->mpending->m_len > cd->resid)
cd->mpending = m_split(cd->mpending,
cd->resid, M_WAITOK);
else
cd->mpending = NULL;
if (cd->mreq)
m_last(cd->mreq)->m_next = m;
else
cd->mreq = m;
while (m) {
cd->resid -= m->m_len;
m = m->m_next;
}
}
/*
* Block receive upcalls if we have more data pending,
* otherwise report our need.
*/
if (cd->mpending)
so->so_rcv.sb_lowat = INT_MAX;
else
so->so_rcv.sb_lowat =
imax(1, imin(cd->resid, so->so_rcv.sb_hiwat / 2));
return (TRUE);
}
static bool_t
svc_vc_recv(SVCXPRT *xprt, struct rpc_msg *msg,
struct sockaddr **addrp, struct mbuf **mp)
{
struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
struct uio uio;
struct mbuf *m, *ctrl;
struct socket* so = xprt->xp_socket;
XDR xdrs;
int error, rcvflag;
uint32_t reterr, xid_plus_direction[2];
struct cmsghdr *cmsg;
struct tls_get_record tgr;
enum clnt_stat ret;
/*
* Serialise access to the socket and our own record parsing
* state.
*/
sx_xlock(&xprt->xp_lock);
for (;;) {
/* If we have no request ready, check pending queue. */
while (cd->mpending &&
(cd->mreq == NULL || cd->resid != 0 || !cd->eor)) {
if (!svc_vc_process_pending(xprt))
break;
}
/* Process and return complete request in cd->mreq. */
if (cd->mreq != NULL && cd->resid == 0 && cd->eor) {
/*
* Now, check for a backchannel reply.
* The XID is in the first uint32_t of the reply
* and the message direction is the second one.
*/
if ((cd->mreq->m_len >= sizeof(xid_plus_direction) ||
m_length(cd->mreq, NULL) >=
sizeof(xid_plus_direction)) &&
xprt->xp_p2 != NULL) {
m_copydata(cd->mreq, 0,
sizeof(xid_plus_direction),
(char *)xid_plus_direction);
xid_plus_direction[0] =
ntohl(xid_plus_direction[0]);
xid_plus_direction[1] =
ntohl(xid_plus_direction[1]);
/* Check message direction. */
if (xid_plus_direction[1] == REPLY) {
clnt_bck_svccall(xprt->xp_p2,
cd->mreq,
xid_plus_direction[0]);
cd->mreq = NULL;
continue;
}
}
xdrmbuf_create(&xdrs, cd->mreq, XDR_DECODE);
cd->mreq = NULL;
/* Check for next request in a pending queue. */
svc_vc_process_pending(xprt);
if (cd->mreq == NULL || cd->resid != 0) {
SOCKBUF_LOCK(&so->so_rcv);
if (!soreadable(so))
xprt_inactive_self(xprt);
SOCKBUF_UNLOCK(&so->so_rcv);
}
sx_xunlock(&xprt->xp_lock);
if (! xdr_callmsg(&xdrs, msg)) {
XDR_DESTROY(&xdrs);
return (FALSE);
}
*addrp = NULL;
*mp = xdrmbuf_getall(&xdrs);
XDR_DESTROY(&xdrs);
return (TRUE);
}
/*
* If receiving is disabled so that a TLS handshake can be
* done by the rpctlssd daemon, return FALSE here.
*/
rcvflag = MSG_DONTWAIT;
if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0)
rcvflag |= MSG_TLSAPPDATA;
tryagain:
if (xprt->xp_dontrcv) {
sx_xunlock(&xprt->xp_lock);
return (FALSE);
}
/*
* The socket upcall calls xprt_active() which will eventually
* cause the server to call us here. We attempt to
* read as much as possible from the socket and put
* the result in cd->mpending. If the read fails,
* we have drained both cd->mpending and the socket so
* we can call xprt_inactive().
*/
uio.uio_resid = 1000000000;
uio.uio_td = curthread;
ctrl = m = NULL;
error = soreceive(so, NULL, &uio, &m, &ctrl, &rcvflag);
if (error == EWOULDBLOCK) {
/*
* We must re-test for readability after
* taking the lock to protect us in the case
* where a new packet arrives on the socket
* after our call to soreceive fails with
* EWOULDBLOCK.
*/
SOCKBUF_LOCK(&so->so_rcv);
if (!soreadable(so))
xprt_inactive_self(xprt);
SOCKBUF_UNLOCK(&so->so_rcv);
sx_xunlock(&xprt->xp_lock);
return (FALSE);
}
/*
* A return of ENXIO indicates that there is an
* alert record at the head of the
* socket's receive queue, for TLS connections.
* This record needs to be handled in userland
* via an SSL_read() call, so do an upcall to the daemon.
*/
KRPC_CURVNET_SET(so->so_vnet);
if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0 &&
error == ENXIO) {
KRPC_VNET(svc_vc_tls_alerts)++;
KRPC_CURVNET_RESTORE();
/* Disable reception. */
xprt->xp_dontrcv = TRUE;
sx_xunlock(&xprt->xp_lock);
ret = rpctls_srv_handlerecord(xprt->xp_sslsec,
xprt->xp_sslusec, xprt->xp_sslrefno,
xprt->xp_sslproc, &reterr);
sx_xlock(&xprt->xp_lock);
xprt->xp_dontrcv = FALSE;
if (ret != RPC_SUCCESS || reterr != RPCTLSERR_OK) {
/*
* All we can do is soreceive() it and
* then toss it.
*/
rcvflag = MSG_DONTWAIT;
goto tryagain;
}
sx_xunlock(&xprt->xp_lock);
xprt_active(xprt); /* Harmless if already active. */
return (FALSE);
}
if (error) {
KRPC_CURVNET_RESTORE();
SOCKBUF_LOCK(&so->so_rcv);
if (xprt->xp_upcallset) {
xprt->xp_upcallset = 0;
soupcall_clear(so, SO_RCV);
}
SOCKBUF_UNLOCK(&so->so_rcv);
xprt_inactive_self(xprt);
cd->strm_stat = XPRT_DIED;
sx_xunlock(&xprt->xp_lock);
return (FALSE);
}
if (!m) {
KRPC_CURVNET_RESTORE();
/*
* EOF - the other end has closed the socket.
*/
xprt_inactive_self(xprt);
cd->strm_stat = XPRT_DIED;
sx_xunlock(&xprt->xp_lock);
return (FALSE);
}
/* Process any record header(s). */
if (ctrl != NULL) {
cmsg = mtod(ctrl, struct cmsghdr *);
if (cmsg->cmsg_type == TLS_GET_RECORD &&
cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
/*
* TLS_RLTYPE_ALERT records should be handled
* since soreceive() would have returned
* ENXIO. Just throw any other
* non-TLS_RLTYPE_APP records away.
*/
if (tgr.tls_type != TLS_RLTYPE_APP) {
m_freem(m);
m_free(ctrl);
rcvflag = MSG_DONTWAIT | MSG_TLSAPPDATA;
KRPC_CURVNET_RESTORE();
goto tryagain;
}
KRPC_VNET(svc_vc_tls_rx_msgcnt)++;
KRPC_VNET(svc_vc_tls_rx_msgbytes) +=
1000000000 - uio.uio_resid;
}
m_free(ctrl);
} else {
KRPC_VNET(svc_vc_rx_msgcnt)++;
KRPC_VNET(svc_vc_rx_msgbytes) += 1000000000 -
uio.uio_resid;
}
KRPC_CURVNET_RESTORE();
if (cd->mpending)
m_last(cd->mpending)->m_next = m;
else
cd->mpending = m;
}
}
static bool_t
svc_vc_backchannel_recv(SVCXPRT *xprt, struct rpc_msg *msg,
struct sockaddr **addrp, struct mbuf **mp)
{
struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
struct ct_data *ct;
struct mbuf *m;
XDR xdrs;
sx_xlock(&xprt->xp_lock);
ct = (struct ct_data *)xprt->xp_p2;
if (ct == NULL) {
sx_xunlock(&xprt->xp_lock);
return (FALSE);
}
mtx_lock(&ct->ct_lock);
m = cd->mreq;
if (m == NULL) {
xprt_inactive_self(xprt);
mtx_unlock(&ct->ct_lock);
sx_xunlock(&xprt->xp_lock);
return (FALSE);
}
cd->mreq = m->m_nextpkt;
mtx_unlock(&ct->ct_lock);
sx_xunlock(&xprt->xp_lock);
xdrmbuf_create(&xdrs, m, XDR_DECODE);
if (! xdr_callmsg(&xdrs, msg)) {
XDR_DESTROY(&xdrs);
return (FALSE);
}
*addrp = NULL;
*mp = xdrmbuf_getall(&xdrs);
XDR_DESTROY(&xdrs);
return (TRUE);
}
static bool_t
svc_vc_reply(SVCXPRT *xprt, struct rpc_msg *msg,
struct sockaddr *addr, struct mbuf *m, uint32_t *seq)
{
XDR xdrs;
struct mbuf *mrep;
bool_t stat = TRUE;
int error, len, maxextsiz;
#ifdef KERN_TLS
u_int maxlen;
#endif
/*
* Leave space for record mark.
*/
mrep = m_gethdr(M_WAITOK, MT_DATA);
mrep->m_data += sizeof(uint32_t);
xdrmbuf_create(&xdrs, mrep, XDR_ENCODE);
if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
if (!xdr_replymsg(&xdrs, msg))
stat = FALSE;
else
xdrmbuf_append(&xdrs, m);
} else {
stat = xdr_replymsg(&xdrs, msg);
}
if (stat) {
m_fixhdr(mrep);
/*
* Prepend a record marker containing the reply length.
*/
M_PREPEND(mrep, sizeof(uint32_t), M_WAITOK);
len = mrep->m_pkthdr.len;
*mtod(mrep, uint32_t *) =
htonl(0x80000000 | (len - sizeof(uint32_t)));
/* For RPC-over-TLS, copy mrep to a chain of ext_pgs. */
KRPC_CURVNET_SET(xprt->xp_socket->so_vnet);
if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
/*
* Copy the mbuf chain to a chain of
* ext_pgs mbuf(s) as required by KERN_TLS.
*/
maxextsiz = TLS_MAX_MSG_SIZE_V10_2;
#ifdef KERN_TLS
if (rpctls_getinfo(&maxlen, false, false))
maxextsiz = min(maxextsiz, maxlen);
#endif
mrep = _rpc_copym_into_ext_pgs(mrep, maxextsiz);
KRPC_VNET(svc_vc_tls_tx_msgcnt)++;
KRPC_VNET(svc_vc_tls_tx_msgbytes) += len;
} else {
KRPC_VNET(svc_vc_tx_msgcnt)++;
KRPC_VNET(svc_vc_tx_msgbytes) += len;
}
KRPC_CURVNET_RESTORE();
atomic_add_32(&xprt->xp_snd_cnt, len);
/*
* sosend consumes mreq.
*/
error = sosend(xprt->xp_socket, NULL, NULL, mrep, NULL,
0, curthread);
if (!error) {
atomic_add_rel_32(&xprt->xp_snt_cnt, len);
if (seq)
*seq = xprt->xp_snd_cnt;
stat = TRUE;
} else
atomic_subtract_32(&xprt->xp_snd_cnt, len);
} else {
m_freem(mrep);
}
XDR_DESTROY(&xdrs);
return (stat);
}
static bool_t
svc_vc_backchannel_reply(SVCXPRT *xprt, struct rpc_msg *msg,
struct sockaddr *addr, struct mbuf *m, uint32_t *seq)
{
struct ct_data *ct;
XDR xdrs;
struct mbuf *mrep;
bool_t stat = TRUE;
int error, maxextsiz;
#ifdef KERN_TLS
u_int maxlen;
#endif
/*
* Leave space for record mark.
*/
mrep = m_gethdr(M_WAITOK, MT_DATA);
mrep->m_data += sizeof(uint32_t);
xdrmbuf_create(&xdrs, mrep, XDR_ENCODE);
if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
if (!xdr_replymsg(&xdrs, msg))
stat = FALSE;
else
xdrmbuf_append(&xdrs, m);
} else {
stat = xdr_replymsg(&xdrs, msg);
}
if (stat) {
m_fixhdr(mrep);
/*
* Prepend a record marker containing the reply length.
*/
M_PREPEND(mrep, sizeof(uint32_t), M_WAITOK);
*mtod(mrep, uint32_t *) =
htonl(0x80000000 | (mrep->m_pkthdr.len
- sizeof(uint32_t)));
/* For RPC-over-TLS, copy mrep to a chain of ext_pgs. */
if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
/*
* Copy the mbuf chain to a chain of
* ext_pgs mbuf(s) as required by KERN_TLS.
*/
maxextsiz = TLS_MAX_MSG_SIZE_V10_2;
#ifdef KERN_TLS
if (rpctls_getinfo(&maxlen, false, false))
maxextsiz = min(maxextsiz, maxlen);
#endif
mrep = _rpc_copym_into_ext_pgs(mrep, maxextsiz);
}
sx_xlock(&xprt->xp_lock);
ct = (struct ct_data *)xprt->xp_p2;
if (ct != NULL)
error = sosend(ct->ct_socket, NULL, NULL, mrep, NULL,
0, curthread);
else
error = EPIPE;
sx_xunlock(&xprt->xp_lock);
if (!error) {
stat = TRUE;
}
} else {
m_freem(mrep);
}
XDR_DESTROY(&xdrs);
return (stat);
}
static bool_t
svc_vc_null(void)
{
return (FALSE);
}
static int
svc_vc_soupcall(struct socket *so, void *arg, int waitflag)
{
SVCXPRT *xprt = (SVCXPRT *) arg;
if (soreadable(xprt->xp_socket))
xprt_active(xprt);
return (SU_OK);
}
static int
svc_vc_rendezvous_soupcall(struct socket *head, void *arg, int waitflag)
{
SVCXPRT *xprt = (SVCXPRT *) arg;
if (!TAILQ_EMPTY(&head->sol_comp))
xprt_active(xprt);
return (SU_OK);
}
#if 0
/*
* Get the effective UID of the sending process. Used by rpcbind, keyserv
* and rpc.yppasswdd on AF_LOCAL.
*/
int
__rpc_get_local_uid(SVCXPRT *transp, uid_t *uid) {
int sock, ret;
gid_t egid;
uid_t euid;
struct sockaddr *sa;
sock = transp->xp_fd;
sa = (struct sockaddr *)transp->xp_rtaddr;
if (sa->sa_family == AF_LOCAL) {
ret = getpeereid(sock, &euid, &egid);
if (ret == 0)
*uid = euid;
return (ret);
} else
return (-1);
}
#endif