freebsd-src/sys/kern/kern_shutdown.c
Justin Hibbits 2cb4909011 cons: Add boot option to mute boot messages after banner
This is useful for embedded systems, where it provides feedback that the
kernel has booted, but avoids printing the probe messages.  If both
mutemsgs and verbose are set, verbose cancels the mute.

Additionally, this unmutes the console on panic, so a user can see what
happened leading up to the panic.

Obtained from:  Juniper Networks, Inc.
2024-04-30 16:23:47 -04:00

1843 lines
46 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1986, 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_ddb.h"
#include "opt_ekcd.h"
#include "opt_kdb.h"
#include "opt_panic.h"
#include "opt_printf.h"
#include "opt_sched.h"
#include "opt_watchdog.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/boottrace.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/compressor.h>
#include <sys/cons.h>
#include <sys/disk.h>
#include <sys/eventhandler.h>
#include <sys/filedesc.h>
#include <sys/jail.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/kerneldump.h>
#include <sys/kthread.h>
#include <sys/ktr.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mount.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/taskqueue.h>
#include <sys/vnode.h>
#include <sys/watchdog.h>
#include <crypto/chacha20/chacha.h>
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha256.h>
#include <ddb/ddb.h>
#include <machine/cpu.h>
#include <machine/dump.h>
#include <machine/pcb.h>
#include <machine/smp.h>
#include <security/mac/mac_framework.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/swap_pager.h>
#include <sys/signalvar.h>
static MALLOC_DEFINE(M_DUMPER, "dumper", "dumper block buffer");
#ifndef PANIC_REBOOT_WAIT_TIME
#define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */
#endif
static int panic_reboot_wait_time = PANIC_REBOOT_WAIT_TIME;
SYSCTL_INT(_kern, OID_AUTO, panic_reboot_wait_time, CTLFLAG_RWTUN,
&panic_reboot_wait_time, 0,
"Seconds to wait before rebooting after a panic");
static int reboot_wait_time = 0;
SYSCTL_INT(_kern, OID_AUTO, reboot_wait_time, CTLFLAG_RWTUN,
&reboot_wait_time, 0,
"Seconds to wait before rebooting");
/*
* Note that stdarg.h and the ANSI style va_start macro is used for both
* ANSI and traditional C compilers.
*/
#include <machine/stdarg.h>
#ifdef KDB
#ifdef KDB_UNATTENDED
int debugger_on_panic = 0;
#else
int debugger_on_panic = 1;
#endif
SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic,
CTLFLAG_RWTUN, &debugger_on_panic, 0,
"Run debugger on kernel panic");
static bool debugger_on_recursive_panic = false;
SYSCTL_BOOL(_debug, OID_AUTO, debugger_on_recursive_panic,
CTLFLAG_RWTUN, &debugger_on_recursive_panic, 0,
"Run debugger on recursive kernel panic");
int debugger_on_trap = 0;
SYSCTL_INT(_debug, OID_AUTO, debugger_on_trap,
CTLFLAG_RWTUN, &debugger_on_trap, 0,
"Run debugger on kernel trap before panic");
#ifdef KDB_TRACE
static int trace_on_panic = 1;
static bool trace_all_panics = true;
#else
static int trace_on_panic = 0;
static bool trace_all_panics = false;
#endif
SYSCTL_INT(_debug, OID_AUTO, trace_on_panic,
CTLFLAG_RWTUN | CTLFLAG_SECURE,
&trace_on_panic, 0, "Print stack trace on kernel panic");
SYSCTL_BOOL(_debug, OID_AUTO, trace_all_panics, CTLFLAG_RWTUN,
&trace_all_panics, 0, "Print stack traces on secondary kernel panics");
#endif /* KDB */
static int sync_on_panic = 0;
SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RWTUN,
&sync_on_panic, 0, "Do a sync before rebooting from a panic");
static bool poweroff_on_panic = 0;
SYSCTL_BOOL(_kern, OID_AUTO, poweroff_on_panic, CTLFLAG_RWTUN,
&poweroff_on_panic, 0, "Do a power off instead of a reboot on a panic");
static bool powercycle_on_panic = 0;
SYSCTL_BOOL(_kern, OID_AUTO, powercycle_on_panic, CTLFLAG_RWTUN,
&powercycle_on_panic, 0, "Do a power cycle instead of a reboot on a panic");
static SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Shutdown environment");
#ifndef DIAGNOSTIC
static int show_busybufs;
#else
static int show_busybufs = 1;
#endif
SYSCTL_INT(_kern_shutdown, OID_AUTO, show_busybufs, CTLFLAG_RW,
&show_busybufs, 0,
"Show busy buffers during shutdown");
int suspend_blocked = 0;
SYSCTL_INT(_kern, OID_AUTO, suspend_blocked, CTLFLAG_RW,
&suspend_blocked, 0, "Block suspend due to a pending shutdown");
#ifdef EKCD
FEATURE(ekcd, "Encrypted kernel crash dumps support");
MALLOC_DEFINE(M_EKCD, "ekcd", "Encrypted kernel crash dumps data");
struct kerneldumpcrypto {
uint8_t kdc_encryption;
uint8_t kdc_iv[KERNELDUMP_IV_MAX_SIZE];
union {
struct {
keyInstance aes_ki;
cipherInstance aes_ci;
} u_aes;
struct chacha_ctx u_chacha;
} u;
#define kdc_ki u.u_aes.aes_ki
#define kdc_ci u.u_aes.aes_ci
#define kdc_chacha u.u_chacha
uint32_t kdc_dumpkeysize;
struct kerneldumpkey kdc_dumpkey[];
};
#endif
struct kerneldumpcomp {
uint8_t kdc_format;
struct compressor *kdc_stream;
uint8_t *kdc_buf;
size_t kdc_resid;
};
static struct kerneldumpcomp *kerneldumpcomp_create(struct dumperinfo *di,
uint8_t compression);
static void kerneldumpcomp_destroy(struct dumperinfo *di);
static int kerneldumpcomp_write_cb(void *base, size_t len, off_t off, void *arg);
static int kerneldump_gzlevel = 6;
SYSCTL_INT(_kern, OID_AUTO, kerneldump_gzlevel, CTLFLAG_RWTUN,
&kerneldump_gzlevel, 0,
"Kernel crash dump compression level");
/*
* Variable panicstr contains argument to first call to panic; used as flag
* to indicate that the kernel has already called panic.
*/
const char *panicstr __read_mostly;
bool scheduler_stopped __read_frequently;
int dumping __read_mostly; /* system is dumping */
int rebooting __read_mostly; /* system is rebooting */
bool dumped_core __read_mostly; /* system successfully dumped core */
/*
* Used to serialize between sysctl kern.shutdown.dumpdevname and list
* modifications via ioctl.
*/
static struct mtx dumpconf_list_lk;
MTX_SYSINIT(dumper_configs, &dumpconf_list_lk, "dumper config list", MTX_DEF);
/* Our selected dumper(s). */
static TAILQ_HEAD(dumpconflist, dumperinfo) dumper_configs =
TAILQ_HEAD_INITIALIZER(dumper_configs);
/* Context information for dump-debuggers, saved by the dump_savectx() macro. */
struct pcb dumppcb; /* Registers. */
lwpid_t dumptid; /* Thread ID. */
static struct cdevsw reroot_cdevsw = {
.d_version = D_VERSION,
.d_name = "reroot",
};
static void poweroff_wait(void *, int);
static void shutdown_halt(void *junk, int howto);
static void shutdown_panic(void *junk, int howto);
static void shutdown_reset(void *junk, int howto);
static int kern_reroot(void);
/* register various local shutdown events */
static void
shutdown_conf(void *unused)
{
EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL,
SHUTDOWN_PRI_FIRST);
EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL,
SHUTDOWN_PRI_LAST + 100);
EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL,
SHUTDOWN_PRI_LAST + 200);
}
SYSINIT(shutdown_conf, SI_SUB_INTRINSIC, SI_ORDER_ANY, shutdown_conf, NULL);
/*
* The only reason this exists is to create the /dev/reroot/ directory,
* used by reroot code in init(8) as a mountpoint for tmpfs.
*/
static void
reroot_conf(void *unused)
{
int error;
struct cdev *cdev;
error = make_dev_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK, &cdev,
&reroot_cdevsw, NULL, UID_ROOT, GID_WHEEL, 0600, "reroot/reroot");
if (error != 0) {
printf("%s: failed to create device node, error %d",
__func__, error);
}
}
SYSINIT(reroot_conf, SI_SUB_DEVFS, SI_ORDER_ANY, reroot_conf, NULL);
/*
* The system call that results in a reboot.
*/
/* ARGSUSED */
int
sys_reboot(struct thread *td, struct reboot_args *uap)
{
int error;
error = 0;
#ifdef MAC
error = mac_system_check_reboot(td->td_ucred, uap->opt);
#endif
if (error == 0)
error = priv_check(td, PRIV_REBOOT);
if (error == 0) {
if (uap->opt & RB_REROOT)
error = kern_reroot();
else
kern_reboot(uap->opt);
}
return (error);
}
static void
shutdown_nice_task_fn(void *arg, int pending __unused)
{
int howto;
howto = (uintptr_t)arg;
/* Send a signal to init(8) and have it shutdown the world. */
PROC_LOCK(initproc);
if ((howto & RB_POWEROFF) != 0) {
BOOTTRACE("SIGUSR2 to init(8)");
kern_psignal(initproc, SIGUSR2);
} else if ((howto & RB_POWERCYCLE) != 0) {
BOOTTRACE("SIGWINCH to init(8)");
kern_psignal(initproc, SIGWINCH);
} else if ((howto & RB_HALT) != 0) {
BOOTTRACE("SIGUSR1 to init(8)");
kern_psignal(initproc, SIGUSR1);
} else {
BOOTTRACE("SIGINT to init(8)");
kern_psignal(initproc, SIGINT);
}
PROC_UNLOCK(initproc);
}
static struct task shutdown_nice_task = TASK_INITIALIZER(0,
&shutdown_nice_task_fn, NULL);
/*
* Called by events that want to shut down.. e.g <CTL><ALT><DEL> on a PC
*/
void
shutdown_nice(int howto)
{
if (initproc != NULL && !SCHEDULER_STOPPED()) {
BOOTTRACE("shutdown initiated");
shutdown_nice_task.ta_context = (void *)(uintptr_t)howto;
taskqueue_enqueue(taskqueue_fast, &shutdown_nice_task);
} else {
/*
* No init(8) running, or scheduler would not allow it
* to run, so simply reboot.
*/
kern_reboot(howto | RB_NOSYNC);
}
}
static void
print_uptime(void)
{
int f;
struct timespec ts;
getnanouptime(&ts);
printf("Uptime: ");
f = 0;
if (ts.tv_sec >= 86400) {
printf("%ldd", (long)ts.tv_sec / 86400);
ts.tv_sec %= 86400;
f = 1;
}
if (f || ts.tv_sec >= 3600) {
printf("%ldh", (long)ts.tv_sec / 3600);
ts.tv_sec %= 3600;
f = 1;
}
if (f || ts.tv_sec >= 60) {
printf("%ldm", (long)ts.tv_sec / 60);
ts.tv_sec %= 60;
f = 1;
}
printf("%lds\n", (long)ts.tv_sec);
}
int
doadump(boolean_t textdump)
{
boolean_t coredump;
int error;
error = 0;
if (dumping)
return (EBUSY);
if (TAILQ_EMPTY(&dumper_configs))
return (ENXIO);
dump_savectx();
dumping++;
coredump = TRUE;
#ifdef DDB
if (textdump && textdump_pending) {
coredump = FALSE;
textdump_dumpsys(TAILQ_FIRST(&dumper_configs));
}
#endif
if (coredump) {
struct dumperinfo *di;
TAILQ_FOREACH(di, &dumper_configs, di_next) {
error = dumpsys(di);
if (error == 0) {
dumped_core = true;
break;
}
}
}
dumping--;
return (error);
}
/*
* Trace the shutdown reason.
*/
static void
reboottrace(int howto)
{
if ((howto & RB_DUMP) != 0) {
if ((howto & RB_HALT) != 0)
BOOTTRACE("system panic: halting...");
if ((howto & RB_POWEROFF) != 0)
BOOTTRACE("system panic: powering off...");
if ((howto & (RB_HALT|RB_POWEROFF)) == 0)
BOOTTRACE("system panic: rebooting...");
} else {
if ((howto & RB_HALT) != 0)
BOOTTRACE("system halting...");
if ((howto & RB_POWEROFF) != 0)
BOOTTRACE("system powering off...");
if ((howto & (RB_HALT|RB_POWEROFF)) == 0)
BOOTTRACE("system rebooting...");
}
}
/*
* kern_reboot(9): Shut down the system cleanly to prepare for reboot, halt, or
* power off.
*/
void
kern_reboot(int howto)
{
static int once = 0;
if (initproc != NULL && curproc != initproc)
BOOTTRACE("kernel shutdown (dirty) started");
else
BOOTTRACE("kernel shutdown (clean) started");
/*
* Normal paths here don't hold Giant, but we can wind up here
* unexpectedly with it held. Drop it now so we don't have to
* drop and pick it up elsewhere. The paths it is locking will
* never be returned to, and it is preferable to preclude
* deadlock than to lock against code that won't ever
* continue.
*/
while (!SCHEDULER_STOPPED() && mtx_owned(&Giant))
mtx_unlock(&Giant);
#if defined(SMP)
/*
* Bind us to the first CPU so that all shutdown code runs there. Some
* systems don't shutdown properly (i.e., ACPI power off) if we
* run on another processor.
*/
if (!SCHEDULER_STOPPED()) {
thread_lock(curthread);
sched_bind(curthread, CPU_FIRST());
thread_unlock(curthread);
KASSERT(PCPU_GET(cpuid) == CPU_FIRST(),
("%s: not running on cpu 0", __func__));
}
#endif
/* We're in the process of rebooting. */
rebooting = 1;
reboottrace(howto);
/*
* Do any callouts that should be done BEFORE syncing the filesystems.
*/
EVENTHANDLER_INVOKE(shutdown_pre_sync, howto);
BOOTTRACE("shutdown pre sync complete");
/*
* Now sync filesystems
*/
if (!cold && (howto & RB_NOSYNC) == 0 && once == 0) {
once = 1;
BOOTTRACE("bufshutdown begin");
bufshutdown(show_busybufs);
BOOTTRACE("bufshutdown end");
}
print_uptime();
cngrab();
/*
* Ok, now do things that assume all filesystem activity has
* been completed.
*/
EVENTHANDLER_INVOKE(shutdown_post_sync, howto);
BOOTTRACE("shutdown post sync complete");
if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping)
doadump(TRUE);
/* Now that we're going to really halt the system... */
BOOTTRACE("shutdown final begin");
if (shutdown_trace)
boottrace_dump_console();
EVENTHANDLER_INVOKE(shutdown_final, howto);
/*
* Call this directly so that reset is attempted even if shutdown
* handlers are not yet registered.
*/
shutdown_reset(NULL, howto);
for(;;) ; /* safety against shutdown_reset not working */
/* NOTREACHED */
}
/*
* The system call that results in changing the rootfs.
*/
static int
kern_reroot(void)
{
struct vnode *oldrootvnode, *vp;
struct mount *mp, *devmp;
int error;
if (curproc != initproc)
return (EPERM);
/*
* Mark the filesystem containing currently-running executable
* (the temporary copy of init(8)) busy.
*/
vp = curproc->p_textvp;
error = vn_lock(vp, LK_SHARED);
if (error != 0)
return (error);
mp = vp->v_mount;
error = vfs_busy(mp, MBF_NOWAIT);
if (error != 0) {
vfs_ref(mp);
VOP_UNLOCK(vp);
error = vfs_busy(mp, 0);
vn_lock(vp, LK_SHARED | LK_RETRY);
vfs_rel(mp);
if (error != 0) {
VOP_UNLOCK(vp);
return (ENOENT);
}
if (VN_IS_DOOMED(vp)) {
VOP_UNLOCK(vp);
vfs_unbusy(mp);
return (ENOENT);
}
}
VOP_UNLOCK(vp);
/*
* Remove the filesystem containing currently-running executable
* from the mount list, to prevent it from being unmounted
* by vfs_unmountall(), and to avoid confusing vfs_mountroot().
*
* Also preserve /dev - forcibly unmounting it could cause driver
* reinitialization.
*/
vfs_ref(rootdevmp);
devmp = rootdevmp;
rootdevmp = NULL;
mtx_lock(&mountlist_mtx);
TAILQ_REMOVE(&mountlist, mp, mnt_list);
TAILQ_REMOVE(&mountlist, devmp, mnt_list);
mtx_unlock(&mountlist_mtx);
oldrootvnode = rootvnode;
/*
* Unmount everything except for the two filesystems preserved above.
*/
vfs_unmountall();
/*
* Add /dev back; vfs_mountroot() will move it into its new place.
*/
mtx_lock(&mountlist_mtx);
TAILQ_INSERT_HEAD(&mountlist, devmp, mnt_list);
mtx_unlock(&mountlist_mtx);
rootdevmp = devmp;
vfs_rel(rootdevmp);
/*
* Mount the new rootfs.
*/
vfs_mountroot();
/*
* Update all references to the old rootvnode.
*/
mountcheckdirs(oldrootvnode, rootvnode);
/*
* Add the temporary filesystem back and unbusy it.
*/
mtx_lock(&mountlist_mtx);
TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
mtx_unlock(&mountlist_mtx);
vfs_unbusy(mp);
return (0);
}
/*
* If the shutdown was a clean halt, behave accordingly.
*/
static void
shutdown_halt(void *junk, int howto)
{
if (howto & RB_HALT) {
printf("\n");
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
wdog_kern_pat(WD_TO_NEVER);
switch (cngetc()) {
case -1: /* No console, just die */
cpu_halt();
/* NOTREACHED */
default:
break;
}
}
}
/*
* Check to see if the system panicked, pause and then reboot
* according to the specified delay.
*/
static void
shutdown_panic(void *junk, int howto)
{
int loop;
if (howto & RB_DUMP) {
if (panic_reboot_wait_time != 0) {
if (panic_reboot_wait_time != -1) {
printf("Automatic reboot in %d seconds - "
"press a key on the console to abort\n",
panic_reboot_wait_time);
for (loop = panic_reboot_wait_time * 10;
loop > 0; --loop) {
DELAY(1000 * 100); /* 1/10th second */
/* Did user type a key? */
if (cncheckc() != -1)
break;
}
if (!loop)
return;
}
} else { /* zero time specified - reboot NOW */
return;
}
printf("--> Press a key on the console to reboot,\n");
printf("--> or switch off the system now.\n");
cngetc();
}
}
/*
* Everything done, now reset
*/
static void
shutdown_reset(void *junk, int howto)
{
printf("Rebooting...\n");
DELAY(reboot_wait_time * 1000000);
/*
* Acquiring smp_ipi_mtx here has a double effect:
* - it disables interrupts avoiding CPU0 preemption
* by fast handlers (thus deadlocking against other CPUs)
* - it avoids deadlocks against smp_rendezvous() or, more
* generally, threads busy-waiting, with this spinlock held,
* and waiting for responses by threads on other CPUs
* (ie. smp_tlb_shootdown()).
*
* For the !SMP case it just needs to handle the former problem.
*/
#ifdef SMP
mtx_lock_spin(&smp_ipi_mtx);
#else
spinlock_enter();
#endif
cpu_reset();
/* NOTREACHED */ /* assuming reset worked */
}
#if defined(WITNESS) || defined(INVARIANT_SUPPORT)
static int kassert_warn_only = 0;
#ifdef KDB
static int kassert_do_kdb = 0;
#endif
#ifdef KTR
static int kassert_do_ktr = 0;
#endif
static int kassert_do_log = 1;
static int kassert_log_pps_limit = 4;
static int kassert_log_mute_at = 0;
static int kassert_log_panic_at = 0;
static int kassert_suppress_in_panic = 0;
static int kassert_warnings = 0;
SYSCTL_NODE(_debug, OID_AUTO, kassert, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
"kassert options");
#ifdef KASSERT_PANIC_OPTIONAL
#define KASSERT_RWTUN CTLFLAG_RWTUN
#else
#define KASSERT_RWTUN CTLFLAG_RDTUN
#endif
SYSCTL_INT(_debug_kassert, OID_AUTO, warn_only, KASSERT_RWTUN,
&kassert_warn_only, 0,
"KASSERT triggers a panic (0) or just a warning (1)");
#ifdef KDB
SYSCTL_INT(_debug_kassert, OID_AUTO, do_kdb, KASSERT_RWTUN,
&kassert_do_kdb, 0, "KASSERT will enter the debugger");
#endif
#ifdef KTR
SYSCTL_UINT(_debug_kassert, OID_AUTO, do_ktr, KASSERT_RWTUN,
&kassert_do_ktr, 0,
"KASSERT does a KTR, set this to the KTRMASK you want");
#endif
SYSCTL_INT(_debug_kassert, OID_AUTO, do_log, KASSERT_RWTUN,
&kassert_do_log, 0,
"If warn_only is enabled, log (1) or do not log (0) assertion violations");
SYSCTL_INT(_debug_kassert, OID_AUTO, warnings, CTLFLAG_RD | CTLFLAG_STATS,
&kassert_warnings, 0, "number of KASSERTs that have been triggered");
SYSCTL_INT(_debug_kassert, OID_AUTO, log_panic_at, KASSERT_RWTUN,
&kassert_log_panic_at, 0, "max number of KASSERTS before we will panic");
SYSCTL_INT(_debug_kassert, OID_AUTO, log_pps_limit, KASSERT_RWTUN,
&kassert_log_pps_limit, 0, "limit number of log messages per second");
SYSCTL_INT(_debug_kassert, OID_AUTO, log_mute_at, KASSERT_RWTUN,
&kassert_log_mute_at, 0, "max number of KASSERTS to log");
SYSCTL_INT(_debug_kassert, OID_AUTO, suppress_in_panic, KASSERT_RWTUN,
&kassert_suppress_in_panic, 0,
"KASSERTs will be suppressed while handling a panic");
#undef KASSERT_RWTUN
static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_debug_kassert, OID_AUTO, kassert,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE | CTLFLAG_MPSAFE, NULL, 0,
kassert_sysctl_kassert, "I",
"set to trigger a test kassert");
static int
kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS)
{
int error, i;
error = sysctl_wire_old_buffer(req, sizeof(int));
if (error == 0) {
i = 0;
error = sysctl_handle_int(oidp, &i, 0, req);
}
if (error != 0 || req->newptr == NULL)
return (error);
KASSERT(0, ("kassert_sysctl_kassert triggered kassert %d", i));
return (0);
}
#ifdef KASSERT_PANIC_OPTIONAL
/*
* Called by KASSERT, this decides if we will panic
* or if we will log via printf and/or ktr.
*/
void
kassert_panic(const char *fmt, ...)
{
static char buf[256];
va_list ap;
va_start(ap, fmt);
(void)vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
/*
* If we are suppressing secondary panics, log the warning but do not
* re-enter panic/kdb.
*/
if (KERNEL_PANICKED() && kassert_suppress_in_panic) {
if (kassert_do_log) {
printf("KASSERT failed: %s\n", buf);
#ifdef KDB
if (trace_all_panics && trace_on_panic)
kdb_backtrace();
#endif
}
return;
}
/*
* panic if we're not just warning, or if we've exceeded
* kassert_log_panic_at warnings.
*/
if (!kassert_warn_only ||
(kassert_log_panic_at > 0 &&
kassert_warnings >= kassert_log_panic_at)) {
va_start(ap, fmt);
vpanic(fmt, ap);
/* NORETURN */
}
#ifdef KTR
if (kassert_do_ktr)
CTR0(ktr_mask, buf);
#endif /* KTR */
/*
* log if we've not yet met the mute limit.
*/
if (kassert_do_log &&
(kassert_log_mute_at == 0 ||
kassert_warnings < kassert_log_mute_at)) {
static struct timeval lasterr;
static int curerr;
if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) {
printf("KASSERT failed: %s\n", buf);
kdb_backtrace();
}
}
#ifdef KDB
if (kassert_do_kdb) {
kdb_enter(KDB_WHY_KASSERT, buf);
}
#endif
atomic_add_int(&kassert_warnings, 1);
}
#endif /* KASSERT_PANIC_OPTIONAL */
#endif
/*
* Panic is called on unresolvable fatal errors. It prints "panic: mesg",
* and then reboots. If we are called twice, then we avoid trying to sync
* the disks as this often leads to recursive panics.
*/
void
panic(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vpanic(fmt, ap);
}
void
vpanic(const char *fmt, va_list ap)
{
#ifdef SMP
cpuset_t other_cpus;
#endif
struct thread *td = curthread;
int bootopt, newpanic;
static char buf[256];
/*
* 'fmt' must not be NULL as it is put into 'panicstr' which is then
* used as a flag to detect if the kernel has panicked. Also, although
* vsnprintf() supports a NULL 'fmt' argument, use a more informative
* message.
*/
if (fmt == NULL)
fmt = "<no panic string!>";
spinlock_enter();
#ifdef SMP
/*
* stop_cpus_hard(other_cpus) should prevent multiple CPUs from
* concurrently entering panic. Only the winner will proceed
* further.
*/
if (!KERNEL_PANICKED() && !kdb_active) {
other_cpus = all_cpus;
CPU_CLR(PCPU_GET(cpuid), &other_cpus);
stop_cpus_hard(other_cpus);
}
#endif
/*
* Ensure that the scheduler is stopped while panicking, even if panic
* has been entered from kdb.
*/
scheduler_stopped = true;
bootopt = RB_AUTOBOOT;
newpanic = 0;
if (KERNEL_PANICKED())
bootopt |= RB_NOSYNC;
else {
bootopt |= RB_DUMP;
panicstr = fmt;
newpanic = 1;
}
/* Unmute when panic */
cn_mute = 0;
if (newpanic) {
(void)vsnprintf(buf, sizeof(buf), fmt, ap);
panicstr = buf;
cngrab();
printf("panic: %s\n", buf);
} else {
printf("panic: ");
vprintf(fmt, ap);
printf("\n");
}
#ifdef SMP
printf("cpuid = %d\n", PCPU_GET(cpuid));
#endif
printf("time = %jd\n", (intmax_t )time_second);
#ifdef KDB
if ((newpanic || trace_all_panics) && trace_on_panic)
kdb_backtrace();
if (debugger_on_panic)
kdb_enter(KDB_WHY_PANIC, "panic");
else if (!newpanic && debugger_on_recursive_panic)
kdb_enter(KDB_WHY_PANIC, "re-panic");
#endif
/*thread_lock(td); */
td->td_flags |= TDF_INPANIC;
/* thread_unlock(td); */
if (!sync_on_panic)
bootopt |= RB_NOSYNC;
if (poweroff_on_panic)
bootopt |= RB_POWEROFF;
if (powercycle_on_panic)
bootopt |= RB_POWERCYCLE;
kern_reboot(bootopt);
}
/*
* Support for poweroff delay.
*
* Please note that setting this delay too short might power off your machine
* before the write cache on your hard disk has been flushed, leading to
* soft-updates inconsistencies.
*/
#ifndef POWEROFF_DELAY
# define POWEROFF_DELAY 5000
#endif
static int poweroff_delay = POWEROFF_DELAY;
SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW,
&poweroff_delay, 0, "Delay before poweroff to write disk caches (msec)");
static void
poweroff_wait(void *junk, int howto)
{
if ((howto & (RB_POWEROFF | RB_POWERCYCLE)) == 0 || poweroff_delay <= 0)
return;
DELAY(poweroff_delay * 1000);
}
/*
* Some system processes (e.g. syncer) need to be stopped at appropriate
* points in their main loops prior to a system shutdown, so that they
* won't interfere with the shutdown process (e.g. by holding a disk buf
* to cause sync to fail). For each of these system processes, register
* shutdown_kproc() as a handler for one of shutdown events.
*/
static int kproc_shutdown_wait = 60;
SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW,
&kproc_shutdown_wait, 0, "Max wait time (sec) to stop for each process");
void
kproc_shutdown(void *arg, int howto)
{
struct proc *p;
int error;
if (SCHEDULER_STOPPED())
return;
p = (struct proc *)arg;
printf("Waiting (max %d seconds) for system process `%s' to stop... ",
kproc_shutdown_wait, p->p_comm);
error = kproc_suspend(p, kproc_shutdown_wait * hz);
if (error == EWOULDBLOCK)
printf("timed out\n");
else
printf("done\n");
}
void
kthread_shutdown(void *arg, int howto)
{
struct thread *td;
int error;
if (SCHEDULER_STOPPED())
return;
td = (struct thread *)arg;
printf("Waiting (max %d seconds) for system thread `%s' to stop... ",
kproc_shutdown_wait, td->td_name);
error = kthread_suspend(td, kproc_shutdown_wait * hz);
if (error == EWOULDBLOCK)
printf("timed out\n");
else
printf("done\n");
}
static int
dumpdevname_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
char buf[256];
struct dumperinfo *di;
struct sbuf sb;
int error;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
mtx_lock(&dumpconf_list_lk);
TAILQ_FOREACH(di, &dumper_configs, di_next) {
if (di != TAILQ_FIRST(&dumper_configs))
sbuf_putc(&sb, ',');
sbuf_cat(&sb, di->di_devname);
}
mtx_unlock(&dumpconf_list_lk);
error = sbuf_finish(&sb);
sbuf_delete(&sb);
return (error);
}
SYSCTL_PROC(_kern_shutdown, OID_AUTO, dumpdevname,
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, &dumper_configs, 0,
dumpdevname_sysctl_handler, "A",
"Device(s) for kernel dumps");
static int _dump_append(struct dumperinfo *di, void *virtual, size_t length);
#ifdef EKCD
static struct kerneldumpcrypto *
kerneldumpcrypto_create(size_t blocksize, uint8_t encryption,
const uint8_t *key, uint32_t encryptedkeysize, const uint8_t *encryptedkey)
{
struct kerneldumpcrypto *kdc;
struct kerneldumpkey *kdk;
uint32_t dumpkeysize;
dumpkeysize = roundup2(sizeof(*kdk) + encryptedkeysize, blocksize);
kdc = malloc(sizeof(*kdc) + dumpkeysize, M_EKCD, M_WAITOK | M_ZERO);
arc4rand(kdc->kdc_iv, sizeof(kdc->kdc_iv), 0);
kdc->kdc_encryption = encryption;
switch (kdc->kdc_encryption) {
case KERNELDUMP_ENC_AES_256_CBC:
if (rijndael_makeKey(&kdc->kdc_ki, DIR_ENCRYPT, 256, key) <= 0)
goto failed;
break;
case KERNELDUMP_ENC_CHACHA20:
chacha_keysetup(&kdc->kdc_chacha, key, 256);
break;
default:
goto failed;
}
kdc->kdc_dumpkeysize = dumpkeysize;
kdk = kdc->kdc_dumpkey;
kdk->kdk_encryption = kdc->kdc_encryption;
memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
kdk->kdk_encryptedkeysize = htod32(encryptedkeysize);
memcpy(kdk->kdk_encryptedkey, encryptedkey, encryptedkeysize);
return (kdc);
failed:
zfree(kdc, M_EKCD);
return (NULL);
}
static int
kerneldumpcrypto_init(struct kerneldumpcrypto *kdc)
{
uint8_t hash[SHA256_DIGEST_LENGTH];
SHA256_CTX ctx;
struct kerneldumpkey *kdk;
int error;
error = 0;
if (kdc == NULL)
return (0);
/*
* When a user enters ddb it can write a crash dump multiple times.
* Each time it should be encrypted using a different IV.
*/
SHA256_Init(&ctx);
SHA256_Update(&ctx, kdc->kdc_iv, sizeof(kdc->kdc_iv));
SHA256_Final(hash, &ctx);
bcopy(hash, kdc->kdc_iv, sizeof(kdc->kdc_iv));
switch (kdc->kdc_encryption) {
case KERNELDUMP_ENC_AES_256_CBC:
if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
kdc->kdc_iv) <= 0) {
error = EINVAL;
goto out;
}
break;
case KERNELDUMP_ENC_CHACHA20:
chacha_ivsetup(&kdc->kdc_chacha, kdc->kdc_iv, NULL);
break;
default:
error = EINVAL;
goto out;
}
kdk = kdc->kdc_dumpkey;
memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
out:
explicit_bzero(hash, sizeof(hash));
return (error);
}
static uint32_t
kerneldumpcrypto_dumpkeysize(const struct kerneldumpcrypto *kdc)
{
if (kdc == NULL)
return (0);
return (kdc->kdc_dumpkeysize);
}
#endif /* EKCD */
static struct kerneldumpcomp *
kerneldumpcomp_create(struct dumperinfo *di, uint8_t compression)
{
struct kerneldumpcomp *kdcomp;
int format;
switch (compression) {
case KERNELDUMP_COMP_GZIP:
format = COMPRESS_GZIP;
break;
case KERNELDUMP_COMP_ZSTD:
format = COMPRESS_ZSTD;
break;
default:
return (NULL);
}
kdcomp = malloc(sizeof(*kdcomp), M_DUMPER, M_WAITOK | M_ZERO);
kdcomp->kdc_format = compression;
kdcomp->kdc_stream = compressor_init(kerneldumpcomp_write_cb,
format, di->maxiosize, kerneldump_gzlevel, di);
if (kdcomp->kdc_stream == NULL) {
free(kdcomp, M_DUMPER);
return (NULL);
}
kdcomp->kdc_buf = malloc(di->maxiosize, M_DUMPER, M_WAITOK | M_NODUMP);
return (kdcomp);
}
static void
kerneldumpcomp_destroy(struct dumperinfo *di)
{
struct kerneldumpcomp *kdcomp;
kdcomp = di->kdcomp;
if (kdcomp == NULL)
return;
compressor_fini(kdcomp->kdc_stream);
zfree(kdcomp->kdc_buf, M_DUMPER);
free(kdcomp, M_DUMPER);
}
/*
* Free a dumper. Must not be present on global list.
*/
void
dumper_destroy(struct dumperinfo *di)
{
if (di == NULL)
return;
zfree(di->blockbuf, M_DUMPER);
kerneldumpcomp_destroy(di);
#ifdef EKCD
zfree(di->kdcrypto, M_EKCD);
#endif
zfree(di, M_DUMPER);
}
/*
* Allocate and set up a new dumper from the provided template.
*/
int
dumper_create(const struct dumperinfo *di_template, const char *devname,
const struct diocskerneldump_arg *kda, struct dumperinfo **dip)
{
struct dumperinfo *newdi;
int error = 0;
if (dip == NULL)
return (EINVAL);
/* Allocate a new dumper */
newdi = malloc(sizeof(*newdi) + strlen(devname) + 1, M_DUMPER,
M_WAITOK | M_ZERO);
memcpy(newdi, di_template, sizeof(*newdi));
newdi->blockbuf = NULL;
newdi->kdcrypto = NULL;
newdi->kdcomp = NULL;
strcpy(newdi->di_devname, devname);
if (kda->kda_encryption != KERNELDUMP_ENC_NONE) {
#ifdef EKCD
newdi->kdcrypto = kerneldumpcrypto_create(newdi->blocksize,
kda->kda_encryption, kda->kda_key,
kda->kda_encryptedkeysize, kda->kda_encryptedkey);
if (newdi->kdcrypto == NULL) {
error = EINVAL;
goto cleanup;
}
#else
error = EOPNOTSUPP;
goto cleanup;
#endif
}
if (kda->kda_compression != KERNELDUMP_COMP_NONE) {
#ifdef EKCD
/*
* We can't support simultaneous unpadded block cipher
* encryption and compression because there is no guarantee the
* length of the compressed result is exactly a multiple of the
* cipher block size.
*/
if (kda->kda_encryption == KERNELDUMP_ENC_AES_256_CBC) {
error = EOPNOTSUPP;
goto cleanup;
}
#endif
newdi->kdcomp = kerneldumpcomp_create(newdi,
kda->kda_compression);
if (newdi->kdcomp == NULL) {
error = EINVAL;
goto cleanup;
}
}
newdi->blockbuf = malloc(newdi->blocksize, M_DUMPER, M_WAITOK | M_ZERO);
*dip = newdi;
return (0);
cleanup:
dumper_destroy(newdi);
return (error);
}
/*
* Create a new dumper and register it in the global list.
*/
int
dumper_insert(const struct dumperinfo *di_template, const char *devname,
const struct diocskerneldump_arg *kda)
{
struct dumperinfo *newdi, *listdi;
bool inserted;
uint8_t index;
int error;
index = kda->kda_index;
MPASS(index != KDA_REMOVE && index != KDA_REMOVE_DEV &&
index != KDA_REMOVE_ALL);
error = priv_check(curthread, PRIV_SETDUMPER);
if (error != 0)
return (error);
error = dumper_create(di_template, devname, kda, &newdi);
if (error != 0)
return (error);
/* Add the new configuration to the queue */
mtx_lock(&dumpconf_list_lk);
inserted = false;
TAILQ_FOREACH(listdi, &dumper_configs, di_next) {
if (index == 0) {
TAILQ_INSERT_BEFORE(listdi, newdi, di_next);
inserted = true;
break;
}
index--;
}
if (!inserted)
TAILQ_INSERT_TAIL(&dumper_configs, newdi, di_next);
mtx_unlock(&dumpconf_list_lk);
return (0);
}
#ifdef DDB
void
dumper_ddb_insert(struct dumperinfo *newdi)
{
TAILQ_INSERT_HEAD(&dumper_configs, newdi, di_next);
}
void
dumper_ddb_remove(struct dumperinfo *di)
{
TAILQ_REMOVE(&dumper_configs, di, di_next);
}
#endif
static bool
dumper_config_match(const struct dumperinfo *di, const char *devname,
const struct diocskerneldump_arg *kda)
{
if (kda->kda_index == KDA_REMOVE_ALL)
return (true);
if (strcmp(di->di_devname, devname) != 0)
return (false);
/*
* Allow wildcard removal of configs matching a device on g_dev_orphan.
*/
if (kda->kda_index == KDA_REMOVE_DEV)
return (true);
if (di->kdcomp != NULL) {
if (di->kdcomp->kdc_format != kda->kda_compression)
return (false);
} else if (kda->kda_compression != KERNELDUMP_COMP_NONE)
return (false);
#ifdef EKCD
if (di->kdcrypto != NULL) {
if (di->kdcrypto->kdc_encryption != kda->kda_encryption)
return (false);
/*
* Do we care to verify keys match to delete? It seems weird
* to expect multiple fallback dump configurations on the same
* device that only differ in crypto key.
*/
} else
#endif
if (kda->kda_encryption != KERNELDUMP_ENC_NONE)
return (false);
return (true);
}
/*
* Remove and free the requested dumper(s) from the global list.
*/
int
dumper_remove(const char *devname, const struct diocskerneldump_arg *kda)
{
struct dumperinfo *di, *sdi;
bool found;
int error;
error = priv_check(curthread, PRIV_SETDUMPER);
if (error != 0)
return (error);
/*
* Try to find a matching configuration, and kill it.
*
* NULL 'kda' indicates remove any configuration matching 'devname',
* which may remove multiple configurations in atypical configurations.
*/
found = false;
mtx_lock(&dumpconf_list_lk);
TAILQ_FOREACH_SAFE(di, &dumper_configs, di_next, sdi) {
if (dumper_config_match(di, devname, kda)) {
found = true;
TAILQ_REMOVE(&dumper_configs, di, di_next);
dumper_destroy(di);
}
}
mtx_unlock(&dumpconf_list_lk);
/* Only produce ENOENT if a more targeted match didn't match. */
if (!found && kda->kda_index == KDA_REMOVE)
return (ENOENT);
return (0);
}
static int
dump_check_bounds(struct dumperinfo *di, off_t offset, size_t length)
{
if (di->mediasize > 0 && length != 0 && (offset < di->mediaoffset ||
offset - di->mediaoffset + length > di->mediasize)) {
if (di->kdcomp != NULL && offset >= di->mediaoffset) {
printf(
"Compressed dump failed to fit in device boundaries.\n");
return (E2BIG);
}
printf("Attempt to write outside dump device boundaries.\n"
"offset(%jd), mediaoffset(%jd), length(%ju), mediasize(%jd).\n",
(intmax_t)offset, (intmax_t)di->mediaoffset,
(uintmax_t)length, (intmax_t)di->mediasize);
return (ENOSPC);
}
if (length % di->blocksize != 0) {
printf("Attempt to write partial block of length %ju.\n",
(uintmax_t)length);
return (EINVAL);
}
if (offset % di->blocksize != 0) {
printf("Attempt to write at unaligned offset %jd.\n",
(intmax_t)offset);
return (EINVAL);
}
return (0);
}
#ifdef EKCD
static int
dump_encrypt(struct kerneldumpcrypto *kdc, uint8_t *buf, size_t size)
{
switch (kdc->kdc_encryption) {
case KERNELDUMP_ENC_AES_256_CBC:
if (rijndael_blockEncrypt(&kdc->kdc_ci, &kdc->kdc_ki, buf,
8 * size, buf) <= 0) {
return (EIO);
}
if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
buf + size - 16 /* IV size for AES-256-CBC */) <= 0) {
return (EIO);
}
break;
case KERNELDUMP_ENC_CHACHA20:
chacha_encrypt_bytes(&kdc->kdc_chacha, buf, buf, size);
break;
default:
return (EINVAL);
}
return (0);
}
/* Encrypt data and call dumper. */
static int
dump_encrypted_write(struct dumperinfo *di, void *virtual, off_t offset,
size_t length)
{
static uint8_t buf[KERNELDUMP_BUFFER_SIZE];
struct kerneldumpcrypto *kdc;
int error;
size_t nbytes;
kdc = di->kdcrypto;
while (length > 0) {
nbytes = MIN(length, sizeof(buf));
bcopy(virtual, buf, nbytes);
if (dump_encrypt(kdc, buf, nbytes) != 0)
return (EIO);
error = dump_write(di, buf, offset, nbytes);
if (error != 0)
return (error);
offset += nbytes;
virtual = (void *)((uint8_t *)virtual + nbytes);
length -= nbytes;
}
return (0);
}
#endif /* EKCD */
static int
kerneldumpcomp_write_cb(void *base, size_t length, off_t offset, void *arg)
{
struct dumperinfo *di;
size_t resid, rlength;
int error;
di = arg;
if (length % di->blocksize != 0) {
/*
* This must be the final write after flushing the compression
* stream. Write as many full blocks as possible and stash the
* residual data in the dumper's block buffer. It will be
* padded and written in dump_finish().
*/
rlength = rounddown(length, di->blocksize);
if (rlength != 0) {
error = _dump_append(di, base, rlength);
if (error != 0)
return (error);
}
resid = length - rlength;
memmove(di->blockbuf, (uint8_t *)base + rlength, resid);
bzero((uint8_t *)di->blockbuf + resid, di->blocksize - resid);
di->kdcomp->kdc_resid = resid;
return (EAGAIN);
}
return (_dump_append(di, base, length));
}
/*
* Write kernel dump headers at the beginning and end of the dump extent.
* Write the kernel dump encryption key after the leading header if we were
* configured to do so.
*/
static int
dump_write_headers(struct dumperinfo *di, struct kerneldumpheader *kdh)
{
#ifdef EKCD
struct kerneldumpcrypto *kdc;
#endif
void *buf;
size_t hdrsz;
uint64_t extent;
uint32_t keysize;
int error;
hdrsz = sizeof(*kdh);
if (hdrsz > di->blocksize)
return (ENOMEM);
#ifdef EKCD
kdc = di->kdcrypto;
keysize = kerneldumpcrypto_dumpkeysize(kdc);
#else
keysize = 0;
#endif
/*
* If the dump device has special handling for headers, let it take care
* of writing them out.
*/
if (di->dumper_hdr != NULL)
return (di->dumper_hdr(di, kdh));
if (hdrsz == di->blocksize)
buf = kdh;
else {
buf = di->blockbuf;
memset(buf, 0, di->blocksize);
memcpy(buf, kdh, hdrsz);
}
extent = dtoh64(kdh->dumpextent);
#ifdef EKCD
if (kdc != NULL) {
error = dump_write(di, kdc->kdc_dumpkey,
di->mediaoffset + di->mediasize - di->blocksize - extent -
keysize, keysize);
if (error != 0)
return (error);
}
#endif
error = dump_write(di, buf,
di->mediaoffset + di->mediasize - 2 * di->blocksize - extent -
keysize, di->blocksize);
if (error == 0)
error = dump_write(di, buf, di->mediaoffset + di->mediasize -
di->blocksize, di->blocksize);
return (error);
}
/*
* Don't touch the first SIZEOF_METADATA bytes on the dump device. This is to
* protect us from metadata and metadata from us.
*/
#define SIZEOF_METADATA (64 * 1024)
/*
* Do some preliminary setup for a kernel dump: initialize state for encryption,
* if requested, and make sure that we have enough space on the dump device.
*
* We set things up so that the dump ends before the last sector of the dump
* device, at which the trailing header is written.
*
* +-----------+------+-----+----------------------------+------+
* | | lhdr | key | ... kernel dump ... | thdr |
* +-----------+------+-----+----------------------------+------+
* 1 blk opt <------- dump extent --------> 1 blk
*
* Dumps written using dump_append() start at the beginning of the extent.
* Uncompressed dumps will use the entire extent, but compressed dumps typically
* will not. The true length of the dump is recorded in the leading and trailing
* headers once the dump has been completed.
*
* The dump device may provide a callback, in which case it will initialize
* dumpoff and take care of laying out the headers.
*/
int
dump_start(struct dumperinfo *di, struct kerneldumpheader *kdh)
{
#ifdef EKCD
struct kerneldumpcrypto *kdc;
#endif
void *key;
uint64_t dumpextent, span;
uint32_t keysize;
int error;
#ifdef EKCD
/* Send the key before the dump so a partial dump is still usable. */
kdc = di->kdcrypto;
error = kerneldumpcrypto_init(kdc);
if (error != 0)
return (error);
keysize = kerneldumpcrypto_dumpkeysize(kdc);
key = keysize > 0 ? kdc->kdc_dumpkey : NULL;
#else
error = 0;
keysize = 0;
key = NULL;
#endif
if (di->dumper_start != NULL) {
error = di->dumper_start(di, key, keysize);
} else {
dumpextent = dtoh64(kdh->dumpextent);
span = SIZEOF_METADATA + dumpextent + 2 * di->blocksize +
keysize;
if (di->mediasize < span) {
if (di->kdcomp == NULL)
return (E2BIG);
/*
* We don't yet know how much space the compressed dump
* will occupy, so try to use the whole swap partition
* (minus the first 64KB) in the hope that the
* compressed dump will fit. If that doesn't turn out to
* be enough, the bounds checking in dump_write()
* will catch us and cause the dump to fail.
*/
dumpextent = di->mediasize - span + dumpextent;
kdh->dumpextent = htod64(dumpextent);
}
/*
* The offset at which to begin writing the dump.
*/
di->dumpoff = di->mediaoffset + di->mediasize - di->blocksize -
dumpextent;
}
di->origdumpoff = di->dumpoff;
return (error);
}
static int
_dump_append(struct dumperinfo *di, void *virtual, size_t length)
{
int error;
#ifdef EKCD
if (di->kdcrypto != NULL)
error = dump_encrypted_write(di, virtual, di->dumpoff, length);
else
#endif
error = dump_write(di, virtual, di->dumpoff, length);
if (error == 0)
di->dumpoff += length;
return (error);
}
/*
* Write to the dump device starting at dumpoff. When compression is enabled,
* writes to the device will be performed using a callback that gets invoked
* when the compression stream's output buffer is full.
*/
int
dump_append(struct dumperinfo *di, void *virtual, size_t length)
{
void *buf;
if (di->kdcomp != NULL) {
/* Bounce through a buffer to avoid CRC errors. */
if (length > di->maxiosize)
return (EINVAL);
buf = di->kdcomp->kdc_buf;
memmove(buf, virtual, length);
return (compressor_write(di->kdcomp->kdc_stream, buf, length));
}
return (_dump_append(di, virtual, length));
}
/*
* Write to the dump device at the specified offset.
*/
int
dump_write(struct dumperinfo *di, void *virtual, off_t offset, size_t length)
{
int error;
error = dump_check_bounds(di, offset, length);
if (error != 0)
return (error);
return (di->dumper(di->priv, virtual, offset, length));
}
/*
* Perform kernel dump finalization: flush the compression stream, if necessary,
* write the leading and trailing kernel dump headers now that we know the true
* length of the dump, and optionally write the encryption key following the
* leading header.
*/
int
dump_finish(struct dumperinfo *di, struct kerneldumpheader *kdh)
{
int error;
if (di->kdcomp != NULL) {
error = compressor_flush(di->kdcomp->kdc_stream);
if (error == EAGAIN) {
/* We have residual data in di->blockbuf. */
error = _dump_append(di, di->blockbuf, di->blocksize);
if (error == 0)
/* Compensate for _dump_append()'s adjustment. */
di->dumpoff -= di->blocksize - di->kdcomp->kdc_resid;
di->kdcomp->kdc_resid = 0;
}
if (error != 0)
return (error);
/*
* We now know the size of the compressed dump, so update the
* header accordingly and recompute parity.
*/
kdh->dumplength = htod64(di->dumpoff - di->origdumpoff);
kdh->parity = 0;
kdh->parity = kerneldump_parity(kdh);
compressor_reset(di->kdcomp->kdc_stream);
}
error = dump_write_headers(di, kdh);
if (error != 0)
return (error);
(void)dump_write(di, NULL, 0, 0);
return (0);
}
void
dump_init_header(const struct dumperinfo *di, struct kerneldumpheader *kdh,
const char *magic, uint32_t archver, uint64_t dumplen)
{
size_t dstsize;
bzero(kdh, sizeof(*kdh));
strlcpy(kdh->magic, magic, sizeof(kdh->magic));
strlcpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture));
kdh->version = htod32(KERNELDUMPVERSION);
kdh->architectureversion = htod32(archver);
kdh->dumplength = htod64(dumplen);
kdh->dumpextent = kdh->dumplength;
kdh->dumptime = htod64(time_second);
#ifdef EKCD
kdh->dumpkeysize = htod32(kerneldumpcrypto_dumpkeysize(di->kdcrypto));
#else
kdh->dumpkeysize = 0;
#endif
kdh->blocksize = htod32(di->blocksize);
strlcpy(kdh->hostname, prison0.pr_hostname, sizeof(kdh->hostname));
dstsize = sizeof(kdh->versionstring);
if (strlcpy(kdh->versionstring, version, dstsize) >= dstsize)
kdh->versionstring[dstsize - 2] = '\n';
if (panicstr != NULL)
strlcpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring));
if (di->kdcomp != NULL)
kdh->compression = di->kdcomp->kdc_format;
kdh->parity = kerneldump_parity(kdh);
}
#ifdef DDB
DB_SHOW_COMMAND_FLAGS(panic, db_show_panic, DB_CMD_MEMSAFE)
{
if (panicstr == NULL)
db_printf("panicstr not set\n");
else
db_printf("panic: %s\n", panicstr);
}
#endif