freebsd-src/cond.c
Simon J. Gerraty 1b65f0bd2b Import bmake-20201117
o allow env var MAKE_OBJDIR_CHECK_WRITABLE=no to skip writable
  checks in InitObjdir.  Explicit .OBJDIR target always allows
  read-only directory.

o Fix building and unit-tests on non-BSD.

o More code cleanup and refactoring.

o More unit tests
2020-11-20 03:54:37 +00:00

1282 lines
34 KiB
C

/* $NetBSD: cond.c,v 1.214 2020/11/13 09:01:59 rillig Exp $ */
/*
* Copyright (c) 1988, 1989, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Adam de Boor.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1988, 1989 by Adam de Boor
* Copyright (c) 1989 by Berkeley Softworks
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Adam de Boor.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Handling of conditionals in a makefile.
*
* Interface:
* Cond_EvalLine Evaluate the conditional directive, such as
* '.if <cond>', '.elifnmake <cond>', '.else', '.endif'.
*
* Cond_EvalCondition
* Evaluate the conditional, which is either the argument
* of one of the .if directives or the condition in a
* ':?then:else' variable modifier.
*
* Cond_save_depth
* Cond_restore_depth
* Save and restore the nesting of the conditions, at
* the start and end of including another makefile, to
* ensure that in each makefile the conditional
* directives are well-balanced.
*/
#include <errno.h>
#include "make.h"
#include "dir.h"
/* "@(#)cond.c 8.2 (Berkeley) 1/2/94" */
MAKE_RCSID("$NetBSD: cond.c,v 1.214 2020/11/13 09:01:59 rillig Exp $");
/*
* The parsing of conditional expressions is based on this grammar:
* E -> F || E
* E -> F
* F -> T && F
* F -> T
* T -> defined(variable)
* T -> make(target)
* T -> exists(file)
* T -> empty(varspec)
* T -> target(name)
* T -> commands(name)
* T -> symbol
* T -> $(varspec) op value
* T -> $(varspec) == "string"
* T -> $(varspec) != "string"
* T -> "string"
* T -> ( E )
* T -> ! T
* op -> == | != | > | < | >= | <=
*
* 'symbol' is some other symbol to which the default function is applied.
*
* The tokens are scanned by CondToken, which returns:
* TOK_AND for '&' or '&&'
* TOK_OR for '|' or '||'
* TOK_NOT for '!'
* TOK_LPAREN for '('
* TOK_RPAREN for ')'
* Other terminal symbols are evaluated using either the default function or
* the function given in the terminal, they return either TOK_TRUE or
* TOK_FALSE.
*
* TOK_FALSE is 0 and TOK_TRUE 1 so we can directly assign C comparisons.
*
* All non-terminal functions (CondParser_Expr, CondParser_Factor and
* CondParser_Term) return either TOK_FALSE, TOK_TRUE, or TOK_ERROR on error.
*/
typedef enum Token {
TOK_FALSE = 0, TOK_TRUE = 1, TOK_AND, TOK_OR, TOK_NOT,
TOK_LPAREN, TOK_RPAREN, TOK_EOF, TOK_NONE, TOK_ERROR
} Token;
typedef struct CondParser {
const struct If *if_info; /* Info for current statement */
const char *p; /* The remaining condition to parse */
Token curr; /* Single push-back token used in parsing */
/* Whether an error message has already been printed for this condition.
* The first available error message is usually the most specific one,
* therefore it makes sense to suppress the standard "Malformed
* conditional" message. */
Boolean printedError;
} CondParser;
static Token CondParser_Expr(CondParser *par, Boolean);
static unsigned int cond_depth = 0; /* current .if nesting level */
static unsigned int cond_min_depth = 0; /* depth at makefile open */
/*
* Indicate when we should be strict about lhs of comparisons.
* In strict mode, the lhs must be a variable expression or a string literal
* in quotes. In non-strict mode it may also be an unquoted string literal.
*
* TRUE when CondEvalExpression is called from Cond_EvalLine (.if etc)
* FALSE when CondEvalExpression is called from ApplyModifier_IfElse
* since lhs is already expanded, and at that point we cannot tell if
* it was a variable reference or not.
*/
static Boolean lhsStrict;
static int
is_token(const char *str, const char *tok, size_t len)
{
return strncmp(str, tok, len) == 0 && !ch_isalpha(str[len]);
}
static Token
ToToken(Boolean cond)
{
return cond ? TOK_TRUE : TOK_FALSE;
}
/* Push back the most recent token read. We only need one level of this. */
static void
CondParser_PushBack(CondParser *par, Token t)
{
assert(par->curr == TOK_NONE);
assert(t != TOK_NONE);
par->curr = t;
}
static void
CondParser_SkipWhitespace(CondParser *par)
{
cpp_skip_whitespace(&par->p);
}
/* Parse the argument of a built-in function.
*
* Arguments:
* *pp initially points at the '(',
* upon successful return it points right after the ')'.
*
* *out_arg receives the argument as string.
*
* func says whether the argument belongs to an actual function, or
* whether the parsed argument is passed to the default function.
*
* Return the length of the argument, or 0 on error. */
static size_t
ParseFuncArg(const char **pp, Boolean doEval, const char *func,
char **out_arg) {
const char *p = *pp;
Buffer argBuf;
int paren_depth;
size_t argLen;
if (func != NULL)
p++; /* Skip opening '(' - verified by caller */
if (*p == '\0') {
*out_arg = NULL; /* Missing closing parenthesis: */
return 0; /* .if defined( */
}
cpp_skip_hspace(&p);
Buf_InitSize(&argBuf, 16);
paren_depth = 0;
for (;;) {
char ch = *p;
if (ch == '\0' || ch == ' ' || ch == '\t')
break;
if ((ch == '&' || ch == '|') && paren_depth == 0)
break;
if (*p == '$') {
/*
* Parse the variable spec and install it as part of the argument
* if it's valid. We tell Var_Parse to complain on an undefined
* variable, so we don't need to do it. Nor do we return an error,
* though perhaps we should...
*/
void *nestedVal_freeIt;
VarEvalFlags eflags = doEval ? VARE_WANTRES | VARE_UNDEFERR
: VARE_NONE;
const char *nestedVal;
(void)Var_Parse(&p, VAR_CMDLINE, eflags, &nestedVal,
&nestedVal_freeIt);
/* TODO: handle errors */
Buf_AddStr(&argBuf, nestedVal);
free(nestedVal_freeIt);
continue;
}
if (ch == '(')
paren_depth++;
else if (ch == ')' && --paren_depth < 0)
break;
Buf_AddByte(&argBuf, *p);
p++;
}
*out_arg = Buf_GetAll(&argBuf, &argLen);
Buf_Destroy(&argBuf, FALSE);
cpp_skip_hspace(&p);
if (func != NULL && *p++ != ')') {
Parse_Error(PARSE_WARNING, "Missing closing parenthesis for %s()",
func);
/* The PARSE_FATAL is done as a follow-up by CondEvalExpression. */
return 0;
}
*pp = p;
return argLen;
}
/* Test whether the given variable is defined. */
static Boolean
FuncDefined(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
{
void *freeIt;
Boolean result = Var_Value(arg, VAR_CMDLINE, &freeIt) != NULL;
bmake_free(freeIt);
return result;
}
/* See if the given target is being made. */
static Boolean
FuncMake(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
{
StringListNode *ln;
for (ln = opts.create->first; ln != NULL; ln = ln->next)
if (Str_Match(ln->datum, arg))
return TRUE;
return FALSE;
}
/* See if the given file exists. */
static Boolean
FuncExists(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
{
Boolean result;
char *path;
path = Dir_FindFile(arg, dirSearchPath);
DEBUG2(COND, "exists(%s) result is \"%s\"\n",
arg, path != NULL ? path : "");
result = path != NULL;
free(path);
return result;
}
/* See if the given node exists and is an actual target. */
static Boolean
FuncTarget(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
{
GNode *gn = Targ_FindNode(arg);
return gn != NULL && GNode_IsTarget(gn);
}
/* See if the given node exists and is an actual target with commands
* associated with it. */
static Boolean
FuncCommands(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
{
GNode *gn = Targ_FindNode(arg);
return gn != NULL && GNode_IsTarget(gn) && !Lst_IsEmpty(gn->commands);
}
/*
* Convert the given number into a double.
* We try a base 10 or 16 integer conversion first, if that fails
* then we try a floating point conversion instead.
*
* Results:
* Returns TRUE if the conversion succeeded.
* Sets 'out_value' to the converted number.
*/
static Boolean
TryParseNumber(const char *str, double *out_value)
{
char *end;
unsigned long ul_val;
double dbl_val;
errno = 0;
if (str[0] == '\0') { /* XXX: why is an empty string a number? */
*out_value = 0.0;
return TRUE;
}
ul_val = strtoul(str, &end, str[1] == 'x' ? 16 : 10);
if (*end == '\0' && errno != ERANGE) {
*out_value = str[0] == '-' ? -(double)-ul_val : (double)ul_val;
return TRUE;
}
if (*end != '\0' && *end != '.' && *end != 'e' && *end != 'E')
return FALSE; /* skip the expensive strtod call */
dbl_val = strtod(str, &end);
if (*end != '\0')
return FALSE;
*out_value = dbl_val;
return TRUE;
}
static Boolean
is_separator(char ch)
{
return ch == '\0' || ch_isspace(ch) || strchr("!=><)", ch) != NULL;
}
/*-
* Parse a string from a variable reference or an optionally quoted
* string. This is called for the lhs and rhs of string comparisons.
*
* Results:
* Returns the string, absent any quotes, or NULL on error.
* Sets out_quoted if the string was quoted.
* Sets out_freeIt.
*/
/* coverity:[+alloc : arg-*4] */
static const char *
CondParser_String(CondParser *par, Boolean doEval, Boolean strictLHS,
Boolean *out_quoted, void **out_freeIt)
{
Buffer buf;
const char *str;
Boolean atStart;
const char *nested_p;
Boolean quoted;
const char *start;
VarEvalFlags eflags;
VarParseResult parseResult;
Buf_Init(&buf);
str = NULL;
*out_freeIt = NULL;
*out_quoted = quoted = par->p[0] == '"';
start = par->p;
if (quoted)
par->p++;
while (par->p[0] != '\0' && str == NULL) {
switch (par->p[0]) {
case '\\':
par->p++;
if (par->p[0] != '\0') {
Buf_AddByte(&buf, par->p[0]);
par->p++;
}
continue;
case '"':
if (quoted) {
par->p++; /* skip the closing quote */
goto got_str;
}
Buf_AddByte(&buf, par->p[0]); /* likely? */
par->p++;
continue;
case ')': /* see is_separator */
case '!':
case '=':
case '>':
case '<':
case ' ':
case '\t':
if (!quoted)
goto got_str;
Buf_AddByte(&buf, par->p[0]);
par->p++;
continue;
case '$':
/* if we are in quotes, an undefined variable is ok */
eflags = doEval && !quoted ? VARE_WANTRES | VARE_UNDEFERR :
doEval ? VARE_WANTRES :
VARE_NONE;
nested_p = par->p;
atStart = nested_p == start;
parseResult = Var_Parse(&nested_p, VAR_CMDLINE, eflags, &str,
out_freeIt);
/* TODO: handle errors */
if (str == var_Error) {
if (parseResult & VPR_ANY_MSG)
par->printedError = TRUE;
if (*out_freeIt != NULL) {
/* XXX: Can there be any situation in which a returned
* var_Error requires freeIt? */
free(*out_freeIt);
*out_freeIt = NULL;
}
/*
* Even if !doEval, we still report syntax errors, which
* is what getting var_Error back with !doEval means.
*/
str = NULL;
goto cleanup;
}
par->p = nested_p;
/*
* If the '$' started the string literal (which means no quotes),
* and the variable expression is followed by a space, looks like
* a comparison operator or is the end of the expression, we are
* done.
*/
if (atStart && is_separator(par->p[0]))
goto cleanup;
Buf_AddStr(&buf, str);
if (*out_freeIt) {
free(*out_freeIt);
*out_freeIt = NULL;
}
str = NULL; /* not finished yet */
continue;
default:
if (strictLHS && !quoted && *start != '$' && !ch_isdigit(*start)) {
/* lhs must be quoted, a variable reference or number */
str = NULL;
goto cleanup;
}
Buf_AddByte(&buf, par->p[0]);
par->p++;
continue;
}
}
got_str:
*out_freeIt = Buf_GetAll(&buf, NULL);
str = *out_freeIt;
cleanup:
Buf_Destroy(&buf, FALSE);
return str;
}
struct If {
const char *form; /* Form of if */
size_t formlen; /* Length of form */
Boolean doNot; /* TRUE if default function should be negated */
Boolean (*defProc)(size_t, const char *); /* Default function to apply */
};
/* The different forms of .if directives. */
static const struct If ifs[] = {
{ "def", 3, FALSE, FuncDefined },
{ "ndef", 4, TRUE, FuncDefined },
{ "make", 4, FALSE, FuncMake },
{ "nmake", 5, TRUE, FuncMake },
{ "", 0, FALSE, FuncDefined },
{ NULL, 0, FALSE, NULL }
};
enum { PLAIN_IF_INDEX = 4 };
static Boolean
If_Eval(const struct If *if_info, const char *arg, size_t arglen)
{
Boolean res = if_info->defProc(arglen, arg);
return if_info->doNot ? !res : res;
}
/* Evaluate a "comparison without operator", such as in ".if ${VAR}" or
* ".if 0". */
static Boolean
EvalNotEmpty(CondParser *par, const char *value, Boolean quoted)
{
double num;
/* For .ifxxx "...", check for non-empty string. */
if (quoted)
return value[0] != '\0';
/* For .ifxxx <number>, compare against zero */
if (TryParseNumber(value, &num))
return num != 0.0;
/* For .if ${...}, check for non-empty string. This is different from
* the evaluation function from that .if variant, which would test
* whether a variable of the given name were defined. */
/* XXX: Whitespace should count as empty, just as in ParseEmptyArg. */
if (par->if_info->form[0] == '\0')
return value[0] != '\0';
/* For the other variants of .ifxxx ${...}, use its default function. */
return If_Eval(par->if_info, value, strlen(value));
}
/* Evaluate a numerical comparison, such as in ".if ${VAR} >= 9". */
static Token
EvalCompareNum(double lhs, const char *op, double rhs)
{
DEBUG3(COND, "lhs = %f, rhs = %f, op = %.2s\n", lhs, rhs, op);
switch (op[0]) {
case '!':
if (op[1] != '=') {
Parse_Error(PARSE_WARNING, "Unknown operator");
/* The PARSE_FATAL is done as a follow-up by CondEvalExpression. */
return TOK_ERROR;
}
return ToToken(lhs != rhs);
case '=':
if (op[1] != '=') {
Parse_Error(PARSE_WARNING, "Unknown operator");
/* The PARSE_FATAL is done as a follow-up by CondEvalExpression. */
return TOK_ERROR;
}
return ToToken(lhs == rhs);
case '<':
return ToToken(op[1] == '=' ? lhs <= rhs : lhs < rhs);
case '>':
return ToToken(op[1] == '=' ? lhs >= rhs : lhs > rhs);
}
return TOK_ERROR;
}
static Token
EvalCompareStr(const char *lhs, const char *op, const char *rhs)
{
if (!((op[0] == '!' || op[0] == '=') && op[1] == '=')) {
Parse_Error(PARSE_WARNING,
"String comparison operator must be either == or !=");
/* The PARSE_FATAL is done as a follow-up by CondEvalExpression. */
return TOK_ERROR;
}
DEBUG3(COND, "lhs = \"%s\", rhs = \"%s\", op = %.2s\n", lhs, rhs, op);
return ToToken((*op == '=') == (strcmp(lhs, rhs) == 0));
}
/* Evaluate a comparison, such as "${VAR} == 12345". */
static Token
EvalCompare(const char *lhs, Boolean lhsQuoted, const char *op,
const char *rhs, Boolean rhsQuoted)
{
double left, right;
if (!rhsQuoted && !lhsQuoted)
if (TryParseNumber(lhs, &left) && TryParseNumber(rhs, &right))
return EvalCompareNum(left, op, right);
return EvalCompareStr(lhs, op, rhs);
}
/* Parse a comparison condition such as:
*
* 0
* ${VAR:Mpattern}
* ${VAR} == value
* ${VAR:U0} < 12345
*/
static Token
CondParser_Comparison(CondParser *par, Boolean doEval)
{
Token t = TOK_ERROR;
const char *lhs, *op, *rhs;
void *lhs_freeIt, *rhs_freeIt;
Boolean lhsQuoted, rhsQuoted;
/*
* Parse the variable spec and skip over it, saving its
* value in lhs.
*/
lhs = CondParser_String(par, doEval, lhsStrict, &lhsQuoted, &lhs_freeIt);
if (lhs == NULL)
goto done_lhs;
CondParser_SkipWhitespace(par);
op = par->p;
switch (par->p[0]) {
case '!':
case '=':
case '<':
case '>':
if (par->p[1] == '=')
par->p += 2;
else
par->p++;
break;
default:
/* Unknown operator, compare against an empty string or 0. */
t = ToToken(doEval && EvalNotEmpty(par, lhs, lhsQuoted));
goto done_lhs;
}
CondParser_SkipWhitespace(par);
if (par->p[0] == '\0') {
Parse_Error(PARSE_WARNING, "Missing right-hand-side of operator");
/* The PARSE_FATAL is done as a follow-up by CondEvalExpression. */
goto done_lhs;
}
rhs = CondParser_String(par, doEval, FALSE, &rhsQuoted, &rhs_freeIt);
if (rhs == NULL)
goto done_rhs;
if (!doEval) {
t = TOK_FALSE;
goto done_rhs;
}
t = EvalCompare(lhs, lhsQuoted, op, rhs, rhsQuoted);
done_rhs:
free(rhs_freeIt);
done_lhs:
free(lhs_freeIt);
return t;
}
/* The argument to empty() is a variable name, optionally followed by
* variable modifiers. */
static size_t
ParseEmptyArg(const char **pp, Boolean doEval,
const char *func MAKE_ATTR_UNUSED, char **out_arg)
{
void *val_freeIt;
const char *val;
size_t magic_res;
/* We do all the work here and return the result as the length */
*out_arg = NULL;
(*pp)--; /* Make (*pp)[1] point to the '('. */
(void)Var_Parse(pp, VAR_CMDLINE, doEval ? VARE_WANTRES : VARE_NONE,
&val, &val_freeIt);
/* TODO: handle errors */
/* If successful, *pp points beyond the closing ')' now. */
if (val == var_Error) {
free(val_freeIt);
return (size_t)-1;
}
/* A variable is empty when it just contains spaces... 4/15/92, christos */
cpp_skip_whitespace(&val);
/*
* For consistency with the other functions we can't generate the
* true/false here.
*/
magic_res = *val != '\0' ? 2 : 1;
free(val_freeIt);
return magic_res;
}
static Boolean
FuncEmpty(size_t arglen, const char *arg MAKE_ATTR_UNUSED)
{
/* Magic values ahead, see ParseEmptyArg. */
return arglen == 1;
}
static Boolean
CondParser_Func(CondParser *par, Boolean doEval, Token *out_token)
{
static const struct fn_def {
const char *fn_name;
size_t fn_name_len;
size_t (*fn_parse)(const char **, Boolean, const char *, char **);
Boolean (*fn_eval)(size_t, const char *);
} fns[] = {
{ "defined", 7, ParseFuncArg, FuncDefined },
{ "make", 4, ParseFuncArg, FuncMake },
{ "exists", 6, ParseFuncArg, FuncExists },
{ "empty", 5, ParseEmptyArg, FuncEmpty },
{ "target", 6, ParseFuncArg, FuncTarget },
{ "commands", 8, ParseFuncArg, FuncCommands }
};
const struct fn_def *fn;
char *arg = NULL;
size_t arglen;
const char *cp = par->p;
const struct fn_def *fns_end = fns + sizeof fns / sizeof fns[0];
for (fn = fns; fn != fns_end; fn++) {
if (!is_token(cp, fn->fn_name, fn->fn_name_len))
continue;
cp += fn->fn_name_len;
cpp_skip_whitespace(&cp);
if (*cp != '(')
break;
arglen = fn->fn_parse(&cp, doEval, fn->fn_name, &arg);
if (arglen == 0 || arglen == (size_t)-1) {
par->p = cp;
*out_token = arglen == 0 ? TOK_FALSE : TOK_ERROR;
return TRUE;
}
/* Evaluate the argument using the required function. */
*out_token = ToToken(!doEval || fn->fn_eval(arglen, arg));
free(arg);
par->p = cp;
return TRUE;
}
return FALSE;
}
/* Parse a function call, a number, a variable expression or a string
* literal. */
static Token
CondParser_LeafToken(CondParser *par, Boolean doEval)
{
Token t;
char *arg = NULL;
size_t arglen;
const char *cp = par->p;
const char *cp1;
if (CondParser_Func(par, doEval, &t))
return t;
/* Push anything numeric through the compare expression */
cp = par->p;
if (ch_isdigit(cp[0]) || cp[0] == '-' || cp[0] == '+')
return CondParser_Comparison(par, doEval);
/*
* Most likely we have a naked token to apply the default function to.
* However ".if a == b" gets here when the "a" is unquoted and doesn't
* start with a '$'. This surprises people.
* If what follows the function argument is a '=' or '!' then the syntax
* would be invalid if we did "defined(a)" - so instead treat as an
* expression.
*/
arglen = ParseFuncArg(&cp, doEval, NULL, &arg);
cp1 = cp;
cpp_skip_whitespace(&cp1);
if (*cp1 == '=' || *cp1 == '!')
return CondParser_Comparison(par, doEval);
par->p = cp;
/*
* Evaluate the argument using the default function.
* This path always treats .if as .ifdef. To get here, the character
* after .if must have been taken literally, so the argument cannot
* be empty - even if it contained a variable expansion.
*/
t = ToToken(!doEval || If_Eval(par->if_info, arg, arglen));
free(arg);
return t;
}
/* Return the next token or comparison result from the parser. */
static Token
CondParser_Token(CondParser *par, Boolean doEval)
{
Token t;
t = par->curr;
if (t != TOK_NONE) {
par->curr = TOK_NONE;
return t;
}
cpp_skip_hspace(&par->p);
switch (par->p[0]) {
case '(':
par->p++;
return TOK_LPAREN;
case ')':
par->p++;
return TOK_RPAREN;
case '|':
par->p++;
if (par->p[0] == '|')
par->p++;
else if (opts.lint) {
Parse_Error(PARSE_FATAL, "Unknown operator '|'");
par->printedError = TRUE;
return TOK_ERROR;
}
return TOK_OR;
case '&':
par->p++;
if (par->p[0] == '&')
par->p++;
else if (opts.lint) {
Parse_Error(PARSE_FATAL, "Unknown operator '&'");
par->printedError = TRUE;
return TOK_ERROR;
}
return TOK_AND;
case '!':
par->p++;
return TOK_NOT;
case '#': /* XXX: see unit-tests/cond-token-plain.mk */
case '\n': /* XXX: why should this end the condition? */
/* Probably obsolete now, from 1993-03-21. */
case '\0':
return TOK_EOF;
case '"':
case '$':
return CondParser_Comparison(par, doEval);
default:
return CondParser_LeafToken(par, doEval);
}
}
/* Parse a single term in the expression. This consists of a terminal symbol
* or TOK_NOT and a term (not including the binary operators):
*
* T -> defined(variable) | make(target) | exists(file) | symbol
* T -> ! T | ( E )
*
* Results:
* TOK_TRUE, TOK_FALSE or TOK_ERROR.
*/
static Token
CondParser_Term(CondParser *par, Boolean doEval)
{
Token t;
t = CondParser_Token(par, doEval);
if (t == TOK_EOF) {
/*
* If we reached the end of the expression, the expression
* is malformed...
*/
t = TOK_ERROR;
} else if (t == TOK_LPAREN) {
/*
* T -> ( E )
*/
t = CondParser_Expr(par, doEval);
if (t != TOK_ERROR) {
if (CondParser_Token(par, doEval) != TOK_RPAREN) {
t = TOK_ERROR;
}
}
} else if (t == TOK_NOT) {
t = CondParser_Term(par, doEval);
if (t == TOK_TRUE) {
t = TOK_FALSE;
} else if (t == TOK_FALSE) {
t = TOK_TRUE;
}
}
return t;
}
/* Parse a conjunctive factor (nice name, wot?)
*
* F -> T && F | T
*
* Results:
* TOK_TRUE, TOK_FALSE or TOK_ERROR
*/
static Token
CondParser_Factor(CondParser *par, Boolean doEval)
{
Token l, o;
l = CondParser_Term(par, doEval);
if (l != TOK_ERROR) {
o = CondParser_Token(par, doEval);
if (o == TOK_AND) {
/*
* F -> T && F
*
* If T is TOK_FALSE, the whole thing will be TOK_FALSE, but we
* have to parse the r.h.s. anyway (to throw it away).
* If T is TOK_TRUE, the result is the r.h.s., be it a TOK_ERROR
* or not.
*/
if (l == TOK_TRUE) {
l = CondParser_Factor(par, doEval);
} else {
(void)CondParser_Factor(par, FALSE);
}
} else {
/*
* F -> T
*/
CondParser_PushBack(par, o);
}
}
return l;
}
/* Main expression production.
*
* E -> F || E | F
*
* Results:
* TOK_TRUE, TOK_FALSE or TOK_ERROR.
*/
static Token
CondParser_Expr(CondParser *par, Boolean doEval)
{
Token l, o;
l = CondParser_Factor(par, doEval);
if (l != TOK_ERROR) {
o = CondParser_Token(par, doEval);
if (o == TOK_OR) {
/*
* E -> F || E
*
* A similar thing occurs for ||, except that here we make sure
* the l.h.s. is TOK_FALSE before we bother to evaluate the r.h.s.
* Once again, if l is TOK_FALSE, the result is the r.h.s. and once
* again if l is TOK_TRUE, we parse the r.h.s. to throw it away.
*/
if (l == TOK_FALSE) {
l = CondParser_Expr(par, doEval);
} else {
(void)CondParser_Expr(par, FALSE);
}
} else {
/*
* E -> F
*/
CondParser_PushBack(par, o);
}
}
return l;
}
static CondEvalResult
CondParser_Eval(CondParser *par, Boolean *value)
{
Token res;
DEBUG1(COND, "CondParser_Eval: %s\n", par->p);
res = CondParser_Expr(par, TRUE);
if (res != TOK_FALSE && res != TOK_TRUE)
return COND_INVALID;
if (CondParser_Token(par, TRUE /* XXX: Why TRUE? */) != TOK_EOF)
return COND_INVALID;
*value = res == TOK_TRUE;
return COND_PARSE;
}
/* Evaluate the condition, including any side effects from the variable
* expressions in the condition. The condition consists of &&, ||, !,
* function(arg), comparisons and parenthetical groupings thereof.
*
* Results:
* COND_PARSE if the condition was valid grammatically
* COND_INVALID if not a valid conditional.
*
* (*value) is set to the boolean value of the condition
*/
static CondEvalResult
CondEvalExpression(const struct If *info, const char *cond, Boolean *value,
Boolean eprint, Boolean strictLHS)
{
CondParser par;
CondEvalResult rval;
lhsStrict = strictLHS;
cpp_skip_hspace(&cond);
par.if_info = info != NULL ? info : ifs + PLAIN_IF_INDEX;
par.p = cond;
par.curr = TOK_NONE;
par.printedError = FALSE;
rval = CondParser_Eval(&par, value);
if (rval == COND_INVALID && eprint && !par.printedError)
Parse_Error(PARSE_FATAL, "Malformed conditional (%s)", cond);
return rval;
}
/* Evaluate a condition in a :? modifier, such as
* ${"${VAR}" == value:?yes:no}. */
CondEvalResult
Cond_EvalCondition(const char *cond, Boolean *out_value)
{
return CondEvalExpression(NULL, cond, out_value, FALSE, FALSE);
}
/* Evaluate the conditional directive in the line, which is one of:
*
* .if <cond>
* .ifmake <cond>
* .ifnmake <cond>
* .ifdef <cond>
* .ifndef <cond>
* .elif <cond>
* .elifmake <cond>
* .elifnmake <cond>
* .elifdef <cond>
* .elifndef <cond>
* .else
* .endif
*
* In these directives, <cond> consists of &&, ||, !, function(arg),
* comparisons, expressions, bare words, numbers and strings, and
* parenthetical groupings thereof.
*
* Results:
* COND_PARSE to continue parsing the lines that follow the
* conditional (when <cond> evaluates to TRUE)
* COND_SKIP to skip the lines after the conditional
* (when <cond> evaluates to FALSE, or when a previous
* branch has already been taken)
* COND_INVALID if the conditional was not valid, either because of
* a syntax error or because some variable was undefined
* or because the condition could not be evaluated
*/
CondEvalResult
Cond_EvalLine(const char *const line)
{
typedef enum IfState {
/* None of the previous <cond> evaluated to TRUE. */
IFS_INITIAL = 0,
/* The previous <cond> evaluated to TRUE.
* The lines following this condition are interpreted. */
IFS_ACTIVE = 1 << 0,
/* The previous directive was an '.else'. */
IFS_SEEN_ELSE = 1 << 1,
/* One of the previous <cond> evaluated to TRUE. */
IFS_WAS_ACTIVE = 1 << 2
} IfState;
static enum IfState *cond_states = NULL;
static unsigned int cond_states_cap = 128;
const struct If *ifp;
Boolean isElif;
Boolean value;
IfState state;
const char *p = line;
if (cond_states == NULL) {
cond_states = bmake_malloc(cond_states_cap * sizeof *cond_states);
cond_states[0] = IFS_ACTIVE;
}
p++; /* skip the leading '.' */
cpp_skip_hspace(&p);
/* Parse the name of the directive, such as 'if', 'elif', 'endif'. */
if (p[0] == 'e') {
if (p[1] != 'l') {
if (!is_token(p + 1, "ndif", 4)) {
/* Unknown directive. It might still be a transformation
* rule like '.elisp.scm', therefore no error message here. */
return COND_INVALID;
}
/* It is an '.endif'. */
/* TODO: check for extraneous <cond> */
if (cond_depth == cond_min_depth) {
Parse_Error(PARSE_FATAL, "if-less endif");
return COND_PARSE;
}
/* Return state for previous conditional */
cond_depth--;
return cond_states[cond_depth] & IFS_ACTIVE
? COND_PARSE : COND_SKIP;
}
/* Quite likely this is 'else' or 'elif' */
p += 2;
if (is_token(p, "se", 2)) { /* It is an 'else'. */
if (opts.lint && p[2] != '\0')
Parse_Error(PARSE_FATAL,
"The .else directive does not take arguments.");
if (cond_depth == cond_min_depth) {
Parse_Error(PARSE_FATAL, "if-less else");
return COND_PARSE;
}
state = cond_states[cond_depth];
if (state == IFS_INITIAL) {
state = IFS_ACTIVE | IFS_SEEN_ELSE;
} else {
if (state & IFS_SEEN_ELSE)
Parse_Error(PARSE_WARNING, "extra else");
state = IFS_WAS_ACTIVE | IFS_SEEN_ELSE;
}
cond_states[cond_depth] = state;
return state & IFS_ACTIVE ? COND_PARSE : COND_SKIP;
}
/* Assume for now it is an elif */
isElif = TRUE;
} else
isElif = FALSE;
if (p[0] != 'i' || p[1] != 'f') {
/* Unknown directive. It might still be a transformation rule like
* '.elisp.scm', therefore no error message here. */
return COND_INVALID; /* Not an ifxxx or elifxxx line */
}
/*
* Figure out what sort of conditional it is -- what its default
* function is, etc. -- by looking in the table of valid "ifs"
*/
p += 2;
for (ifp = ifs;; ifp++) {
if (ifp->form == NULL) {
/* TODO: Add error message about unknown directive,
* since there is no other known directive that starts with 'el'
* or 'if'.
* Example: .elifx 123 */
return COND_INVALID;
}
if (is_token(p, ifp->form, ifp->formlen)) {
p += ifp->formlen;
break;
}
}
/* Now we know what sort of 'if' it is... */
if (isElif) {
if (cond_depth == cond_min_depth) {
Parse_Error(PARSE_FATAL, "if-less elif");
return COND_PARSE;
}
state = cond_states[cond_depth];
if (state & IFS_SEEN_ELSE) {
Parse_Error(PARSE_WARNING, "extra elif");
cond_states[cond_depth] = IFS_WAS_ACTIVE | IFS_SEEN_ELSE;
return COND_SKIP;
}
if (state != IFS_INITIAL) {
cond_states[cond_depth] = IFS_WAS_ACTIVE;
return COND_SKIP;
}
} else {
/* Normal .if */
if (cond_depth + 1 >= cond_states_cap) {
/*
* This is rare, but not impossible.
* In meta mode, dirdeps.mk (only runs at level 0)
* can need more than the default.
*/
cond_states_cap += 32;
cond_states = bmake_realloc(cond_states,
cond_states_cap * sizeof *cond_states);
}
state = cond_states[cond_depth];
cond_depth++;
if (!(state & IFS_ACTIVE)) {
/* If we aren't parsing the data, treat as always false */
cond_states[cond_depth] = IFS_WAS_ACTIVE;
return COND_SKIP;
}
}
/* And evaluate the conditional expression */
if (CondEvalExpression(ifp, p, &value, TRUE, TRUE) == COND_INVALID) {
/* Syntax error in conditional, error message already output. */
/* Skip everything to matching .endif */
/* XXX: An extra '.else' is not detected in this case. */
cond_states[cond_depth] = IFS_WAS_ACTIVE;
return COND_SKIP;
}
if (!value) {
cond_states[cond_depth] = IFS_INITIAL;
return COND_SKIP;
}
cond_states[cond_depth] = IFS_ACTIVE;
return COND_PARSE;
}
void
Cond_restore_depth(unsigned int saved_depth)
{
unsigned int open_conds = cond_depth - cond_min_depth;
if (open_conds != 0 || saved_depth > cond_depth) {
Parse_Error(PARSE_FATAL, "%u open conditional%s", open_conds,
open_conds == 1 ? "" : "s");
cond_depth = cond_min_depth;
}
cond_min_depth = saved_depth;
}
unsigned int
Cond_save_depth(void)
{
unsigned int depth = cond_min_depth;
cond_min_depth = cond_depth;
return depth;
}