freebsd-src/sys/sys/systm.h
Randall Stewart b7b78c1c16 Optimize HPTS so that little work is done until we have a hpts thread that is over the connection threshold
HPTS inserts a softclock for system call return that optimizes performance. However when
no HPTS threads need the help (i.e. when they have less than 100 or so connections) then
there should be little work done i.e. check the counter and return instead of running through
all the threads getting locks etc.ptimize HPTS so that little work is done until we have a hpts
thread that is over the connection threshold.

Reported by:    eduardo
Reviewed by:    gallatin, glebius, tuexen
Tested by:      gallatin
Differential Revision: https://reviews.freebsd.org/D44420
2024-03-28 08:12:37 -04:00

597 lines
22 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _SYS_SYSTM_H_
#define _SYS_SYSTM_H_
#include <sys/types.h>
#include <sys/callout.h>
#include <sys/kassert.h>
#include <sys/queue.h>
#include <sys/stdint.h> /* for people using printf mainly */
#include <machine/atomic.h>
#include <machine/cpufunc.h>
__NULLABILITY_PRAGMA_PUSH
#ifdef _KERNEL
extern int cold; /* nonzero if we are doing a cold boot */
extern int suspend_blocked; /* block suspend due to pending shutdown */
extern int rebooting; /* kern_reboot() has been called. */
extern char version[]; /* system version */
extern char compiler_version[]; /* compiler version */
extern char copyright[]; /* system copyright */
extern int kstack_pages; /* number of kernel stack pages */
extern u_long pagesizes[]; /* supported page sizes */
extern long physmem; /* physical memory */
extern long realmem; /* 'real' memory */
extern char *rootdevnames[2]; /* names of possible root devices */
extern int boothowto; /* reboot flags, from console subsystem */
extern int bootverbose; /* nonzero to print verbose messages */
extern int maxusers; /* system tune hint */
extern int ngroups_max; /* max # of supplemental groups */
extern int vm_guest; /* Running as virtual machine guest? */
extern u_long maxphys; /* max raw I/O transfer size */
/*
* Detected virtual machine guest types. The intention is to expand
* and/or add to the VM_GUEST_VM type if specific VM functionality is
* ever implemented (e.g. vendor-specific paravirtualization features).
* Keep in sync with vm_guest_sysctl_names[].
*/
enum VM_GUEST { VM_GUEST_NO = 0, VM_GUEST_VM, VM_GUEST_XEN, VM_GUEST_HV,
VM_GUEST_VMWARE, VM_GUEST_KVM, VM_GUEST_BHYVE, VM_GUEST_VBOX,
VM_GUEST_PARALLELS, VM_GUEST_LAST };
#endif /* KERNEL */
/*
* Align variables.
*/
#define __read_mostly __section(".data.read_mostly")
#define __read_frequently __section(".data.read_frequently")
#define __exclusive_cache_line __aligned(CACHE_LINE_SIZE) \
__section(".data.exclusive_cache_line")
#if defined(_STANDALONE)
struct ucred;
#endif
#ifdef _KERNEL
#include <sys/param.h> /* MAXCPU */
#include <sys/pcpu.h> /* curthread */
#include <sys/kpilite.h>
extern bool scheduler_stopped;
/*
* If we have already panic'd and this is the thread that called
* panic(), then don't block on any mutexes but silently succeed.
* Otherwise, the kernel will deadlock since the scheduler isn't
* going to run the thread that holds any lock we need.
*/
#define SCHEDULER_STOPPED() __predict_false(scheduler_stopped)
extern int osreldate;
extern const void *zero_region; /* address space maps to a zeroed page */
extern int unmapped_buf_allowed;
#ifdef __LP64__
#define IOSIZE_MAX iosize_max()
#define DEVFS_IOSIZE_MAX devfs_iosize_max()
#else
#define IOSIZE_MAX SSIZE_MAX
#define DEVFS_IOSIZE_MAX SSIZE_MAX
#endif
/*
* General function declarations.
*/
struct inpcb;
struct lock_object;
struct malloc_type;
struct mtx;
struct proc;
struct socket;
struct thread;
struct tty;
struct ucred;
struct uio;
struct _jmp_buf;
struct trapframe;
struct eventtimer;
int setjmp(struct _jmp_buf *) __returns_twice;
void longjmp(struct _jmp_buf *, int) __dead2;
int dumpstatus(vm_offset_t addr, off_t count);
int nullop(void);
int eopnotsupp(void);
int ureadc(int, struct uio *);
void hashdestroy(void *, struct malloc_type *, u_long);
void *hashinit(int count, struct malloc_type *type, u_long *hashmask);
void *hashinit_flags(int count, struct malloc_type *type,
u_long *hashmask, int flags);
#define HASH_NOWAIT 0x00000001
#define HASH_WAITOK 0x00000002
void *phashinit(int count, struct malloc_type *type, u_long *nentries);
void *phashinit_flags(int count, struct malloc_type *type, u_long *nentries,
int flags);
void cpu_flush_dcache(void *, size_t);
void cpu_rootconf(void);
void critical_enter_KBI(void);
void critical_exit_KBI(void);
void critical_exit_preempt(void);
void init_param1(void);
void init_param2(long physpages);
void init_static_kenv(char *, size_t);
void tablefull(const char *);
/*
* Allocate per-thread "current" state in the linuxkpi
*/
extern int (*lkpi_alloc_current)(struct thread *, int);
int linux_alloc_current_noop(struct thread *, int);
#if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(KTR_CRITICAL) || !defined(_KERNEL) || defined(GENOFFSET)
#define critical_enter() critical_enter_KBI()
#define critical_exit() critical_exit_KBI()
#else
static __inline void
critical_enter(void)
{
struct thread_lite *td;
td = (struct thread_lite *)curthread;
td->td_critnest++;
atomic_interrupt_fence();
}
static __inline void
critical_exit(void)
{
struct thread_lite *td;
td = (struct thread_lite *)curthread;
KASSERT(td->td_critnest != 0,
("critical_exit: td_critnest == 0"));
atomic_interrupt_fence();
td->td_critnest--;
atomic_interrupt_fence();
if (__predict_false(td->td_owepreempt))
critical_exit_preempt();
}
#endif
#ifdef EARLY_PRINTF
typedef void early_putc_t(int ch);
extern early_putc_t *early_putc;
#define CHECK_EARLY_PRINTF(x) \
__CONCAT(early_printf_, EARLY_PRINTF) == __CONCAT(early_printf_, x)
#define early_printf_1 1
#define early_printf_mvebu 2
#define early_printf_ns8250 3
#define early_printf_pl011 4
#define early_printf_snps 5
#define early_printf_sbi 6
#else
#define CHECK_EARLY_PRINTF(x) 0
#endif
int kvprintf(char const *, void (*)(int, void*), void *, int,
__va_list) __printflike(1, 0);
void log(int, const char *, ...) __printflike(2, 3);
void log_console(struct uio *);
void vlog(int, const char *, __va_list) __printflike(2, 0);
int asprintf(char **ret, struct malloc_type *mtp, const char *format,
...) __printflike(3, 4);
int printf(const char *, ...) __printflike(1, 2);
int snprintf(char *, size_t, const char *, ...) __printflike(3, 4);
int sprintf(char *buf, const char *, ...) __printflike(2, 3);
int uprintf(const char *, ...) __printflike(1, 2);
int vprintf(const char *, __va_list) __printflike(1, 0);
int vasprintf(char **ret, struct malloc_type *mtp, const char *format,
__va_list ap) __printflike(3, 0);
int vsnprintf(char *, size_t, const char *, __va_list) __printflike(3, 0);
int vsnrprintf(char *, size_t, int, const char *, __va_list) __printflike(4, 0);
int vsprintf(char *buf, const char *, __va_list) __printflike(2, 0);
int sscanf(const char *, char const * _Nonnull, ...) __scanflike(2, 3);
int vsscanf(const char * _Nonnull, char const * _Nonnull, __va_list) __scanflike(2, 0);
long strtol(const char *, char **, int);
u_long strtoul(const char *, char **, int);
quad_t strtoq(const char *, char **, int);
u_quad_t strtouq(const char *, char **, int);
void tprintf(struct proc *p, int pri, const char *, ...) __printflike(3, 4);
void vtprintf(struct proc *, int, const char *, __va_list) __printflike(3, 0);
void hexdump(const void *ptr, int length, const char *hdr, int flags);
#define HD_COLUMN_MASK 0xff
#define HD_DELIM_MASK 0xff00
#define HD_OMIT_COUNT (1 << 16)
#define HD_OMIT_HEX (1 << 17)
#define HD_OMIT_CHARS (1 << 18)
#define ovbcopy(f, t, l) bcopy((f), (t), (l))
void explicit_bzero(void * _Nonnull, size_t);
void *memset(void * _Nonnull buf, int c, size_t len);
void *memcpy(void * _Nonnull to, const void * _Nonnull from, size_t len);
void *memmove(void * _Nonnull dest, const void * _Nonnull src, size_t n);
int memcmp(const void *b1, const void *b2, size_t len);
#ifdef SAN_NEEDS_INTERCEPTORS
#define SAN_INTERCEPTOR(func) \
__CONCAT(SAN_INTERCEPTOR_PREFIX, __CONCAT(_, func))
void *SAN_INTERCEPTOR(memset)(void *, int, size_t);
void *SAN_INTERCEPTOR(memcpy)(void *, const void *, size_t);
void *SAN_INTERCEPTOR(memmove)(void *, const void *, size_t);
int SAN_INTERCEPTOR(memcmp)(const void *, const void *, size_t);
#ifndef SAN_RUNTIME
#define bcopy(from, to, len) SAN_INTERCEPTOR(memmove)((to), (from), (len))
#define bzero(buf, len) SAN_INTERCEPTOR(memset)((buf), 0, (len))
#define bcmp(b1, b2, len) SAN_INTERCEPTOR(memcmp)((b1), (b2), (len))
#define memset(buf, c, len) SAN_INTERCEPTOR(memset)((buf), (c), (len))
#define memcpy(to, from, len) SAN_INTERCEPTOR(memcpy)((to), (from), (len))
#define memmove(dest, src, n) SAN_INTERCEPTOR(memmove)((dest), (src), (n))
#define memcmp(b1, b2, len) SAN_INTERCEPTOR(memcmp)((b1), (b2), (len))
#endif /* !SAN_RUNTIME */
#else /* !SAN_NEEDS_INTERCEPTORS */
#define bcopy(from, to, len) __builtin_memmove((to), (from), (len))
#define bzero(buf, len) __builtin_memset((buf), 0, (len))
#define bcmp(b1, b2, len) __builtin_memcmp((b1), (b2), (len))
#define memset(buf, c, len) __builtin_memset((buf), (c), (len))
#define memcpy(to, from, len) __builtin_memcpy((to), (from), (len))
#define memmove(dest, src, n) __builtin_memmove((dest), (src), (n))
#define memcmp(b1, b2, len) __builtin_memcmp((b1), (b2), (len))
#endif /* SAN_NEEDS_INTERCEPTORS */
void *memset_early(void * _Nonnull buf, int c, size_t len);
#define bzero_early(buf, len) memset_early((buf), 0, (len))
void *memcpy_early(void * _Nonnull to, const void * _Nonnull from, size_t len);
void *memmove_early(void * _Nonnull dest, const void * _Nonnull src, size_t n);
#define bcopy_early(from, to, len) memmove_early((to), (from), (len))
#define copystr(src, dst, len, outlen) ({ \
size_t __r, __len, *__outlen; \
\
__len = (len); \
__outlen = (outlen); \
__r = strlcpy((dst), (src), __len); \
if (__outlen != NULL) \
*__outlen = ((__r >= __len) ? __len : __r + 1); \
((__r >= __len) ? ENAMETOOLONG : 0); \
})
int __result_use_check copyinstr(const void * __restrict udaddr,
void * _Nonnull __restrict kaddr, size_t len,
size_t * __restrict lencopied);
int __result_use_check copyin(const void * __restrict udaddr,
void * _Nonnull __restrict kaddr, size_t len);
int __result_use_check copyin_nofault(const void * __restrict udaddr,
void * _Nonnull __restrict kaddr, size_t len);
int __result_use_or_ignore_check copyout(const void * _Nonnull __restrict kaddr,
void * __restrict udaddr, size_t len);
int __result_use_or_ignore_check copyout_nofault(
const void * _Nonnull __restrict kaddr, void * __restrict udaddr,
size_t len);
#ifdef SAN_NEEDS_INTERCEPTORS
int SAN_INTERCEPTOR(copyin)(const void *, void *, size_t);
int SAN_INTERCEPTOR(copyinstr)(const void *, void *, size_t, size_t *);
int SAN_INTERCEPTOR(copyout)(const void *, void *, size_t);
#ifndef SAN_RUNTIME
#define copyin(u, k, l) SAN_INTERCEPTOR(copyin)((u), (k), (l))
#define copyinstr(u, k, l, lc) SAN_INTERCEPTOR(copyinstr)((u), (k), (l), (lc))
#define copyout(k, u, l) SAN_INTERCEPTOR(copyout)((k), (u), (l))
#endif /* !SAN_RUNTIME */
#endif /* SAN_NEEDS_INTERCEPTORS */
int fubyte(volatile const void *base);
long fuword(volatile const void *base);
int fuword16(volatile const void *base);
int32_t fuword32(volatile const void *base);
int64_t fuword64(volatile const void *base);
int __result_use_check fueword(volatile const void *base, long *val);
int __result_use_check fueword32(volatile const void *base, int32_t *val);
int __result_use_check fueword64(volatile const void *base, int64_t *val);
int __result_use_or_ignore_check subyte(volatile void *base, int byte);
int __result_use_or_ignore_check suword(volatile void *base, long word);
int __result_use_or_ignore_check suword16(volatile void *base, int word);
int __result_use_or_ignore_check suword32(volatile void *base, int32_t word);
int __result_use_or_ignore_check suword64(volatile void *base, int64_t word);
uint32_t casuword32(volatile uint32_t *base, uint32_t oldval, uint32_t newval);
u_long casuword(volatile u_long *p, u_long oldval, u_long newval);
int casueword32(volatile uint32_t *base, uint32_t oldval, uint32_t *oldvalp,
uint32_t newval);
int casueword(volatile u_long *p, u_long oldval, u_long *oldvalp,
u_long newval);
#if defined(SAN_NEEDS_INTERCEPTORS) && !defined(KCSAN)
int SAN_INTERCEPTOR(fubyte)(volatile const void *base);
int SAN_INTERCEPTOR(fuword16)(volatile const void *base);
int SAN_INTERCEPTOR(fueword)(volatile const void *base, long *val);
int SAN_INTERCEPTOR(fueword32)(volatile const void *base, int32_t *val);
int SAN_INTERCEPTOR(fueword64)(volatile const void *base, int64_t *val);
int SAN_INTERCEPTOR(subyte)(volatile void *base, int byte);
int SAN_INTERCEPTOR(suword)(volatile void *base, long word);
int SAN_INTERCEPTOR(suword16)(volatile void *base, int word);
int SAN_INTERCEPTOR(suword32)(volatile void *base, int32_t word);
int SAN_INTERCEPTOR(suword64)(volatile void *base, int64_t word);
int SAN_INTERCEPTOR(casueword32)(volatile uint32_t *base, uint32_t oldval,
uint32_t *oldvalp, uint32_t newval);
int SAN_INTERCEPTOR(casueword)(volatile u_long *p, u_long oldval,
u_long *oldvalp, u_long newval);
#ifndef SAN_RUNTIME
#define fubyte(b) SAN_INTERCEPTOR(fubyte)((b))
#define fuword16(b) SAN_INTERCEPTOR(fuword16)((b))
#define fueword(b, v) SAN_INTERCEPTOR(fueword)((b), (v))
#define fueword32(b, v) SAN_INTERCEPTOR(fueword32)((b), (v))
#define fueword64(b, v) SAN_INTERCEPTOR(fueword64)((b), (v))
#define subyte(b, w) SAN_INTERCEPTOR(subyte)((b), (w))
#define suword(b, w) SAN_INTERCEPTOR(suword)((b), (w))
#define suword16(b, w) SAN_INTERCEPTOR(suword16)((b), (w))
#define suword32(b, w) SAN_INTERCEPTOR(suword32)((b), (w))
#define suword64(b, w) SAN_INTERCEPTOR(suword64)((b), (w))
#define casueword32(b, o, p, n) SAN_INTERCEPTOR(casueword32)((b), (o), (p), (n))
#define casueword(b, o, p, n) SAN_INTERCEPTOR(casueword)((b), (o), (p), (n))
#endif /* !SAN_RUNTIME */
#endif /* SAN_NEEDS_INTERCEPTORS && !KCSAN */
int sysbeep(int hertz, sbintime_t duration);
void hardclock(int cnt, int usermode);
void hardclock_sync(int cpu);
void statclock(int cnt, int usermode);
void profclock(int cnt, int usermode, uintfptr_t pc);
int hardclockintr(void);
void startprofclock(struct proc *);
void stopprofclock(struct proc *);
void cpu_startprofclock(void);
void cpu_stopprofclock(void);
void suspendclock(void);
void resumeclock(void);
sbintime_t cpu_idleclock(void);
void cpu_activeclock(void);
void cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt);
void cpu_et_frequency(struct eventtimer *et, uint64_t newfreq);
extern int cpu_disable_c2_sleep;
extern int cpu_disable_c3_sleep;
extern void (*tcp_hpts_softclock)(void);
extern volatile uint32_t __read_frequently hpts_that_need_softclock;
#define tcp_hpts_softclock() do { \
if (hpts_that_need_softclock > 0) \
tcp_hpts_softclock(); \
} while (0)
char *kern_getenv(const char *name);
void freeenv(char *env);
int getenv_int(const char *name, int *data);
int getenv_uint(const char *name, unsigned int *data);
int getenv_long(const char *name, long *data);
int getenv_ulong(const char *name, unsigned long *data);
int getenv_string(const char *name, char *data, int size);
int getenv_int64(const char *name, int64_t *data);
int getenv_uint64(const char *name, uint64_t *data);
int getenv_quad(const char *name, quad_t *data);
int getenv_bool(const char *name, bool *data);
bool getenv_is_true(const char *name);
bool getenv_is_false(const char *name);
int kern_setenv(const char *name, const char *value);
int kern_unsetenv(const char *name);
int testenv(const char *name);
int getenv_array(const char *name, void *data, int size, int *psize,
int type_size, bool allow_signed);
#define GETENV_UNSIGNED false /* negative numbers not allowed */
#define GETENV_SIGNED true /* negative numbers allowed */
typedef uint64_t (cpu_tick_f)(void);
void set_cputicker(cpu_tick_f *func, uint64_t freq, bool isvariable);
extern cpu_tick_f *cpu_ticks;
uint64_t cpu_tickrate(void);
uint64_t cputick2usec(uint64_t tick);
#include <sys/libkern.h>
/* Initialize the world */
void consinit(void);
void cpu_initclocks(void);
void cpu_initclocks_bsp(void);
void cpu_initclocks_ap(void);
void usrinfoinit(void);
/* Finalize the world */
void kern_reboot(int) __dead2;
void shutdown_nice(int);
/* Stubs for obsolete functions that used to be for interrupt management */
static __inline intrmask_t splhigh(void) { return 0; }
static __inline intrmask_t splimp(void) { return 0; }
static __inline intrmask_t splnet(void) { return 0; }
static __inline intrmask_t spltty(void) { return 0; }
static __inline void splx(intrmask_t ipl __unused) { return; }
/*
* Common `proc' functions are declared here so that proc.h can be included
* less often.
*/
int _sleep(const void * _Nonnull chan, struct lock_object *lock, int pri,
const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags);
#define msleep(chan, mtx, pri, wmesg, timo) \
_sleep((chan), &(mtx)->lock_object, (pri), (wmesg), \
tick_sbt * (timo), 0, C_HARDCLOCK)
#define msleep_sbt(chan, mtx, pri, wmesg, bt, pr, flags) \
_sleep((chan), &(mtx)->lock_object, (pri), (wmesg), (bt), (pr), \
(flags))
int msleep_spin_sbt(const void * _Nonnull chan, struct mtx *mtx,
const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags);
#define msleep_spin(chan, mtx, wmesg, timo) \
msleep_spin_sbt((chan), (mtx), (wmesg), tick_sbt * (timo), \
0, C_HARDCLOCK)
int pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr,
int flags);
static __inline int
pause(const char *wmesg, int timo)
{
return (pause_sbt(wmesg, tick_sbt * timo, 0, C_HARDCLOCK));
}
#define pause_sig(wmesg, timo) \
pause_sbt((wmesg), tick_sbt * (timo), 0, C_HARDCLOCK | C_CATCH)
#define tsleep(chan, pri, wmesg, timo) \
_sleep((chan), NULL, (pri), (wmesg), tick_sbt * (timo), \
0, C_HARDCLOCK)
#define tsleep_sbt(chan, pri, wmesg, bt, pr, flags) \
_sleep((chan), NULL, (pri), (wmesg), (bt), (pr), (flags))
void wakeup(const void *chan);
void wakeup_one(const void *chan);
void wakeup_any(const void *chan);
/*
* Common `struct cdev *' stuff are declared here to avoid #include poisoning
*/
struct cdev;
dev_t dev2udev(struct cdev *x);
const char *devtoname(struct cdev *cdev);
#ifdef __LP64__
size_t devfs_iosize_max(void);
size_t iosize_max(void);
#endif
int poll_no_poll(int events);
/* XXX: Should be void nanodelay(u_int nsec); */
void DELAY(int usec);
int kcmp_cmp(uintptr_t a, uintptr_t b);
/* Root mount holdback API */
struct root_hold_token {
int flags;
const char *who;
TAILQ_ENTRY(root_hold_token) list;
};
struct root_hold_token *root_mount_hold(const char *identifier);
void root_mount_hold_token(const char *identifier, struct root_hold_token *h);
void root_mount_rel(struct root_hold_token *h);
int root_mounted(void);
/*
* Unit number allocation API. (kern/subr_unit.c)
*/
struct unrhdr;
#define UNR_NO_MTX ((void *)(uintptr_t)-1)
struct unrhdr *new_unrhdr(int low, int high, struct mtx *mutex);
void init_unrhdr(struct unrhdr *uh, int low, int high, struct mtx *mutex);
void delete_unrhdr(struct unrhdr *uh);
void clear_unrhdr(struct unrhdr *uh);
void clean_unrhdr(struct unrhdr *uh);
void clean_unrhdrl(struct unrhdr *uh);
int alloc_unr(struct unrhdr *uh);
int alloc_unr_specific(struct unrhdr *uh, u_int item);
int alloc_unrl(struct unrhdr *uh);
void free_unr(struct unrhdr *uh, u_int item);
void *create_iter_unr(struct unrhdr *uh);
int next_iter_unr(void *handle);
void free_iter_unr(void *handle);
struct unrhdr64 {
uint64_t counter;
};
static __inline void
new_unrhdr64(struct unrhdr64 *unr64, uint64_t low)
{
unr64->counter = low;
}
static __inline uint64_t
alloc_unr64(struct unrhdr64 *unr64)
{
return (atomic_fetchadd_64(&unr64->counter, 1));
}
void intr_prof_stack_use(struct thread *td, struct trapframe *frame);
void counted_warning(unsigned *counter, const char *msg);
/*
* APIs to manage deprecation and obsolescence.
*/
void _gone_in(int major, const char *msg);
void _gone_in_dev(device_t dev, int major, const char *msg);
#ifdef NO_OBSOLETE_CODE
#define __gone_ok(m, msg) \
_Static_assert(m < P_OSREL_MAJOR(__FreeBSD_version)), \
"Obsolete code: " msg);
#else
#define __gone_ok(m, msg)
#endif
#define gone_in(major, msg) __gone_ok(major, msg) _gone_in(major, msg)
#define gone_in_dev(dev, major, msg) __gone_ok(major, msg) _gone_in_dev(dev, major, msg)
#ifdef INVARIANTS
#define __diagused
#else
#define __diagused __unused
#endif
#ifdef WITNESS
#define __witness_used
#else
#define __witness_used __unused
#endif
#endif /* _KERNEL */
__NULLABILITY_PRAGMA_POP
#endif /* !_SYS_SYSTM_H_ */