freebsd-src/sys/vm/vm_glue.c
2024-05-10 13:43:56 -07:00

840 lines
22 KiB
C

/*-
* SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <sys/cdefs.h>
#include "opt_vm.h"
#include "opt_kstack_pages.h"
#include "opt_kstack_max_pages.h"
#include "opt_kstack_usage_prof.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/asan.h>
#include <sys/domainset.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/msan.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/racct.h>
#include <sys/refcount.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sf_buf.h>
#include <sys/shm.h>
#include <sys/smp.h>
#include <sys/vmmeter.h>
#include <sys/vmem.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/unistd.h>
#include <vm/uma.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_domainset.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pagequeue.h>
#include <vm/vm_object.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/vm_pager.h>
#include <vm/swap_pager.h>
#include <vm/vm_phys.h>
#include <machine/cpu.h>
#if VM_NRESERVLEVEL > 0
#define KVA_KSTACK_QUANTUM_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
#else
#define KVA_KSTACK_QUANTUM_SHIFT (8 + PAGE_SHIFT)
#endif
#define KVA_KSTACK_QUANTUM (1ul << KVA_KSTACK_QUANTUM_SHIFT)
/*
* MPSAFE
*
* WARNING! This code calls vm_map_check_protection() which only checks
* the associated vm_map_entry range. It does not determine whether the
* contents of the memory is actually readable or writable. In most cases
* just checking the vm_map_entry is sufficient within the kernel's address
* space.
*/
bool
kernacc(void *addr, int len, int rw)
{
boolean_t rv;
vm_offset_t saddr, eaddr;
vm_prot_t prot;
KASSERT((rw & ~VM_PROT_ALL) == 0,
("illegal ``rw'' argument to kernacc (%x)\n", rw));
if ((vm_offset_t)addr + len > vm_map_max(kernel_map) ||
(vm_offset_t)addr + len < (vm_offset_t)addr)
return (false);
prot = rw;
saddr = trunc_page((vm_offset_t)addr);
eaddr = round_page((vm_offset_t)addr + len);
vm_map_lock_read(kernel_map);
rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
vm_map_unlock_read(kernel_map);
return (rv == TRUE);
}
/*
* MPSAFE
*
* WARNING! This code calls vm_map_check_protection() which only checks
* the associated vm_map_entry range. It does not determine whether the
* contents of the memory is actually readable or writable. vmapbuf(),
* vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
* used in conjunction with this call.
*/
bool
useracc(void *addr, int len, int rw)
{
boolean_t rv;
vm_prot_t prot;
vm_map_t map;
KASSERT((rw & ~VM_PROT_ALL) == 0,
("illegal ``rw'' argument to useracc (%x)\n", rw));
prot = rw;
map = &curproc->p_vmspace->vm_map;
if ((vm_offset_t)addr + len > vm_map_max(map) ||
(vm_offset_t)addr + len < (vm_offset_t)addr) {
return (false);
}
vm_map_lock_read(map);
rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
round_page((vm_offset_t)addr + len), prot);
vm_map_unlock_read(map);
return (rv == TRUE);
}
int
vslock(void *addr, size_t len)
{
vm_offset_t end, last, start;
vm_size_t npages;
int error;
last = (vm_offset_t)addr + len;
start = trunc_page((vm_offset_t)addr);
end = round_page(last);
if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
return (EINVAL);
npages = atop(end - start);
if (npages > vm_page_max_user_wired)
return (ENOMEM);
error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
if (error == KERN_SUCCESS) {
curthread->td_vslock_sz += len;
return (0);
}
/*
* Return EFAULT on error to match copy{in,out}() behaviour
* rather than returning ENOMEM like mlock() would.
*/
return (EFAULT);
}
void
vsunlock(void *addr, size_t len)
{
/* Rely on the parameter sanity checks performed by vslock(). */
MPASS(curthread->td_vslock_sz >= len);
curthread->td_vslock_sz -= len;
(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
}
/*
* Pin the page contained within the given object at the given offset. If the
* page is not resident, allocate and load it using the given object's pager.
* Return the pinned page if successful; otherwise, return NULL.
*/
static vm_page_t
vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
{
vm_page_t m;
vm_pindex_t pindex;
pindex = OFF_TO_IDX(offset);
(void)vm_page_grab_valid_unlocked(&m, object, pindex,
VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
return (m);
}
/*
* Return a CPU private mapping to the page at the given offset within the
* given object. The page is pinned before it is mapped.
*/
struct sf_buf *
vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
{
vm_page_t m;
m = vm_imgact_hold_page(object, offset);
if (m == NULL)
return (NULL);
sched_pin();
return (sf_buf_alloc(m, SFB_CPUPRIVATE));
}
/*
* Destroy the given CPU private mapping and unpin the page that it mapped.
*/
void
vm_imgact_unmap_page(struct sf_buf *sf)
{
vm_page_t m;
m = sf_buf_page(sf);
sf_buf_free(sf);
sched_unpin();
vm_page_unwire(m, PQ_ACTIVE);
}
void
vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
{
pmap_sync_icache(map->pmap, va, sz);
}
static vm_object_t kstack_object;
static vm_object_t kstack_alt_object;
static uma_zone_t kstack_cache;
static int kstack_cache_size;
static vmem_t *vmd_kstack_arena[MAXMEMDOM];
static int
sysctl_kstack_cache_size(SYSCTL_HANDLER_ARGS)
{
int error, oldsize;
oldsize = kstack_cache_size;
error = sysctl_handle_int(oidp, arg1, arg2, req);
if (error == 0 && req->newptr && oldsize != kstack_cache_size)
uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
return (error);
}
SYSCTL_PROC(_vm, OID_AUTO, kstack_cache_size,
CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &kstack_cache_size, 0,
sysctl_kstack_cache_size, "IU", "Maximum number of cached kernel stacks");
/*
* Allocate a virtual address range from a domain kstack arena, following
* the specified NUMA policy.
*/
static vm_offset_t
vm_thread_alloc_kstack_kva(vm_size_t size, int domain)
{
#ifndef __ILP32__
int rv;
vmem_t *arena;
vm_offset_t addr = 0;
size = round_page(size);
/* Allocate from the kernel arena for non-standard kstack sizes. */
if (size != ptoa(kstack_pages + KSTACK_GUARD_PAGES)) {
arena = vm_dom[domain].vmd_kernel_arena;
} else {
arena = vmd_kstack_arena[domain];
}
rv = vmem_alloc(arena, size, M_BESTFIT | M_NOWAIT, &addr);
if (rv == ENOMEM)
return (0);
KASSERT(atop(addr - VM_MIN_KERNEL_ADDRESS) %
(kstack_pages + KSTACK_GUARD_PAGES) == 0,
("%s: allocated kstack KVA not aligned to multiple of kstack size",
__func__));
return (addr);
#else
return (kva_alloc(size));
#endif
}
/*
* Release a region of kernel virtual memory
* allocated from the kstack arena.
*/
static __noinline void
vm_thread_free_kstack_kva(vm_offset_t addr, vm_size_t size, int domain)
{
vmem_t *arena;
size = round_page(size);
#ifdef __ILP32__
arena = kernel_arena;
#else
arena = vmd_kstack_arena[domain];
if (size != ptoa(kstack_pages + KSTACK_GUARD_PAGES)) {
arena = vm_dom[domain].vmd_kernel_arena;
}
#endif
vmem_free(arena, addr, size);
}
static vmem_size_t
vm_thread_kstack_import_quantum(void)
{
#ifndef __ILP32__
/*
* The kstack_quantum is larger than KVA_QUANTUM to account
* for holes induced by guard pages.
*/
return (KVA_KSTACK_QUANTUM * (kstack_pages + KSTACK_GUARD_PAGES));
#else
return (KVA_KSTACK_QUANTUM);
#endif
}
/*
* Import KVA from a parent arena into the kstack arena. Imports must be
* a multiple of kernel stack pages + guard pages in size.
*
* Kstack VA allocations need to be aligned so that the linear KVA pindex
* is divisible by the total number of kstack VA pages. This is necessary to
* make vm_kstack_pindex work properly.
*
* We import a multiple of KVA_KSTACK_QUANTUM-sized region from the parent
* arena. The actual size used by the kstack arena is one kstack smaller to
* allow for the necessary alignment adjustments to be made.
*/
static int
vm_thread_kstack_arena_import(void *arena, vmem_size_t size, int flags,
vmem_addr_t *addrp)
{
int error, rem;
size_t kpages = kstack_pages + KSTACK_GUARD_PAGES;
KASSERT(atop(size) % kpages == 0,
("%s: Size %jd is not a multiple of kstack pages (%d)", __func__,
(intmax_t)size, (int)kpages));
error = vmem_xalloc(arena, vm_thread_kstack_import_quantum(),
KVA_KSTACK_QUANTUM, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags,
addrp);
if (error) {
return (error);
}
rem = atop(*addrp - VM_MIN_KERNEL_ADDRESS) % kpages;
if (rem != 0) {
/* Bump addr to next aligned address */
*addrp = *addrp + (kpages - rem) * PAGE_SIZE;
}
return (0);
}
/*
* Release KVA from a parent arena into the kstack arena. Released imports must
* be a multiple of kernel stack pages + guard pages in size.
*/
static void
vm_thread_kstack_arena_release(void *arena, vmem_addr_t addr, vmem_size_t size)
{
int rem;
size_t kpages __diagused = kstack_pages + KSTACK_GUARD_PAGES;
KASSERT(size % kpages == 0,
("%s: Size %jd is not a multiple of kstack pages (%d)", __func__,
(intmax_t)size, (int)kpages));
KASSERT((addr - VM_MIN_KERNEL_ADDRESS) % kpages == 0,
("%s: Address %p is not properly aligned (%p)", __func__,
(void *)addr, (void *)VM_MIN_KERNEL_ADDRESS));
/*
* If the address is not KVA_KSTACK_QUANTUM-aligned we have to decrement
* it to account for the shift in kva_import_kstack.
*/
rem = addr % KVA_KSTACK_QUANTUM;
if (rem) {
KASSERT(rem <= ptoa(kpages),
("%s: rem > kpages (%d), (%d)", __func__, rem,
(int)kpages));
addr -= rem;
}
vmem_xfree(arena, addr, vm_thread_kstack_import_quantum());
}
/*
* Create the kernel stack for a new thread.
*/
static vm_offset_t
vm_thread_stack_create(struct domainset *ds, int pages)
{
vm_page_t ma[KSTACK_MAX_PAGES];
struct vm_domainset_iter di;
int req = VM_ALLOC_NORMAL;
vm_object_t obj;
vm_offset_t ks;
int domain, i;
obj = vm_thread_kstack_size_to_obj(pages);
if (vm_ndomains > 1)
obj->domain.dr_policy = ds;
vm_domainset_iter_page_init(&di, obj, 0, &domain, &req);
do {
/*
* Get a kernel virtual address for this thread's kstack.
*/
ks = vm_thread_alloc_kstack_kva(ptoa(pages + KSTACK_GUARD_PAGES),
domain);
if (ks == 0)
continue;
ks += ptoa(KSTACK_GUARD_PAGES);
/*
* Allocate physical pages to back the stack.
*/
if (vm_thread_stack_back(ks, ma, pages, req, domain) != 0) {
vm_thread_free_kstack_kva(ks - ptoa(KSTACK_GUARD_PAGES),
ptoa(pages + KSTACK_GUARD_PAGES), domain);
continue;
}
if (KSTACK_GUARD_PAGES != 0) {
pmap_qremove(ks - ptoa(KSTACK_GUARD_PAGES),
KSTACK_GUARD_PAGES);
}
for (i = 0; i < pages; i++)
vm_page_valid(ma[i]);
pmap_qenter(ks, ma, pages);
return (ks);
} while (vm_domainset_iter_page(&di, obj, &domain) == 0);
return (0);
}
static __noinline void
vm_thread_stack_dispose(vm_offset_t ks, int pages)
{
vm_page_t m;
vm_pindex_t pindex;
int i, domain;
vm_object_t obj = vm_thread_kstack_size_to_obj(pages);
pindex = vm_kstack_pindex(ks, pages);
domain = vm_phys_domain(vtophys(ks));
pmap_qremove(ks, pages);
VM_OBJECT_WLOCK(obj);
for (i = 0; i < pages; i++) {
m = vm_page_lookup(obj, pindex + i);
if (m == NULL)
panic("%s: kstack already missing?", __func__);
KASSERT(vm_page_domain(m) == domain,
("%s: page %p domain mismatch, expected %d got %d",
__func__, m, domain, vm_page_domain(m)));
vm_page_xbusy_claim(m);
vm_page_unwire_noq(m);
vm_page_free(m);
}
VM_OBJECT_WUNLOCK(obj);
kasan_mark((void *)ks, ptoa(pages), ptoa(pages), 0);
vm_thread_free_kstack_kva(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
ptoa(pages + KSTACK_GUARD_PAGES), domain);
}
/*
* Allocate the kernel stack for a new thread.
*/
int
vm_thread_new(struct thread *td, int pages)
{
vm_offset_t ks;
u_short ks_domain;
/* Bounds check */
if (pages <= 1)
pages = kstack_pages;
else if (pages > KSTACK_MAX_PAGES)
pages = KSTACK_MAX_PAGES;
ks = 0;
if (pages == kstack_pages && kstack_cache != NULL)
ks = (vm_offset_t)uma_zalloc(kstack_cache, M_NOWAIT);
/*
* Ensure that kstack objects can draw pages from any memory
* domain. Otherwise a local memory shortage can block a process
* swap-in.
*/
if (ks == 0)
ks = vm_thread_stack_create(DOMAINSET_PREF(PCPU_GET(domain)),
pages);
if (ks == 0)
return (0);
ks_domain = vm_phys_domain(vtophys(ks));
KASSERT(ks_domain >= 0 && ks_domain < vm_ndomains,
("%s: invalid domain for kstack %p", __func__, (void *)ks));
td->td_kstack = ks;
td->td_kstack_pages = pages;
td->td_kstack_domain = ks_domain;
return (1);
}
/*
* Dispose of a thread's kernel stack.
*/
void
vm_thread_dispose(struct thread *td)
{
vm_offset_t ks;
int pages;
pages = td->td_kstack_pages;
ks = td->td_kstack;
td->td_kstack = 0;
td->td_kstack_pages = 0;
td->td_kstack_domain = MAXMEMDOM;
if (pages == kstack_pages) {
kasan_mark((void *)ks, 0, ptoa(pages), KASAN_KSTACK_FREED);
uma_zfree(kstack_cache, (void *)ks);
} else {
vm_thread_stack_dispose(ks, pages);
}
}
/*
* Calculate kstack pindex.
*
* Uses a non-identity mapping if guard pages are
* active to avoid pindex holes in the kstack object.
*/
vm_pindex_t
vm_kstack_pindex(vm_offset_t ks, int kpages)
{
vm_pindex_t pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);
#ifdef __ILP32__
return (pindex);
#else
/*
* Return the linear pindex if guard pages aren't active or if we are
* allocating a non-standard kstack size.
*/
if (KSTACK_GUARD_PAGES == 0 || kpages != kstack_pages) {
return (pindex);
}
KASSERT(pindex % (kpages + KSTACK_GUARD_PAGES) >= KSTACK_GUARD_PAGES,
("%s: Attempting to calculate kstack guard page pindex", __func__));
return (pindex -
(pindex / (kpages + KSTACK_GUARD_PAGES) + 1) * KSTACK_GUARD_PAGES);
#endif
}
/*
* Allocate physical pages, following the specified NUMA policy, to back a
* kernel stack.
*/
int
vm_thread_stack_back(vm_offset_t ks, vm_page_t ma[], int npages, int req_class,
int domain)
{
vm_object_t obj = vm_thread_kstack_size_to_obj(npages);
vm_pindex_t pindex;
vm_page_t m;
int n;
pindex = vm_kstack_pindex(ks, npages);
VM_OBJECT_WLOCK(obj);
for (n = 0; n < npages;) {
m = vm_page_grab(obj, pindex + n,
VM_ALLOC_NOCREAT | VM_ALLOC_WIRED);
if (m == NULL) {
m = vm_page_alloc_domain(obj, pindex + n, domain,
req_class | VM_ALLOC_WIRED);
}
if (m == NULL)
break;
ma[n++] = m;
}
if (n < npages)
goto cleanup;
VM_OBJECT_WUNLOCK(obj);
return (0);
cleanup:
for (int i = 0; i < n; i++) {
m = ma[i];
(void)vm_page_unwire_noq(m);
vm_page_free(m);
}
VM_OBJECT_WUNLOCK(obj);
return (ENOMEM);
}
vm_object_t
vm_thread_kstack_size_to_obj(int npages)
{
return (npages == kstack_pages ? kstack_object : kstack_alt_object);
}
static int
kstack_import(void *arg, void **store, int cnt, int domain, int flags)
{
struct domainset *ds;
int i;
if (domain == UMA_ANYDOMAIN)
ds = DOMAINSET_RR();
else
ds = DOMAINSET_PREF(domain);
for (i = 0; i < cnt; i++) {
store[i] = (void *)vm_thread_stack_create(ds, kstack_pages);
if (store[i] == NULL)
break;
}
return (i);
}
static void
kstack_release(void *arg, void **store, int cnt)
{
vm_offset_t ks;
int i;
for (i = 0; i < cnt; i++) {
ks = (vm_offset_t)store[i];
vm_thread_stack_dispose(ks, kstack_pages);
}
}
static void
kstack_cache_init(void *null)
{
vm_size_t kstack_quantum;
int domain;
kstack_object = vm_object_allocate(OBJT_SWAP,
atop(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS));
kstack_cache = uma_zcache_create("kstack_cache",
kstack_pages * PAGE_SIZE, NULL, NULL, NULL, NULL,
kstack_import, kstack_release, NULL,
UMA_ZONE_FIRSTTOUCH);
kstack_cache_size = imax(128, mp_ncpus * 4);
uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
kstack_alt_object = vm_object_allocate(OBJT_SWAP,
atop(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS));
kstack_quantum = vm_thread_kstack_import_quantum();
/*
* Reduce size used by the kstack arena to allow for
* alignment adjustments in vm_thread_kstack_arena_import.
*/
kstack_quantum -= (kstack_pages + KSTACK_GUARD_PAGES) * PAGE_SIZE;
/*
* Create the kstack_arena for each domain and set kernel_arena as
* parent.
*/
for (domain = 0; domain < vm_ndomains; domain++) {
vmd_kstack_arena[domain] = vmem_create("kstack arena", 0, 0,
PAGE_SIZE, 0, M_WAITOK);
KASSERT(vmd_kstack_arena[domain] != NULL,
("%s: failed to create domain %d kstack_arena", __func__,
domain));
vmem_set_import(vmd_kstack_arena[domain],
vm_thread_kstack_arena_import,
vm_thread_kstack_arena_release,
vm_dom[domain].vmd_kernel_arena, kstack_quantum);
}
}
SYSINIT(vm_kstacks, SI_SUB_KMEM, SI_ORDER_ANY, kstack_cache_init, NULL);
#ifdef KSTACK_USAGE_PROF
/*
* Track maximum stack used by a thread in kernel.
*/
static int max_kstack_used;
SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
&max_kstack_used, 0,
"Maximum stack depth used by a thread in kernel");
void
intr_prof_stack_use(struct thread *td, struct trapframe *frame)
{
vm_offset_t stack_top;
vm_offset_t current;
int used, prev_used;
/*
* Testing for interrupted kernel mode isn't strictly
* needed. It optimizes the execution, since interrupts from
* usermode will have only the trap frame on the stack.
*/
if (TRAPF_USERMODE(frame))
return;
stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
current = (vm_offset_t)(uintptr_t)&stack_top;
/*
* Try to detect if interrupt is using kernel thread stack.
* Hardware could use a dedicated stack for interrupt handling.
*/
if (stack_top <= current || current < td->td_kstack)
return;
used = stack_top - current;
for (;;) {
prev_used = max_kstack_used;
if (prev_used >= used)
break;
if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
break;
}
}
#endif /* KSTACK_USAGE_PROF */
/*
* Implement fork's actions on an address space.
* Here we arrange for the address space to be copied or referenced,
* allocate a user struct (pcb and kernel stack), then call the
* machine-dependent layer to fill those in and make the new process
* ready to run. The new process is set up so that it returns directly
* to user mode to avoid stack copying and relocation problems.
*/
int
vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2,
struct vmspace *vm2, int flags)
{
struct proc *p1 = td->td_proc;
struct domainset *dset;
int error;
if ((flags & RFPROC) == 0) {
/*
* Divorce the memory, if it is shared, essentially
* this changes shared memory amongst threads, into
* COW locally.
*/
if ((flags & RFMEM) == 0) {
error = vmspace_unshare(p1);
if (error)
return (error);
}
cpu_fork(td, p2, td2, flags);
return (0);
}
if (flags & RFMEM) {
p2->p_vmspace = p1->p_vmspace;
refcount_acquire(&p1->p_vmspace->vm_refcnt);
}
dset = td2->td_domain.dr_policy;
while (vm_page_count_severe_set(&dset->ds_mask)) {
vm_wait_doms(&dset->ds_mask, 0);
}
if ((flags & RFMEM) == 0) {
p2->p_vmspace = vm2;
if (p1->p_vmspace->vm_shm)
shmfork(p1, p2);
}
/*
* cpu_fork will copy and update the pcb, set up the kernel stack,
* and make the child ready to run.
*/
cpu_fork(td, p2, td2, flags);
return (0);
}
/*
* Called after process has been wait(2)'ed upon and is being reaped.
* The idea is to reclaim resources that we could not reclaim while
* the process was still executing.
*/
void
vm_waitproc(struct proc *p)
{
vmspace_exitfree(p); /* and clean-out the vmspace */
}
void
kick_proc0(void)
{
wakeup(&proc0);
}