freebsd-src/contrib/bearssl/tools/server.c
Simon J. Gerraty 0957b409a9 Add libbearssl
Disabled by default, used by loader and sbin/veriexec

Reviewed by:	emaste
Sponsored by:	Juniper Networks
Differential Revision: D16334
2019-02-26 05:59:22 +00:00

1236 lines
28 KiB
C

/*
* Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <signal.h>
#ifdef _WIN32
#include <winsock2.h>
#include <ws2tcpip.h>
#else
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <fcntl.h>
#define SOCKET int
#define INVALID_SOCKET (-1)
#define SOCKADDR_STORAGE struct sockaddr_storage
#endif
#include "brssl.h"
static SOCKET
host_bind(const char *host, const char *port, int verbose)
{
struct addrinfo hints, *si, *p;
SOCKET fd;
int err;
memset(&hints, 0, sizeof hints);
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
err = getaddrinfo(host, port, &hints, &si);
if (err != 0) {
fprintf(stderr, "ERROR: getaddrinfo(): %s\n",
gai_strerror(err));
return INVALID_SOCKET;
}
fd = INVALID_SOCKET;
for (p = si; p != NULL; p = p->ai_next) {
struct sockaddr *sa;
struct sockaddr_in sa4;
struct sockaddr_in6 sa6;
size_t sa_len;
void *addr;
int opt;
sa = (struct sockaddr *)p->ai_addr;
if (sa->sa_family == AF_INET) {
memcpy(&sa4, sa, sizeof sa4);
sa = (struct sockaddr *)&sa4;
sa_len = sizeof sa4;
addr = &sa4.sin_addr;
if (host == NULL) {
sa4.sin_addr.s_addr = INADDR_ANY;
}
} else if (sa->sa_family == AF_INET6) {
memcpy(&sa6, sa, sizeof sa6);
sa = (struct sockaddr *)&sa6;
sa_len = sizeof sa6;
addr = &sa6.sin6_addr;
if (host == NULL) {
sa6.sin6_addr = in6addr_any;
}
} else {
addr = NULL;
sa_len = p->ai_addrlen;
}
if (verbose) {
char tmp[INET6_ADDRSTRLEN + 50];
if (addr != NULL) {
if (!inet_ntop(p->ai_family, addr,
tmp, sizeof tmp))
{
strcpy(tmp, "<invalid>");
}
} else {
sprintf(tmp, "<unknown family: %d>",
(int)sa->sa_family);
}
fprintf(stderr, "binding to: %s\n", tmp);
}
fd = socket(p->ai_family, p->ai_socktype, p->ai_protocol);
if (fd == INVALID_SOCKET) {
if (verbose) {
perror("socket()");
}
continue;
}
opt = 1;
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
(void *)&opt, sizeof opt);
#ifdef IPV6_V6ONLY
/*
* We want to make sure that the server socket works for
* both IPv4 and IPv6. But IPV6_V6ONLY is not defined on
* some very old systems.
*/
opt = 0;
setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY,
(void *)&opt, sizeof opt);
#endif
if (bind(fd, sa, sa_len) < 0) {
if (verbose) {
perror("bind()");
}
#ifdef _WIN32
closesocket(fd);
#else
close(fd);
#endif
continue;
}
break;
}
if (p == NULL) {
freeaddrinfo(si);
fprintf(stderr, "ERROR: failed to bind\n");
return INVALID_SOCKET;
}
freeaddrinfo(si);
if (listen(fd, 5) < 0) {
if (verbose) {
perror("listen()");
}
#ifdef _WIN32
closesocket(fd);
#else
close(fd);
#endif
return INVALID_SOCKET;
}
if (verbose) {
fprintf(stderr, "bound.\n");
}
return fd;
}
static SOCKET
accept_client(SOCKET server_fd, int verbose, int nonblock)
{
int fd;
SOCKADDR_STORAGE sa;
socklen_t sa_len;
sa_len = sizeof sa;
fd = accept(server_fd, (struct sockaddr *)&sa, &sa_len);
if (fd == INVALID_SOCKET) {
if (verbose) {
perror("accept()");
}
return INVALID_SOCKET;
}
if (verbose) {
char tmp[INET6_ADDRSTRLEN + 50];
const char *name;
name = NULL;
switch (((struct sockaddr *)&sa)->sa_family) {
case AF_INET:
name = inet_ntop(AF_INET,
&((struct sockaddr_in *)&sa)->sin_addr,
tmp, sizeof tmp);
break;
case AF_INET6:
name = inet_ntop(AF_INET6,
&((struct sockaddr_in6 *)&sa)->sin6_addr,
tmp, sizeof tmp);
break;
}
if (name == NULL) {
sprintf(tmp, "<unknown: %lu>", (unsigned long)
((struct sockaddr *)&sa)->sa_family);
name = tmp;
}
fprintf(stderr, "accepting connection from: %s\n", name);
}
/*
* We make the socket non-blocking, since we are going to use
* poll() or select() to organise I/O.
*/
if (nonblock) {
#ifdef _WIN32
u_long arg;
arg = 1;
ioctlsocket(fd, FIONBIO, &arg);
#else
fcntl(fd, F_SETFL, O_NONBLOCK);
#endif
}
return fd;
}
static void
usage_server(void)
{
fprintf(stderr,
"usage: brssl server [ options ]\n");
fprintf(stderr,
"options:\n");
fprintf(stderr,
" -q suppress verbose messages\n");
fprintf(stderr,
" -trace activate extra debug messages (dump of all packets)\n");
fprintf(stderr,
" -b name bind to a specific address or host name\n");
fprintf(stderr,
" -p port bind to a specific port (default: 4433)\n");
fprintf(stderr,
" -mono use monodirectional buffering\n");
fprintf(stderr,
" -buf length set the I/O buffer length (in bytes)\n");
fprintf(stderr,
" -cache length set the session cache storage length (in bytes)\n");
fprintf(stderr,
" -cert fname read certificate chain from file 'fname'\n");
fprintf(stderr,
" -key fname read private key from file 'fname'\n");
fprintf(stderr,
" -CA file add trust anchors from 'file' (for client auth)\n");
fprintf(stderr,
" -anon_ok request but do not require a client certificate\n");
fprintf(stderr,
" -list list supported names (protocols, algorithms...)\n");
fprintf(stderr,
" -vmin name set minimum supported version (default: TLS-1.0)\n");
fprintf(stderr,
" -vmax name set maximum supported version (default: TLS-1.2)\n");
fprintf(stderr,
" -cs names set list of supported cipher suites (comma-separated)\n");
fprintf(stderr,
" -hf names add support for some hash functions (comma-separated)\n");
fprintf(stderr,
" -cbhash test hashing in policy callback\n");
fprintf(stderr,
" -serverpref enforce server's preferences for cipher suites\n");
fprintf(stderr,
" -noreneg prohibit renegotiations\n");
fprintf(stderr,
" -alpn name add protocol name to list of protocols (ALPN extension)\n");
fprintf(stderr,
" -strictalpn fail on ALPN mismatch\n");
exit(EXIT_FAILURE);
}
typedef struct {
const br_ssl_server_policy_class *vtable;
int verbose;
br_x509_certificate *chain;
size_t chain_len;
int cert_signer_algo;
private_key *sk;
int cbhash;
} policy_context;
static void
print_hashes(unsigned chashes)
{
int i;
for (i = 2; i <= 6; i ++) {
if ((chashes >> i) & 1) {
int z;
switch (i) {
case 3: z = 224; break;
case 4: z = 256; break;
case 5: z = 384; break;
case 6: z = 512; break;
default:
z = 1;
break;
}
fprintf(stderr, " sha%d", z);
}
}
}
static unsigned
choose_hash(unsigned chashes)
{
unsigned hash_id;
for (hash_id = 6; hash_id >= 2; hash_id --) {
if (((chashes >> hash_id) & 1) != 0) {
return hash_id;
}
}
/*
* Normally unreachable.
*/
return 0;
}
static int
sp_choose(const br_ssl_server_policy_class **pctx,
const br_ssl_server_context *cc,
br_ssl_server_choices *choices)
{
policy_context *pc;
const br_suite_translated *st;
size_t u, st_num;
unsigned chashes;
pc = (policy_context *)pctx;
st = br_ssl_server_get_client_suites(cc, &st_num);
chashes = br_ssl_server_get_client_hashes(cc);
if (pc->verbose) {
fprintf(stderr, "Client parameters:\n");
fprintf(stderr, " Maximum version: ");
switch (cc->client_max_version) {
case BR_SSL30:
fprintf(stderr, "SSL 3.0");
break;
case BR_TLS10:
fprintf(stderr, "TLS 1.0");
break;
case BR_TLS11:
fprintf(stderr, "TLS 1.1");
break;
case BR_TLS12:
fprintf(stderr, "TLS 1.2");
break;
default:
fprintf(stderr, "unknown (0x%04X)",
(unsigned)cc->client_max_version);
break;
}
fprintf(stderr, "\n");
fprintf(stderr, " Compatible cipher suites:\n");
for (u = 0; u < st_num; u ++) {
char csn[80];
get_suite_name_ext(st[u][0], csn, sizeof csn);
fprintf(stderr, " %s\n", csn);
}
fprintf(stderr, " Common sign+hash functions:\n");
if ((chashes & 0xFF) != 0) {
fprintf(stderr, " with RSA:");
print_hashes(chashes);
fprintf(stderr, "\n");
}
if ((chashes >> 8) != 0) {
fprintf(stderr, " with ECDSA:");
print_hashes(chashes >> 8);
fprintf(stderr, "\n");
}
}
for (u = 0; u < st_num; u ++) {
unsigned tt;
tt = st[u][1];
switch (tt >> 12) {
case BR_SSLKEYX_RSA:
if (pc->sk->key_type == BR_KEYTYPE_RSA) {
choices->cipher_suite = st[u][0];
goto choose_ok;
}
break;
case BR_SSLKEYX_ECDHE_RSA:
if (pc->sk->key_type == BR_KEYTYPE_RSA) {
choices->cipher_suite = st[u][0];
if (br_ssl_engine_get_version(&cc->eng)
< BR_TLS12)
{
if (pc->cbhash) {
choices->algo_id = 0x0001;
} else {
choices->algo_id = 0xFF00;
}
} else {
unsigned id;
id = choose_hash(chashes);
if (pc->cbhash) {
choices->algo_id =
(id << 8) + 0x01;
} else {
choices->algo_id = 0xFF00 + id;
}
}
goto choose_ok;
}
break;
case BR_SSLKEYX_ECDHE_ECDSA:
if (pc->sk->key_type == BR_KEYTYPE_EC) {
choices->cipher_suite = st[u][0];
if (br_ssl_engine_get_version(&cc->eng)
< BR_TLS12)
{
if (pc->cbhash) {
choices->algo_id = 0x0203;
} else {
choices->algo_id =
0xFF00 + br_sha1_ID;
}
} else {
unsigned id;
id = choose_hash(chashes >> 8);
if (pc->cbhash) {
choices->algo_id =
(id << 8) + 0x03;
} else {
choices->algo_id =
0xFF00 + id;
}
}
goto choose_ok;
}
break;
case BR_SSLKEYX_ECDH_RSA:
if (pc->sk->key_type == BR_KEYTYPE_EC
&& pc->cert_signer_algo == BR_KEYTYPE_RSA)
{
choices->cipher_suite = st[u][0];
goto choose_ok;
}
break;
case BR_SSLKEYX_ECDH_ECDSA:
if (pc->sk->key_type == BR_KEYTYPE_EC
&& pc->cert_signer_algo == BR_KEYTYPE_EC)
{
choices->cipher_suite = st[u][0];
goto choose_ok;
}
break;
}
}
return 0;
choose_ok:
choices->chain = pc->chain;
choices->chain_len = pc->chain_len;
if (pc->verbose) {
char csn[80];
get_suite_name_ext(choices->cipher_suite, csn, sizeof csn);
fprintf(stderr, "Using: %s\n", csn);
}
return 1;
}
static uint32_t
sp_do_keyx(const br_ssl_server_policy_class **pctx,
unsigned char *data, size_t *len)
{
policy_context *pc;
uint32_t r;
size_t xoff, xlen;
pc = (policy_context *)pctx;
switch (pc->sk->key_type) {
const br_ec_impl *iec;
case BR_KEYTYPE_RSA:
return br_rsa_ssl_decrypt(
br_rsa_private_get_default(),
&pc->sk->key.rsa, data, *len);
case BR_KEYTYPE_EC:
iec = br_ec_get_default();
r = iec->mul(data, *len, pc->sk->key.ec.x,
pc->sk->key.ec.xlen, pc->sk->key.ec.curve);
xoff = iec->xoff(pc->sk->key.ec.curve, &xlen);
memmove(data, data + xoff, xlen);
*len = xlen;
return r;
default:
fprintf(stderr, "ERROR: unknown private key type (%d)\n",
(int)pc->sk->key_type);
return 0;
}
}
static size_t
sp_do_sign(const br_ssl_server_policy_class **pctx,
unsigned algo_id, unsigned char *data, size_t hv_len, size_t len)
{
policy_context *pc;
unsigned char hv[64];
pc = (policy_context *)pctx;
if (algo_id >= 0xFF00) {
algo_id &= 0xFF;
memcpy(hv, data, hv_len);
} else {
const br_hash_class *hc;
br_hash_compat_context zc;
if (pc->verbose) {
fprintf(stderr, "Callback hashing, algo = 0x%04X,"
" data_len = %lu\n",
algo_id, (unsigned long)hv_len);
}
algo_id >>= 8;
hc = get_hash_impl(algo_id);
if (hc == NULL) {
if (pc->verbose) {
fprintf(stderr,
"ERROR: unsupported hash function %u\n",
algo_id);
}
return 0;
}
hc->init(&zc.vtable);
hc->update(&zc.vtable, data, hv_len);
hc->out(&zc.vtable, hv);
hv_len = (hc->desc >> BR_HASHDESC_OUT_OFF)
& BR_HASHDESC_OUT_MASK;
}
switch (pc->sk->key_type) {
size_t sig_len;
uint32_t x;
const unsigned char *hash_oid;
const br_hash_class *hc;
case BR_KEYTYPE_RSA:
hash_oid = get_hash_oid(algo_id);
if (hash_oid == NULL && algo_id != 0) {
if (pc->verbose) {
fprintf(stderr, "ERROR: cannot RSA-sign with"
" unknown hash function: %u\n",
algo_id);
}
return 0;
}
sig_len = (pc->sk->key.rsa.n_bitlen + 7) >> 3;
if (len < sig_len) {
if (pc->verbose) {
fprintf(stderr, "ERROR: cannot RSA-sign,"
" buffer is too small"
" (sig=%lu, buf=%lu)\n",
(unsigned long)sig_len,
(unsigned long)len);
}
return 0;
}
x = br_rsa_pkcs1_sign_get_default()(
hash_oid, hv, hv_len, &pc->sk->key.rsa, data);
if (!x) {
if (pc->verbose) {
fprintf(stderr, "ERROR: RSA-sign failure\n");
}
return 0;
}
return sig_len;
case BR_KEYTYPE_EC:
hc = get_hash_impl(algo_id);
if (hc == NULL) {
if (pc->verbose) {
fprintf(stderr, "ERROR: cannot ECDSA-sign with"
" unknown hash function: %u\n",
algo_id);
}
return 0;
}
if (len < 139) {
if (pc->verbose) {
fprintf(stderr, "ERROR: cannot ECDSA-sign"
" (output buffer = %lu)\n",
(unsigned long)len);
}
return 0;
}
sig_len = br_ecdsa_sign_asn1_get_default()(
br_ec_get_default(), hc, hv, &pc->sk->key.ec, data);
if (sig_len == 0) {
if (pc->verbose) {
fprintf(stderr, "ERROR: ECDSA-sign failure\n");
}
return 0;
}
return sig_len;
default:
return 0;
}
}
static const br_ssl_server_policy_class policy_vtable = {
sizeof(policy_context),
sp_choose,
sp_do_keyx,
sp_do_sign
};
void
free_alpn(void *alpn)
{
xfree(*(char **)alpn);
}
/* see brssl.h */
int
do_server(int argc, char *argv[])
{
int retcode;
int verbose;
int trace;
int i, bidi;
const char *bind_name;
const char *port;
unsigned vmin, vmax;
cipher_suite *suites;
size_t num_suites;
uint16_t *suite_ids;
unsigned hfuns;
int cbhash;
br_x509_certificate *chain;
size_t chain_len;
int cert_signer_algo;
private_key *sk;
anchor_list anchors = VEC_INIT;
VECTOR(char *) alpn_names = VEC_INIT;
br_x509_minimal_context xc;
const br_hash_class *dnhash;
size_t u;
br_ssl_server_context cc;
policy_context pc;
br_ssl_session_cache_lru lru;
unsigned char *iobuf, *cache;
size_t iobuf_len, cache_len;
uint32_t flags;
SOCKET server_fd, fd;
retcode = 0;
verbose = 1;
trace = 0;
bind_name = NULL;
port = NULL;
bidi = 1;
vmin = 0;
vmax = 0;
suites = NULL;
num_suites = 0;
hfuns = 0;
cbhash = 0;
suite_ids = NULL;
chain = NULL;
chain_len = 0;
sk = NULL;
iobuf = NULL;
iobuf_len = 0;
cache = NULL;
cache_len = (size_t)-1;
flags = 0;
server_fd = INVALID_SOCKET;
fd = INVALID_SOCKET;
for (i = 0; i < argc; i ++) {
const char *arg;
arg = argv[i];
if (arg[0] != '-') {
usage_server();
goto server_exit_error;
}
if (eqstr(arg, "-v") || eqstr(arg, "-verbose")) {
verbose = 1;
} else if (eqstr(arg, "-q") || eqstr(arg, "-quiet")) {
verbose = 0;
} else if (eqstr(arg, "-trace")) {
trace = 1;
} else if (eqstr(arg, "-b")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-b'\n");
usage_server();
goto server_exit_error;
}
if (bind_name != NULL) {
fprintf(stderr, "ERROR: duplicate bind host\n");
usage_server();
goto server_exit_error;
}
bind_name = argv[i];
} else if (eqstr(arg, "-p")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-p'\n");
usage_server();
goto server_exit_error;
}
if (port != NULL) {
fprintf(stderr, "ERROR: duplicate bind port\n");
usage_server();
goto server_exit_error;
}
port = argv[i];
} else if (eqstr(arg, "-mono")) {
bidi = 0;
} else if (eqstr(arg, "-buf")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-buf'\n");
usage_server();
goto server_exit_error;
}
arg = argv[i];
if (iobuf_len != 0) {
fprintf(stderr,
"ERROR: duplicate I/O buffer length\n");
usage_server();
goto server_exit_error;
}
iobuf_len = parse_size(arg);
if (iobuf_len == (size_t)-1) {
usage_server();
goto server_exit_error;
}
} else if (eqstr(arg, "-cache")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-cache'\n");
usage_server();
goto server_exit_error;
}
arg = argv[i];
if (cache_len != (size_t)-1) {
fprintf(stderr, "ERROR: duplicate session"
" cache length\n");
usage_server();
goto server_exit_error;
}
cache_len = parse_size(arg);
if (cache_len == (size_t)-1) {
usage_server();
goto server_exit_error;
}
} else if (eqstr(arg, "-cert")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-cert'\n");
usage_server();
goto server_exit_error;
}
if (chain != NULL) {
fprintf(stderr,
"ERROR: duplicate certificate chain\n");
usage_server();
goto server_exit_error;
}
arg = argv[i];
chain = read_certificates(arg, &chain_len);
if (chain == NULL || chain_len == 0) {
goto server_exit_error;
}
} else if (eqstr(arg, "-key")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-key'\n");
usage_server();
goto server_exit_error;
}
if (sk != NULL) {
fprintf(stderr,
"ERROR: duplicate private key\n");
usage_server();
goto server_exit_error;
}
arg = argv[i];
sk = read_private_key(arg);
if (sk == NULL) {
goto server_exit_error;
}
} else if (eqstr(arg, "-CA")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-CA'\n");
usage_server();
goto server_exit_error;
}
arg = argv[i];
if (read_trust_anchors(&anchors, arg) == 0) {
usage_server();
goto server_exit_error;
}
} else if (eqstr(arg, "-anon_ok")) {
flags |= BR_OPT_TOLERATE_NO_CLIENT_AUTH;
} else if (eqstr(arg, "-list")) {
list_names();
goto server_exit;
} else if (eqstr(arg, "-vmin")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-vmin'\n");
usage_server();
goto server_exit_error;
}
arg = argv[i];
if (vmin != 0) {
fprintf(stderr,
"ERROR: duplicate minimum version\n");
usage_server();
goto server_exit_error;
}
vmin = parse_version(arg, strlen(arg));
if (vmin == 0) {
fprintf(stderr,
"ERROR: unrecognised version '%s'\n",
arg);
usage_server();
goto server_exit_error;
}
} else if (eqstr(arg, "-vmax")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-vmax'\n");
usage_server();
goto server_exit_error;
}
arg = argv[i];
if (vmax != 0) {
fprintf(stderr,
"ERROR: duplicate maximum version\n");
usage_server();
goto server_exit_error;
}
vmax = parse_version(arg, strlen(arg));
if (vmax == 0) {
fprintf(stderr,
"ERROR: unrecognised version '%s'\n",
arg);
usage_server();
goto server_exit_error;
}
} else if (eqstr(arg, "-cs")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-cs'\n");
usage_server();
goto server_exit_error;
}
arg = argv[i];
if (suites != NULL) {
fprintf(stderr, "ERROR: duplicate list"
" of cipher suites\n");
usage_server();
goto server_exit_error;
}
suites = parse_suites(arg, &num_suites);
if (suites == NULL) {
usage_server();
goto server_exit_error;
}
} else if (eqstr(arg, "-hf")) {
unsigned x;
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-hf'\n");
usage_server();
goto server_exit_error;
}
arg = argv[i];
x = parse_hash_functions(arg);
if (x == 0) {
usage_server();
goto server_exit_error;
}
hfuns |= x;
} else if (eqstr(arg, "-cbhash")) {
cbhash = 1;
} else if (eqstr(arg, "-serverpref")) {
flags |= BR_OPT_ENFORCE_SERVER_PREFERENCES;
} else if (eqstr(arg, "-noreneg")) {
flags |= BR_OPT_NO_RENEGOTIATION;
} else if (eqstr(arg, "-alpn")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-alpn'\n");
usage_server();
goto server_exit_error;
}
VEC_ADD(alpn_names, xstrdup(argv[i]));
} else if (eqstr(arg, "-strictalpn")) {
flags |= BR_OPT_FAIL_ON_ALPN_MISMATCH;
} else {
fprintf(stderr, "ERROR: unknown option: '%s'\n", arg);
usage_server();
goto server_exit_error;
}
}
if (port == NULL) {
port = "4433";
}
if (vmin == 0) {
vmin = BR_TLS10;
}
if (vmax == 0) {
vmax = BR_TLS12;
}
if (vmax < vmin) {
fprintf(stderr, "ERROR: impossible minimum/maximum protocol"
" version combination\n");
usage_server();
goto server_exit_error;
}
if (suites == NULL) {
num_suites = 0;
for (u = 0; cipher_suites[u].name; u ++) {
if ((cipher_suites[u].req & REQ_TLS12) == 0
|| vmax >= BR_TLS12)
{
num_suites ++;
}
}
suites = xmalloc(num_suites * sizeof *suites);
num_suites = 0;
for (u = 0; cipher_suites[u].name; u ++) {
if ((cipher_suites[u].req & REQ_TLS12) == 0
|| vmax >= BR_TLS12)
{
suites[num_suites ++] = cipher_suites[u];
}
}
}
if (hfuns == 0) {
hfuns = (unsigned)-1;
}
if (chain == NULL || chain_len == 0) {
fprintf(stderr, "ERROR: no certificate chain provided\n");
goto server_exit_error;
}
if (sk == NULL) {
fprintf(stderr, "ERROR: no private key provided\n");
goto server_exit_error;
}
switch (sk->key_type) {
int curve;
uint32_t supp;
case BR_KEYTYPE_RSA:
break;
case BR_KEYTYPE_EC:
curve = sk->key.ec.curve;
supp = br_ec_get_default()->supported_curves;
if (curve > 31 || !((supp >> curve) & 1)) {
fprintf(stderr, "ERROR: private key curve (%d)"
" is not supported\n", curve);
goto server_exit_error;
}
break;
default:
fprintf(stderr, "ERROR: unsupported private key type (%d)\n",
sk->key_type);
break;
}
cert_signer_algo = get_cert_signer_algo(chain);
if (cert_signer_algo == 0) {
goto server_exit_error;
}
if (verbose) {
const char *csas;
switch (cert_signer_algo) {
case BR_KEYTYPE_RSA: csas = "RSA"; break;
case BR_KEYTYPE_EC: csas = "EC"; break;
default:
csas = "unknown";
break;
}
fprintf(stderr, "Issuing CA key type: %d (%s)\n",
cert_signer_algo, csas);
}
if (iobuf_len == 0) {
if (bidi) {
iobuf_len = BR_SSL_BUFSIZE_BIDI;
} else {
iobuf_len = BR_SSL_BUFSIZE_MONO;
}
}
iobuf = xmalloc(iobuf_len);
if (cache_len == (size_t)-1) {
cache_len = 5000;
}
cache = xmalloc(cache_len);
/*
* Compute implementation requirements and inject implementations.
*/
suite_ids = xmalloc(num_suites * sizeof *suite_ids);
br_ssl_server_zero(&cc);
br_ssl_engine_set_versions(&cc.eng, vmin, vmax);
br_ssl_engine_set_all_flags(&cc.eng, flags);
if (vmin <= BR_TLS11) {
if (!(hfuns & (1 << br_md5_ID))) {
fprintf(stderr, "ERROR: TLS 1.0 and 1.1 need MD5\n");
goto server_exit_error;
}
if (!(hfuns & (1 << br_sha1_ID))) {
fprintf(stderr, "ERROR: TLS 1.0 and 1.1 need SHA-1\n");
goto server_exit_error;
}
}
for (u = 0; u < num_suites; u ++) {
unsigned req;
req = suites[u].req;
suite_ids[u] = suites[u].suite;
if ((req & REQ_TLS12) != 0 && vmax < BR_TLS12) {
fprintf(stderr,
"ERROR: cipher suite %s requires TLS 1.2\n",
suites[u].name);
goto server_exit_error;
}
if ((req & REQ_SHA1) != 0 && !(hfuns & (1 << br_sha1_ID))) {
fprintf(stderr,
"ERROR: cipher suite %s requires SHA-1\n",
suites[u].name);
goto server_exit_error;
}
if ((req & REQ_SHA256) != 0 && !(hfuns & (1 << br_sha256_ID))) {
fprintf(stderr,
"ERROR: cipher suite %s requires SHA-256\n",
suites[u].name);
goto server_exit_error;
}
if ((req & REQ_SHA384) != 0 && !(hfuns & (1 << br_sha384_ID))) {
fprintf(stderr,
"ERROR: cipher suite %s requires SHA-384\n",
suites[u].name);
goto server_exit_error;
}
/* TODO: algorithm implementation selection */
if ((req & REQ_AESCBC) != 0) {
br_ssl_engine_set_default_aes_cbc(&cc.eng);
}
if ((req & REQ_AESCCM) != 0) {
br_ssl_engine_set_default_aes_ccm(&cc.eng);
}
if ((req & REQ_AESGCM) != 0) {
br_ssl_engine_set_default_aes_gcm(&cc.eng);
}
if ((req & REQ_CHAPOL) != 0) {
br_ssl_engine_set_default_chapol(&cc.eng);
}
if ((req & REQ_3DESCBC) != 0) {
br_ssl_engine_set_default_des_cbc(&cc.eng);
}
if ((req & (REQ_ECDHE_RSA | REQ_ECDHE_ECDSA)) != 0) {
br_ssl_engine_set_default_ec(&cc.eng);
}
}
br_ssl_engine_set_suites(&cc.eng, suite_ids, num_suites);
dnhash = NULL;
for (u = 0; hash_functions[u].name; u ++) {
const br_hash_class *hc;
int id;
hc = hash_functions[u].hclass;
id = (hc->desc >> BR_HASHDESC_ID_OFF) & BR_HASHDESC_ID_MASK;
if ((hfuns & ((unsigned)1 << id)) != 0) {
dnhash = hc;
br_ssl_engine_set_hash(&cc.eng, id, hc);
}
}
if (vmin <= BR_TLS11) {
br_ssl_engine_set_prf10(&cc.eng, &br_tls10_prf);
}
if (vmax >= BR_TLS12) {
if ((hfuns & ((unsigned)1 << br_sha256_ID)) != 0) {
br_ssl_engine_set_prf_sha256(&cc.eng,
&br_tls12_sha256_prf);
}
if ((hfuns & ((unsigned)1 << br_sha384_ID)) != 0) {
br_ssl_engine_set_prf_sha384(&cc.eng,
&br_tls12_sha384_prf);
}
}
br_ssl_session_cache_lru_init(&lru, cache, cache_len);
br_ssl_server_set_cache(&cc, &lru.vtable);
if (VEC_LEN(alpn_names) != 0) {
br_ssl_engine_set_protocol_names(&cc.eng,
(const char **)&VEC_ELT(alpn_names, 0),
VEC_LEN(alpn_names));
}
/*
* Set the policy handler (that chooses the actual cipher suite,
* selects the certificate chain, and runs the private key
* operations).
*/
pc.vtable = &policy_vtable;
pc.verbose = verbose;
pc.chain = chain;
pc.chain_len = chain_len;
pc.cert_signer_algo = cert_signer_algo;
pc.sk = sk;
pc.cbhash = cbhash;
br_ssl_server_set_policy(&cc, &pc.vtable);
/*
* If trust anchors have been configured, then set an X.509
* validation engine and activate client certificate
* authentication.
*/
if (VEC_LEN(anchors) != 0) {
br_x509_minimal_init(&xc, dnhash,
&VEC_ELT(anchors, 0), VEC_LEN(anchors));
for (u = 0; hash_functions[u].name; u ++) {
const br_hash_class *hc;
int id;
hc = hash_functions[u].hclass;
id = (hc->desc >> BR_HASHDESC_ID_OFF)
& BR_HASHDESC_ID_MASK;
if ((hfuns & ((unsigned)1 << id)) != 0) {
br_x509_minimal_set_hash(&xc, id, hc);
}
}
br_ssl_engine_set_default_rsavrfy(&cc.eng);
br_ssl_engine_set_default_ecdsa(&cc.eng);
br_x509_minimal_set_rsa(&xc, br_rsa_pkcs1_vrfy_get_default());
br_x509_minimal_set_ecdsa(&xc,
br_ec_get_default(), br_ecdsa_vrfy_asn1_get_default());
br_ssl_engine_set_x509(&cc.eng, &xc.vtable);
br_ssl_server_set_trust_anchor_names_alt(&cc,
&VEC_ELT(anchors, 0), VEC_LEN(anchors));
}
br_ssl_engine_set_buffer(&cc.eng, iobuf, iobuf_len, bidi);
/*
* On Unix systems, we need to ignore SIGPIPE.
*/
#ifndef _WIN32
signal(SIGPIPE, SIG_IGN);
#endif
/*
* Open the server socket.
*/
server_fd = host_bind(bind_name, port, verbose);
if (server_fd == INVALID_SOCKET) {
goto server_exit_error;
}
/*
* Process incoming clients, one at a time. Note that we do not
* accept any client until the previous connection has finished:
* this is voluntary, since the tool uses stdin/stdout for
* application data, and thus cannot really run two connections
* simultaneously.
*/
for (;;) {
int x;
unsigned run_flags;
fd = accept_client(server_fd, verbose, 1);
if (fd == INVALID_SOCKET) {
goto server_exit_error;
}
br_ssl_server_reset(&cc);
run_flags = (verbose ? RUN_ENGINE_VERBOSE : 0)
| (trace ? RUN_ENGINE_TRACE : 0);
x = run_ssl_engine(&cc.eng, fd, run_flags);
#ifdef _WIN32
closesocket(fd);
#else
close(fd);
#endif
fd = INVALID_SOCKET;
if (x < -1) {
goto server_exit_error;
}
}
/*
* Release allocated structures.
*/
server_exit:
xfree(suites);
xfree(suite_ids);
free_certificates(chain, chain_len);
free_private_key(sk);
VEC_CLEAREXT(anchors, &free_ta_contents);
VEC_CLEAREXT(alpn_names, &free_alpn);
xfree(iobuf);
xfree(cache);
if (fd != INVALID_SOCKET) {
#ifdef _WIN32
closesocket(fd);
#else
close(fd);
#endif
}
if (server_fd != INVALID_SOCKET) {
#ifdef _WIN32
closesocket(server_fd);
#else
close(server_fd);
#endif
}
return retcode;
server_exit_error:
retcode = -1;
goto server_exit;
}