freebsd-src/sys/kern/subr_pctrie.c
Doug Moore d19851f002 subr_pctrie: add a word to a comment
No functional changes.
Reported by:	alc
2024-06-13 15:28:15 -05:00

969 lines
27 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2013 EMC Corp.
* Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
* Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Path-compressed radix trie implementation.
*
* The implementation takes into account the following rationale:
* - Size of the nodes should be as small as possible but still big enough
* to avoid a large maximum depth for the trie. This is a balance
* between the necessity to not wire too much physical memory for the nodes
* and the necessity to avoid too much cache pollution during the trie
* operations.
* - There is not a huge bias toward the number of lookup operations over
* the number of insert and remove operations. This basically implies
* that optimizations supposedly helping one operation but hurting the
* other might be carefully evaluated.
* - On average not many nodes are expected to be fully populated, hence
* level compression may just complicate things.
*/
#include <sys/cdefs.h>
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/libkern.h>
#include <sys/pctrie.h>
#include <sys/proc.h> /* smr.h depends on struct thread. */
#include <sys/smr.h>
#include <sys/smr_types.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#define PCTRIE_MASK (PCTRIE_COUNT - 1)
#define PCTRIE_LIMIT (howmany(sizeof(uint64_t) * NBBY, PCTRIE_WIDTH) - 1)
#if PCTRIE_WIDTH == 3
typedef uint8_t pn_popmap_t;
#elif PCTRIE_WIDTH == 4
typedef uint16_t pn_popmap_t;
#elif PCTRIE_WIDTH == 5
typedef uint32_t pn_popmap_t;
#else
#error Unsupported width
#endif
_Static_assert(sizeof(pn_popmap_t) <= sizeof(int),
"pn_popmap_t too wide");
struct pctrie_node;
typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
struct pctrie_node {
uint64_t pn_owner; /* Owner of record. */
pn_popmap_t pn_popmap; /* Valid children. */
uint8_t pn_clev; /* Level * WIDTH. */
smr_pctnode_t pn_child[PCTRIE_COUNT]; /* Child nodes. */
};
enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
static __inline void pctrie_node_store(smr_pctnode_t *p, void *val,
enum pctrie_access access);
/*
* Map index to an array position for the children of node,
*/
static __inline int
pctrie_slot(struct pctrie_node *node, uint64_t index)
{
return ((index >> node->pn_clev) & PCTRIE_MASK);
}
/*
* Returns true if index does not belong to the specified node. Otherwise,
* sets slot value, and returns false.
*/
static __inline bool
pctrie_keybarr(struct pctrie_node *node, uint64_t index, int *slot)
{
index = (index - node->pn_owner) >> node->pn_clev;
if (index >= PCTRIE_COUNT)
return (true);
*slot = index;
return (false);
}
/*
* Check radix node.
*/
static __inline void
pctrie_node_put(struct pctrie_node *node)
{
#ifdef INVARIANTS
int slot;
KASSERT(powerof2(node->pn_popmap),
("pctrie_node_put: node %p has too many children %04x", node,
node->pn_popmap));
for (slot = 0; slot < PCTRIE_COUNT; slot++) {
if ((node->pn_popmap & (1 << slot)) != 0)
continue;
KASSERT(smr_unserialized_load(&node->pn_child[slot], true) ==
PCTRIE_NULL,
("pctrie_node_put: node %p has a child", node));
}
#endif
}
/*
* Fetch a node pointer from a slot.
*/
static __inline struct pctrie_node *
pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
{
switch (access) {
case PCTRIE_UNSERIALIZED:
return (smr_unserialized_load(p, true));
case PCTRIE_LOCKED:
return (smr_serialized_load(p, true));
case PCTRIE_SMR:
return (smr_entered_load(p, smr));
}
__assert_unreachable();
}
static __inline void
pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
{
switch (access) {
case PCTRIE_UNSERIALIZED:
smr_unserialized_store(p, v, true);
break;
case PCTRIE_LOCKED:
smr_serialized_store(p, v, true);
break;
case PCTRIE_SMR:
panic("%s: Not supported in SMR section.", __func__);
break;
default:
__assert_unreachable();
break;
}
}
/*
* Get the root node for a tree.
*/
static __inline struct pctrie_node *
pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
{
return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access));
}
/*
* Set the root node for a tree.
*/
static __inline void
pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node,
enum pctrie_access access)
{
pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access);
}
/*
* Returns TRUE if the specified node is a leaf and FALSE otherwise.
*/
static __inline bool
pctrie_isleaf(struct pctrie_node *node)
{
return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
}
/*
* Returns val with leaf bit set.
*/
static __inline void *
pctrie_toleaf(uint64_t *val)
{
return ((void *)((uintptr_t)val | PCTRIE_ISLEAF));
}
/*
* Returns the associated val extracted from node.
*/
static __inline uint64_t *
pctrie_toval(struct pctrie_node *node)
{
return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
}
/*
* Returns the associated pointer extracted from node and field offset.
*/
static __inline void *
pctrie_toptr(struct pctrie_node *node, int keyoff)
{
return ((void *)(((uintptr_t)node & ~PCTRIE_FLAGS) - keyoff));
}
/*
* Make 'child' a child of 'node'.
*/
static __inline void
pctrie_addnode(struct pctrie_node *node, uint64_t index,
struct pctrie_node *child, enum pctrie_access access)
{
int slot;
slot = pctrie_slot(node, index);
pctrie_node_store(&node->pn_child[slot], child, access);
node->pn_popmap ^= 1 << slot;
KASSERT((node->pn_popmap & (1 << slot)) != 0,
("%s: bad popmap slot %d in node %p", __func__, slot, node));
}
/*
* pctrie node zone initializer.
*/
int
pctrie_zone_init(void *mem, int size __unused, int flags __unused)
{
struct pctrie_node *node;
node = mem;
node->pn_popmap = 0;
for (int i = 0; i < nitems(node->pn_child); i++)
pctrie_node_store(&node->pn_child[i], PCTRIE_NULL,
PCTRIE_UNSERIALIZED);
return (0);
}
size_t
pctrie_node_size(void)
{
return (sizeof(struct pctrie_node));
}
enum pctrie_insert_neighbor_mode {
PCTRIE_INSERT_NEIGHBOR_NONE,
PCTRIE_INSERT_NEIGHBOR_LT,
PCTRIE_INSERT_NEIGHBOR_GT,
};
/*
* Look for where to insert the key-value pair into the trie. Complete the
* insertion if it replaces a null leaf. Return the insertion location if the
* insertion needs to be completed by the caller; otherwise return NULL.
*
* If the key is already present in the trie, populate *found_out as if by
* pctrie_lookup().
*
* With mode PCTRIE_INSERT_NEIGHBOR_GT or PCTRIE_INSERT_NEIGHBOR_LT, set
* *neighbor_out to the lowest level node we encounter during the insert lookup
* that is a parent of the next greater or lesser entry. The value is not
* defined if the key was already present in the trie.
*
* Note that mode is expected to be a compile-time constant, and this procedure
* is expected to be inlined into callers with extraneous code optimized out.
*/
static __always_inline void *
pctrie_insert_lookup_compound(struct pctrie *ptree, uint64_t *val,
uint64_t **found_out, struct pctrie_node **neighbor_out,
enum pctrie_insert_neighbor_mode mode)
{
uint64_t index;
struct pctrie_node *node, *parent;
int slot;
index = *val;
/*
* The owner of record for root is not really important because it
* will never be used.
*/
node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
parent = NULL;
for (;;) {
if (pctrie_isleaf(node)) {
if (node == PCTRIE_NULL) {
if (parent == NULL)
ptree->pt_root = pctrie_toleaf(val);
else
pctrie_addnode(parent, index,
pctrie_toleaf(val), PCTRIE_LOCKED);
return (NULL);
}
if (*pctrie_toval(node) == index) {
*found_out = pctrie_toval(node);
return (NULL);
}
break;
}
if (pctrie_keybarr(node, index, &slot))
break;
/*
* Descend. If we're tracking the next neighbor and this node
* contains a neighboring entry in the right direction, record
* it.
*/
if (mode == PCTRIE_INSERT_NEIGHBOR_LT) {
if ((node->pn_popmap & ((1 << slot) - 1)) != 0)
*neighbor_out = node;
} else if (mode == PCTRIE_INSERT_NEIGHBOR_GT) {
if ((node->pn_popmap >> slot) > 1)
*neighbor_out = node;
}
parent = node;
node = pctrie_node_load(&node->pn_child[slot], NULL,
PCTRIE_LOCKED);
}
/*
* The caller will split this node. If we're tracking the next
* neighbor, record the old node if the old entry is in the right
* direction.
*/
if (mode == PCTRIE_INSERT_NEIGHBOR_LT) {
if (*pctrie_toval(node) < index)
*neighbor_out = node;
} else if (mode == PCTRIE_INSERT_NEIGHBOR_GT) {
if (*pctrie_toval(node) > index)
*neighbor_out = node;
}
/*
* 'node' must be replaced in the tree with a new branch node, with
* children 'node' and 'val'. Return the place that points to 'node'
* now, and will point to to the new branching node later.
*/
return ((parent != NULL) ? &parent->pn_child[slot]:
(smr_pctnode_t *)&ptree->pt_root);
}
/*
* Wrap pctrie_insert_lookup_compound to implement a strict insertion. Panic
* if the key already exists, and do not look for neighboring entries.
*/
void *
pctrie_insert_lookup_strict(struct pctrie *ptree, uint64_t *val)
{
void *parentp;
uint64_t *found;
found = NULL;
parentp = pctrie_insert_lookup_compound(ptree, val, &found, NULL,
PCTRIE_INSERT_NEIGHBOR_NONE);
if (__predict_false(found != NULL))
panic("%s: key %jx is already present", __func__,
(uintmax_t)*val);
return (parentp);
}
/*
* Wrap pctrie_insert_lookup_compound to implement find-or-insert. Do not look
* for neighboring entries.
*/
void *
pctrie_insert_lookup(struct pctrie *ptree, uint64_t *val,
uint64_t **found_out)
{
*found_out = NULL;
return (pctrie_insert_lookup_compound(ptree, val, found_out, NULL,
PCTRIE_INSERT_NEIGHBOR_NONE));
}
/*
* Wrap pctrie_insert_lookup_compound to implement find or insert and find next
* greater entry. Find a subtree that contains the next entry greater than the
* newly-inserted or to-be-inserted entry.
*/
void *
pctrie_insert_lookup_gt(struct pctrie *ptree, uint64_t *val,
uint64_t **found_out, struct pctrie_node **neighbor_out)
{
*found_out = NULL;
*neighbor_out = NULL;
return (pctrie_insert_lookup_compound(ptree, val, found_out,
neighbor_out, PCTRIE_INSERT_NEIGHBOR_GT));
}
/*
* Wrap pctrie_insert_lookup_compound to implement find or insert and find next
* lesser entry. Find a subtree that contains the next entry less than the
* newly-inserted or to-be-inserted entry.
*/
void *
pctrie_insert_lookup_lt(struct pctrie *ptree, uint64_t *val,
uint64_t **found_out, struct pctrie_node **neighbor_out)
{
*found_out = NULL;
*neighbor_out = NULL;
return (pctrie_insert_lookup_compound(ptree, val, found_out,
neighbor_out, PCTRIE_INSERT_NEIGHBOR_LT));
}
/*
* Uses new node to insert key-value pair into the trie at given location.
*/
void
pctrie_insert_node(void *parentp, struct pctrie_node *parent, uint64_t *val)
{
struct pctrie_node *node;
uint64_t index, newind;
/*
* Clear the last child pointer of the newly allocated parent. We want
* to clear it after the final section has exited so lookup can not
* return false negatives. It is done here because it will be
* cache-cold in the dtor callback.
*/
if (parent->pn_popmap != 0) {
pctrie_node_store(&parent->pn_child[ffs(parent->pn_popmap) - 1],
PCTRIE_NULL, PCTRIE_UNSERIALIZED);
parent->pn_popmap = 0;
}
/*
* Recover the values of the two children of the new parent node. If
* 'node' is not a leaf, this stores into 'newind' the 'owner' field,
* which must be first in the node.
*/
index = *val;
node = pctrie_node_load(parentp, NULL, PCTRIE_UNSERIALIZED);
newind = *pctrie_toval(node);
/*
* From the highest-order bit where the indexes differ,
* compute the highest level in the trie where they differ. Then,
* compute the least index of this subtrie.
*/
_Static_assert(sizeof(long long) >= sizeof(uint64_t),
"uint64 too wide");
_Static_assert(sizeof(uint64_t) * NBBY <=
(1 << (sizeof(parent->pn_clev) * NBBY)), "pn_clev too narrow");
parent->pn_clev = rounddown(ilog2(index ^ newind), PCTRIE_WIDTH);
parent->pn_owner = PCTRIE_COUNT;
parent->pn_owner = index & -(parent->pn_owner << parent->pn_clev);
/* These writes are not yet visible due to ordering. */
pctrie_addnode(parent, index, pctrie_toleaf(val), PCTRIE_UNSERIALIZED);
pctrie_addnode(parent, newind, node, PCTRIE_UNSERIALIZED);
/* Synchronize to make the above visible. */
pctrie_node_store(parentp, parent, PCTRIE_LOCKED);
}
/*
* Returns the value stored at the index. If the index is not present,
* NULL is returned.
*/
static __always_inline uint64_t *
_pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr,
enum pctrie_access access)
{
struct pctrie_node *node;
uint64_t *m;
int slot;
node = pctrie_root_load(ptree, smr, access);
for (;;) {
if (pctrie_isleaf(node)) {
if ((m = pctrie_toval(node)) != NULL && *m == index)
return (m);
break;
}
if (pctrie_keybarr(node, index, &slot))
break;
node = pctrie_node_load(&node->pn_child[slot], smr, access);
}
return (NULL);
}
/*
* Returns the value stored at the index, assuming access is externally
* synchronized by a lock.
*
* If the index is not present, NULL is returned.
*/
uint64_t *
pctrie_lookup(struct pctrie *ptree, uint64_t index)
{
return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED));
}
/*
* Returns the value stored at the index without requiring an external lock.
*
* If the index is not present, NULL is returned.
*/
uint64_t *
pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
{
uint64_t *res;
smr_enter(smr);
res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR);
smr_exit(smr);
return (res);
}
/*
* Returns the value with the least index that is greater than or equal to the
* specified index, or NULL if there are no such values.
*
* Requires that access be externally synchronized by a lock.
*/
static __inline uint64_t *
pctrie_lookup_ge_node(struct pctrie_node *node, uint64_t index)
{
struct pctrie_node *succ;
uint64_t *m;
int slot;
/*
* Descend the trie as if performing an ordinary lookup for the
* specified value. However, unlike an ordinary lookup, as we descend
* the trie, we use "succ" to remember the last branching-off point,
* that is, the interior node under which the least value that is both
* outside our current path down the trie and greater than the specified
* index resides. (The node's popmap makes it fast and easy to
* recognize a branching-off point.) If our ordinary lookup fails to
* yield a value that is greater than or equal to the specified index,
* then we will exit this loop and perform a lookup starting from
* "succ". If "succ" is not NULL, then that lookup is guaranteed to
* succeed.
*/
succ = NULL;
for (;;) {
if (pctrie_isleaf(node)) {
if ((m = pctrie_toval(node)) != NULL && *m >= index)
return (m);
break;
}
if (pctrie_keybarr(node, index, &slot)) {
/*
* If all values in this subtree are > index, then the
* least value in this subtree is the answer.
*/
if (node->pn_owner > index)
succ = node;
break;
}
/*
* Just in case the next search step leads to a subtree of all
* values < index, check popmap to see if a next bigger step, to
* a subtree of all pages with values > index, is available. If
* so, remember to restart the search here.
*/
if ((node->pn_popmap >> slot) > 1)
succ = node;
node = pctrie_node_load(&node->pn_child[slot], NULL,
PCTRIE_LOCKED);
}
/*
* Restart the search from the last place visited in the subtree that
* included some values > index, if there was such a place.
*/
if (succ == NULL)
return (NULL);
if (succ != node) {
/*
* Take a step to the next bigger sibling of the node chosen
* last time. In that subtree, all values > index.
*/
slot = pctrie_slot(succ, index) + 1;
KASSERT((succ->pn_popmap >> slot) != 0,
("%s: no popmap siblings past slot %d in node %p",
__func__, slot, succ));
slot += ffs(succ->pn_popmap >> slot) - 1;
succ = pctrie_node_load(&succ->pn_child[slot], NULL,
PCTRIE_LOCKED);
}
/*
* Find the value in the subtree rooted at "succ" with the least index.
*/
while (!pctrie_isleaf(succ)) {
KASSERT(succ->pn_popmap != 0,
("%s: no popmap children in node %p", __func__, succ));
slot = ffs(succ->pn_popmap) - 1;
succ = pctrie_node_load(&succ->pn_child[slot], NULL,
PCTRIE_LOCKED);
}
return (pctrie_toval(succ));
}
uint64_t *
pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
{
return (pctrie_lookup_ge_node(
pctrie_root_load(ptree, NULL, PCTRIE_LOCKED), index));
}
uint64_t *
pctrie_subtree_lookup_gt(struct pctrie_node *node, uint64_t index)
{
if (node == NULL || index + 1 == 0)
return (NULL);
return (pctrie_lookup_ge_node(node, index + 1));
}
#ifdef INVARIANTS
void
pctrie_subtree_lookup_gt_assert(struct pctrie_node *node, uint64_t index,
struct pctrie *ptree, uint64_t *res)
{
uint64_t *expected;
if (index + 1 == 0)
expected = NULL;
else
expected = pctrie_lookup_ge(ptree, index + 1);
KASSERT(res == expected,
("pctrie subtree lookup gt result different from root lookup: "
"ptree %p, index %ju, subtree %p, found %p, expected %p", ptree,
(uintmax_t)index, node, res, expected));
}
#endif
/*
* Returns the value with the greatest index that is less than or equal to the
* specified index, or NULL if there are no such values.
*
* Requires that access be externally synchronized by a lock.
*/
static __inline uint64_t *
pctrie_lookup_le_node(struct pctrie_node *node, uint64_t index)
{
struct pctrie_node *pred;
uint64_t *m;
int slot;
/*
* Mirror the implementation of pctrie_lookup_ge_node, described above.
*/
pred = NULL;
for (;;) {
if (pctrie_isleaf(node)) {
if ((m = pctrie_toval(node)) != NULL && *m <= index)
return (m);
break;
}
if (pctrie_keybarr(node, index, &slot)) {
if (node->pn_owner < index)
pred = node;
break;
}
if ((node->pn_popmap & ((1 << slot) - 1)) != 0)
pred = node;
node = pctrie_node_load(&node->pn_child[slot], NULL,
PCTRIE_LOCKED);
}
if (pred == NULL)
return (NULL);
if (pred != node) {
slot = pctrie_slot(pred, index);
KASSERT((pred->pn_popmap & ((1 << slot) - 1)) != 0,
("%s: no popmap siblings before slot %d in node %p",
__func__, slot, pred));
slot = ilog2(pred->pn_popmap & ((1 << slot) - 1));
pred = pctrie_node_load(&pred->pn_child[slot], NULL,
PCTRIE_LOCKED);
}
while (!pctrie_isleaf(pred)) {
KASSERT(pred->pn_popmap != 0,
("%s: no popmap children in node %p", __func__, pred));
slot = ilog2(pred->pn_popmap);
pred = pctrie_node_load(&pred->pn_child[slot], NULL,
PCTRIE_LOCKED);
}
return (pctrie_toval(pred));
}
uint64_t *
pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
{
return (pctrie_lookup_le_node(
pctrie_root_load(ptree, NULL, PCTRIE_LOCKED), index));
}
uint64_t *
pctrie_subtree_lookup_lt(struct pctrie_node *node, uint64_t index)
{
if (node == NULL || index == 0)
return (NULL);
return (pctrie_lookup_le_node(node, index - 1));
}
#ifdef INVARIANTS
void
pctrie_subtree_lookup_lt_assert(struct pctrie_node *node, uint64_t index,
struct pctrie *ptree, uint64_t *res)
{
uint64_t *expected;
if (index == 0)
expected = NULL;
else
expected = pctrie_lookup_le(ptree, index - 1);
KASSERT(res == expected,
("pctrie subtree lookup lt result different from root lookup: "
"ptree %p, index %ju, subtree %p, found %p, expected %p", ptree,
(uintmax_t)index, node, res, expected));
}
#endif
/*
* Remove the specified index from the tree, and return the value stored at
* that index. If the index is not present, return NULL.
*/
uint64_t *
pctrie_remove_lookup(struct pctrie *ptree, uint64_t index,
struct pctrie_node **freenode)
{
struct pctrie_node *child, *node, *parent;
uint64_t *m;
int slot;
*freenode = node = NULL;
child = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
for (;;) {
if (pctrie_isleaf(child))
break;
parent = node;
node = child;
slot = pctrie_slot(node, index);
child = pctrie_node_load(&node->pn_child[slot], NULL,
PCTRIE_LOCKED);
}
if ((m = pctrie_toval(child)) == NULL || *m != index)
return (NULL);
if (node == NULL) {
pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_LOCKED);
return (m);
}
KASSERT((node->pn_popmap & (1 << slot)) != 0,
("%s: bad popmap slot %d in node %p",
__func__, slot, node));
node->pn_popmap ^= 1 << slot;
pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, PCTRIE_LOCKED);
if (!powerof2(node->pn_popmap))
return (m);
KASSERT(node->pn_popmap != 0, ("%s: bad popmap all zeroes", __func__));
slot = ffs(node->pn_popmap) - 1;
child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED);
KASSERT(child != PCTRIE_NULL,
("%s: bad popmap slot %d in node %p", __func__, slot, node));
if (parent == NULL)
pctrie_root_store(ptree, child, PCTRIE_LOCKED);
else {
slot = pctrie_slot(parent, index);
KASSERT(node ==
pctrie_node_load(&parent->pn_child[slot], NULL,
PCTRIE_LOCKED), ("%s: invalid child value", __func__));
pctrie_node_store(&parent->pn_child[slot], child,
PCTRIE_LOCKED);
}
/*
* The child is still valid and we can not zero the
* pointer until all SMR references are gone.
*/
pctrie_node_put(node);
*freenode = node;
return (m);
}
/*
* Walk the subtrie rooted at *pnode in order, invoking callback on leaves and
* using the leftmost child pointer for path reversal, until an interior node
* is stripped of all children, and returned for deallocation, with *pnode left
* pointing to the parent of that node.
*/
static __always_inline struct pctrie_node *
pctrie_reclaim_prune(struct pctrie_node **pnode, struct pctrie_node *parent,
pctrie_cb_t callback, int keyoff, void *arg)
{
struct pctrie_node *child, *node;
int slot;
node = *pnode;
while (node->pn_popmap != 0) {
slot = ffs(node->pn_popmap) - 1;
node->pn_popmap ^= 1 << slot;
child = pctrie_node_load(&node->pn_child[slot], NULL,
PCTRIE_UNSERIALIZED);
pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL,
PCTRIE_UNSERIALIZED);
if (pctrie_isleaf(child)) {
if (callback != NULL)
callback(pctrie_toptr(child, keyoff), arg);
continue;
}
/* Climb one level down the trie. */
pctrie_node_store(&node->pn_child[0], parent,
PCTRIE_UNSERIALIZED);
parent = node;
node = child;
}
*pnode = parent;
return (node);
}
/*
* Recover the node parent from its first child and continue pruning.
*/
static __always_inline struct pctrie_node *
pctrie_reclaim_resume_compound(struct pctrie_node **pnode,
pctrie_cb_t callback, int keyoff, void *arg)
{
struct pctrie_node *parent, *node;
node = *pnode;
if (node == NULL)
return (NULL);
/* Climb one level up the trie. */
parent = pctrie_node_load(&node->pn_child[0], NULL,
PCTRIE_UNSERIALIZED);
pctrie_node_store(&node->pn_child[0], PCTRIE_NULL, PCTRIE_UNSERIALIZED);
return (pctrie_reclaim_prune(pnode, parent, callback, keyoff, arg));
}
/*
* Find the trie root, and start pruning with a NULL parent.
*/
static __always_inline struct pctrie_node *
pctrie_reclaim_begin_compound(struct pctrie_node **pnode,
struct pctrie *ptree,
pctrie_cb_t callback, int keyoff, void *arg)
{
struct pctrie_node *node;
node = pctrie_root_load(ptree, NULL, PCTRIE_UNSERIALIZED);
pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_UNSERIALIZED);
if (pctrie_isleaf(node)) {
if (callback != NULL && node != PCTRIE_NULL)
callback(pctrie_toptr(node, keyoff), arg);
return (NULL);
}
*pnode = node;
return (pctrie_reclaim_prune(pnode, NULL, callback, keyoff, arg));
}
struct pctrie_node *
pctrie_reclaim_resume(struct pctrie_node **pnode)
{
return (pctrie_reclaim_resume_compound(pnode, NULL, 0, NULL));
}
struct pctrie_node *
pctrie_reclaim_begin(struct pctrie_node **pnode, struct pctrie *ptree)
{
return (pctrie_reclaim_begin_compound(pnode, ptree, NULL, 0, NULL));
}
struct pctrie_node *
pctrie_reclaim_resume_cb(struct pctrie_node **pnode,
pctrie_cb_t callback, int keyoff, void *arg)
{
return (pctrie_reclaim_resume_compound(pnode, callback, keyoff, arg));
}
struct pctrie_node *
pctrie_reclaim_begin_cb(struct pctrie_node **pnode, struct pctrie *ptree,
pctrie_cb_t callback, int keyoff, void *arg)
{
return (pctrie_reclaim_begin_compound(pnode, ptree,
callback, keyoff, arg));
}
/*
* Replace an existing value in the trie with another one.
* Panics if there is not an old value in the trie at the new value's index.
*/
uint64_t *
pctrie_replace(struct pctrie *ptree, uint64_t *newval)
{
struct pctrie_node *leaf, *parent, *node;
uint64_t *m;
uint64_t index;
int slot;
leaf = pctrie_toleaf(newval);
index = *newval;
node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
parent = NULL;
for (;;) {
if (pctrie_isleaf(node)) {
if ((m = pctrie_toval(node)) != NULL && *m == index) {
if (parent == NULL)
ptree->pt_root = leaf;
else
pctrie_node_store(
&parent->pn_child[slot], leaf,
PCTRIE_LOCKED);
return (m);
}
break;
}
if (pctrie_keybarr(node, index, &slot))
break;
parent = node;
node = pctrie_node_load(&node->pn_child[slot], NULL,
PCTRIE_LOCKED);
}
panic("%s: original replacing value not found", __func__);
}
#ifdef DDB
/*
* Show details about the given node.
*/
DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
{
struct pctrie_node *node, *tmp;
int slot;
pn_popmap_t popmap;
if (!have_addr)
return;
node = (struct pctrie_node *)addr;
db_printf("node %p, owner %jx, children popmap %04x, level %u:\n",
(void *)node, (uintmax_t)node->pn_owner, node->pn_popmap,
node->pn_clev / PCTRIE_WIDTH);
for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) {
slot = ffs(popmap) - 1;
tmp = pctrie_node_load(&node->pn_child[slot], NULL,
PCTRIE_UNSERIALIZED);
db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
slot, (void *)tmp,
pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
node->pn_clev / PCTRIE_WIDTH);
}
}
#endif /* DDB */