freebsd-src/lib/libnvmf/nvmf_host.c
John Baldwin 2da066ef6d libnvmf: Add internal library to support NVMe over Fabrics
libnvmf provides APIs for transmitting and receiving Command and
Response capsules along with data associated with NVMe commands.
Capsules are represented by 'struct nvmf_capsule' objects.

Capsules are transmitted and received on queue pairs represented by
'struct nvmf_qpair' objects.

Queue pairs belong to an association represented by a 'struct
nvmf_association' object.

libnvmf provides additional helper APIs to assist with constructing
command capsules for a host, response capsules for a controller,
connecting queue pairs to a remote controller and optionally
offloading connected queues to an in-kernel host, accepting queue pair
connections from remote hosts and optionally offloading connected
queues to an in-kernel controller, constructing controller data
structures for local controllers, etc.

libnvmf also includes an internal transport abstraction as well as an
implementation of a userspace TCP transport.

libnvmf is primarily intended for ease of use and low-traffic use cases
such as establishing connections that are handed off to the kernel.
As such, it uses a simple API built on blocking I/O.

For a host, a consumer first populates an 'struct
nvmf_association_params' with a set of parameters shared by all queue
pairs for a single association such as whether or not to use SQ flow
control and header and data digests and creates a 'struct
nvmf_association' object.  The consumer is responsible for
establishing a TCP socket for each queue pair.  This socket is
included in the 'struct nvmf_qpair_params' passed to 'nvmf_connect' to
complete transport-specific negotiation, send a Fabrics Connect
command, and wait for the Connect reply. Upon success, a new 'struct
nvmf_qpair' object is returned.  This queue pair can then be used to
send and receive capsules.  A command capsule is allocated, populated
with an SQE and optional data buffer, and transmitted via
nvmf_host_transmit_command.  The consumer can then wait for a reply
via nvmf_host_wait_for_response.  The library also provides some
wrapper functions such as nvmf_read_property and nvmf_write_property
which send a command and wait for a response synchronously.

For a controller, a consumer uses a single association for a set of
incoming connections.  A consumer can choose to use multiple
associations (e.g. a separate association for connections to a
discovery controller listening on a different port than I/O
controllers).  The consumer is responsible for accepting TCP sockets
directly, but once a socket has been accepted it is passed to
nvmf_accept to perform transport-specific negotiation and wait for the
Connect command.  Similar to nvmf_connect, nvmf_accept returns a newly
construct nvmf_qpair.  However, in contrast to nvmf_connect,
nvmf_accept does not complete the Fabrics negotiation.  The consumer
must explicitly send a response capsule before waiting for additional
command capsules to arrive.  In particular, in the kernel offload
case, the Connect command and data are provided to the kernel
controller and the Connect response capsule is sent by the kernel once
it is ready to handle the new queue pair.

For userspace controller command handling, the consumer uses
nvmf_controller_receive_capsule to wait for a command capsule.
nvmf_receive_controller_data is used to retrieve any data from a
command (e.g. the data for a WRITE command).  It can be called
multiple times to split the data transfer into smaller sizes.
nvmf_send_controller_data is used to send data to a remote host in
response to a command.  It also sends a response capsule indicating
success, or an error if an internal error occurs.  nvmf_send_response
is used to send a response without associated data.  There are also
several convenience wrappers such as nvmf_send_success and
nvmf_send_generic_error.

Reviewed by:	imp
Sponsored by:	Chelsio Communications
Differential Revision:	https://reviews.freebsd.org/D44710
2024-05-02 16:28:16 -07:00

912 lines
19 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2024 Chelsio Communications, Inc.
* Written by: John Baldwin <jhb@FreeBSD.org>
*/
#include <sys/sysctl.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <uuid.h>
#include "libnvmf.h"
#include "internal.h"
static void
nvmf_init_sqe(void *sqe, uint8_t opcode)
{
struct nvme_command *cmd = sqe;
memset(cmd, 0, sizeof(*cmd));
cmd->opc = opcode;
}
static void
nvmf_init_fabrics_sqe(void *sqe, uint8_t fctype)
{
struct nvmf_capsule_cmd *cmd = sqe;
nvmf_init_sqe(sqe, NVME_OPC_FABRICS_COMMANDS);
cmd->fctype = fctype;
}
struct nvmf_qpair *
nvmf_connect(struct nvmf_association *na,
const struct nvmf_qpair_params *params, uint16_t qid, u_int queue_size,
const uint8_t hostid[16], uint16_t cntlid, const char *subnqn,
const char *hostnqn, uint32_t kato)
{
struct nvmf_fabric_connect_cmd cmd;
struct nvmf_fabric_connect_data data;
const struct nvmf_fabric_connect_rsp *rsp;
struct nvmf_qpair *qp;
struct nvmf_capsule *cc, *rc;
int error;
uint16_t sqhd, status;
qp = NULL;
cc = NULL;
rc = NULL;
na_clear_error(na);
if (na->na_controller) {
na_error(na, "Cannot connect on a controller");
goto error;
}
if (params->admin != (qid == 0)) {
na_error(na, "Admin queue must use Queue ID 0");
goto error;
}
if (qid == 0) {
if (queue_size < NVME_MIN_ADMIN_ENTRIES ||
queue_size > NVME_MAX_ADMIN_ENTRIES) {
na_error(na, "Invalid queue size %u", queue_size);
goto error;
}
} else {
if (queue_size < NVME_MIN_IO_ENTRIES ||
queue_size > NVME_MAX_IO_ENTRIES) {
na_error(na, "Invalid queue size %u", queue_size);
goto error;
}
/* KATO is only for Admin queues. */
if (kato != 0) {
na_error(na, "Cannot set KATO on I/O queues");
goto error;
}
}
qp = nvmf_allocate_qpair(na, params);
if (qp == NULL)
goto error;
nvmf_init_fabrics_sqe(&cmd, NVMF_FABRIC_COMMAND_CONNECT);
cmd.recfmt = 0;
cmd.qid = htole16(qid);
/* N.B. sqsize is 0's based. */
cmd.sqsize = htole16(queue_size - 1);
if (!na->na_params.sq_flow_control)
cmd.cattr |= NVMF_CONNECT_ATTR_DISABLE_SQ_FC;
cmd.kato = htole32(kato);
cc = nvmf_allocate_command(qp, &cmd);
if (cc == NULL) {
na_error(na, "Failed to allocate command capsule: %s",
strerror(errno));
goto error;
}
memset(&data, 0, sizeof(data));
memcpy(data.hostid, hostid, sizeof(data.hostid));
data.cntlid = htole16(cntlid);
strlcpy(data.subnqn, subnqn, sizeof(data.subnqn));
strlcpy(data.hostnqn, hostnqn, sizeof(data.hostnqn));
error = nvmf_capsule_append_data(cc, &data, sizeof(data), true);
if (error != 0) {
na_error(na, "Failed to append data to CONNECT capsule: %s",
strerror(error));
goto error;
}
error = nvmf_transmit_capsule(cc);
if (error != 0) {
na_error(na, "Failed to transmit CONNECT capsule: %s",
strerror(errno));
goto error;
}
error = nvmf_receive_capsule(qp, &rc);
if (error != 0) {
na_error(na, "Failed to receive CONNECT response: %s",
strerror(error));
goto error;
}
rsp = (const struct nvmf_fabric_connect_rsp *)&rc->nc_cqe;
status = le16toh(rc->nc_cqe.status);
if (status != 0) {
if (NVME_STATUS_GET_SC(status) == NVMF_FABRIC_SC_INVALID_PARAM)
na_error(na,
"CONNECT invalid parameter IATTR: %#x IPO: %#x",
rsp->status_code_specific.invalid.iattr,
rsp->status_code_specific.invalid.ipo);
else
na_error(na, "CONNECT failed, status %#x", status);
goto error;
}
if (rc->nc_cqe.cid != cmd.cid) {
na_error(na, "Mismatched CID in CONNECT response");
goto error;
}
if (!rc->nc_sqhd_valid) {
na_error(na, "CONNECT response without valid SQHD");
goto error;
}
sqhd = le16toh(rsp->sqhd);
if (sqhd == 0xffff) {
if (na->na_params.sq_flow_control) {
na_error(na, "Controller disabled SQ flow control");
goto error;
}
qp->nq_flow_control = false;
} else {
qp->nq_flow_control = true;
qp->nq_sqhd = sqhd;
qp->nq_sqtail = sqhd;
}
if (rsp->status_code_specific.success.authreq) {
na_error(na, "CONNECT response requests authentication\n");
goto error;
}
qp->nq_qsize = queue_size;
qp->nq_cntlid = le16toh(rsp->status_code_specific.success.cntlid);
qp->nq_kato = kato;
/* XXX: Save qid in qp? */
return (qp);
error:
if (rc != NULL)
nvmf_free_capsule(rc);
if (cc != NULL)
nvmf_free_capsule(cc);
if (qp != NULL)
nvmf_free_qpair(qp);
return (NULL);
}
uint16_t
nvmf_cntlid(struct nvmf_qpair *qp)
{
return (qp->nq_cntlid);
}
int
nvmf_host_transmit_command(struct nvmf_capsule *nc)
{
struct nvmf_qpair *qp = nc->nc_qpair;
uint16_t new_sqtail;
int error;
/* Fail if the queue is full. */
new_sqtail = (qp->nq_sqtail + 1) % qp->nq_qsize;
if (new_sqtail == qp->nq_sqhd)
return (EBUSY);
nc->nc_sqe.cid = htole16(qp->nq_cid);
/* 4.2 Skip CID of 0xFFFF. */
qp->nq_cid++;
if (qp->nq_cid == 0xFFFF)
qp->nq_cid = 0;
error = nvmf_transmit_capsule(nc);
if (error != 0)
return (error);
qp->nq_sqtail = new_sqtail;
return (0);
}
/* Receive a single capsule and update SQ FC accounting. */
static int
nvmf_host_receive_capsule(struct nvmf_qpair *qp, struct nvmf_capsule **ncp)
{
struct nvmf_capsule *nc;
int error;
/* If the SQ is empty, there is no response to wait for. */
if (qp->nq_sqhd == qp->nq_sqtail)
return (EWOULDBLOCK);
error = nvmf_receive_capsule(qp, &nc);
if (error != 0)
return (error);
if (qp->nq_flow_control) {
if (nc->nc_sqhd_valid)
qp->nq_sqhd = le16toh(nc->nc_cqe.sqhd);
} else {
/*
* If SQ FC is disabled, just advance the head for
* each response capsule received so that we track the
* number of outstanding commands.
*/
qp->nq_sqhd = (qp->nq_sqhd + 1) % qp->nq_qsize;
}
*ncp = nc;
return (0);
}
int
nvmf_host_receive_response(struct nvmf_qpair *qp, struct nvmf_capsule **ncp)
{
struct nvmf_capsule *nc;
/* Return the oldest previously received response. */
if (!TAILQ_EMPTY(&qp->nq_rx_capsules)) {
nc = TAILQ_FIRST(&qp->nq_rx_capsules);
TAILQ_REMOVE(&qp->nq_rx_capsules, nc, nc_link);
*ncp = nc;
return (0);
}
return (nvmf_host_receive_capsule(qp, ncp));
}
int
nvmf_host_wait_for_response(struct nvmf_capsule *cc,
struct nvmf_capsule **rcp)
{
struct nvmf_qpair *qp = cc->nc_qpair;
struct nvmf_capsule *rc;
int error;
/* Check if a response was already received. */
TAILQ_FOREACH(rc, &qp->nq_rx_capsules, nc_link) {
if (rc->nc_cqe.cid == cc->nc_sqe.cid) {
TAILQ_REMOVE(&qp->nq_rx_capsules, rc, nc_link);
*rcp = rc;
return (0);
}
}
/* Wait for a response. */
for (;;) {
error = nvmf_host_receive_capsule(qp, &rc);
if (error != 0)
return (error);
if (rc->nc_cqe.cid != cc->nc_sqe.cid) {
TAILQ_INSERT_TAIL(&qp->nq_rx_capsules, rc, nc_link);
continue;
}
*rcp = rc;
return (0);
}
}
struct nvmf_capsule *
nvmf_keepalive(struct nvmf_qpair *qp)
{
struct nvme_command cmd;
if (!qp->nq_admin) {
errno = EINVAL;
return (NULL);
}
nvmf_init_sqe(&cmd, NVME_OPC_KEEP_ALIVE);
return (nvmf_allocate_command(qp, &cmd));
}
static struct nvmf_capsule *
nvmf_get_property(struct nvmf_qpair *qp, uint32_t offset, uint8_t size)
{
struct nvmf_fabric_prop_get_cmd cmd;
nvmf_init_fabrics_sqe(&cmd, NVMF_FABRIC_COMMAND_PROPERTY_GET);
switch (size) {
case 4:
cmd.attrib.size = NVMF_PROP_SIZE_4;
break;
case 8:
cmd.attrib.size = NVMF_PROP_SIZE_8;
break;
default:
errno = EINVAL;
return (NULL);
}
cmd.ofst = htole32(offset);
return (nvmf_allocate_command(qp, &cmd));
}
int
nvmf_read_property(struct nvmf_qpair *qp, uint32_t offset, uint8_t size,
uint64_t *value)
{
struct nvmf_capsule *cc, *rc;
const struct nvmf_fabric_prop_get_rsp *rsp;
uint16_t status;
int error;
if (!qp->nq_admin)
return (EINVAL);
cc = nvmf_get_property(qp, offset, size);
if (cc == NULL)
return (errno);
error = nvmf_host_transmit_command(cc);
if (error != 0) {
nvmf_free_capsule(cc);
return (error);
}
error = nvmf_host_wait_for_response(cc, &rc);
nvmf_free_capsule(cc);
if (error != 0)
return (error);
rsp = (const struct nvmf_fabric_prop_get_rsp *)&rc->nc_cqe;
status = le16toh(rc->nc_cqe.status);
if (status != 0) {
printf("NVMF: PROPERTY_GET failed, status %#x\n", status);
nvmf_free_capsule(rc);
return (EIO);
}
if (size == 8)
*value = le64toh(rsp->value.u64);
else
*value = le32toh(rsp->value.u32.low);
nvmf_free_capsule(rc);
return (0);
}
static struct nvmf_capsule *
nvmf_set_property(struct nvmf_qpair *qp, uint32_t offset, uint8_t size,
uint64_t value)
{
struct nvmf_fabric_prop_set_cmd cmd;
nvmf_init_fabrics_sqe(&cmd, NVMF_FABRIC_COMMAND_PROPERTY_SET);
switch (size) {
case 4:
cmd.attrib.size = NVMF_PROP_SIZE_4;
cmd.value.u32.low = htole32(value);
break;
case 8:
cmd.attrib.size = NVMF_PROP_SIZE_8;
cmd.value.u64 = htole64(value);
break;
default:
errno = EINVAL;
return (NULL);
}
cmd.ofst = htole32(offset);
return (nvmf_allocate_command(qp, &cmd));
}
int
nvmf_write_property(struct nvmf_qpair *qp, uint32_t offset, uint8_t size,
uint64_t value)
{
struct nvmf_capsule *cc, *rc;
uint16_t status;
int error;
if (!qp->nq_admin)
return (EINVAL);
cc = nvmf_set_property(qp, offset, size, value);
if (cc == NULL)
return (errno);
error = nvmf_host_transmit_command(cc);
if (error != 0) {
nvmf_free_capsule(cc);
return (error);
}
error = nvmf_host_wait_for_response(cc, &rc);
nvmf_free_capsule(cc);
if (error != 0)
return (error);
status = le16toh(rc->nc_cqe.status);
if (status != 0) {
printf("NVMF: PROPERTY_SET failed, status %#x\n", status);
nvmf_free_capsule(rc);
return (EIO);
}
nvmf_free_capsule(rc);
return (0);
}
int
nvmf_hostid_from_hostuuid(uint8_t hostid[16])
{
char hostuuid_str[64];
uuid_t hostuuid;
size_t len;
uint32_t status;
len = sizeof(hostuuid_str);
if (sysctlbyname("kern.hostuuid", hostuuid_str, &len, NULL, 0) != 0)
return (errno);
uuid_from_string(hostuuid_str, &hostuuid, &status);
switch (status) {
case uuid_s_ok:
break;
case uuid_s_no_memory:
return (ENOMEM);
default:
return (EINVAL);
}
uuid_enc_le(hostid, &hostuuid);
return (0);
}
int
nvmf_nqn_from_hostuuid(char nqn[NVMF_NQN_MAX_LEN])
{
char hostuuid_str[64];
size_t len;
len = sizeof(hostuuid_str);
if (sysctlbyname("kern.hostuuid", hostuuid_str, &len, NULL, 0) != 0)
return (errno);
strlcpy(nqn, NVMF_NQN_UUID_PRE, NVMF_NQN_MAX_LEN);
strlcat(nqn, hostuuid_str, NVMF_NQN_MAX_LEN);
return (0);
}
int
nvmf_host_identify_controller(struct nvmf_qpair *qp,
struct nvme_controller_data *cdata)
{
struct nvme_command cmd;
struct nvmf_capsule *cc, *rc;
int error;
uint16_t status;
if (!qp->nq_admin)
return (EINVAL);
nvmf_init_sqe(&cmd, NVME_OPC_IDENTIFY);
/* 5.15.1 Use CNS of 0x01 for controller data. */
cmd.cdw10 = htole32(1);
cc = nvmf_allocate_command(qp, &cmd);
if (cc == NULL)
return (errno);
error = nvmf_capsule_append_data(cc, cdata, sizeof(*cdata), false);
if (error != 0) {
nvmf_free_capsule(cc);
return (error);
}
error = nvmf_host_transmit_command(cc);
if (error != 0) {
nvmf_free_capsule(cc);
return (error);
}
error = nvmf_host_wait_for_response(cc, &rc);
nvmf_free_capsule(cc);
if (error != 0)
return (error);
status = le16toh(rc->nc_cqe.status);
if (status != 0) {
printf("NVMF: IDENTIFY failed, status %#x\n", status);
nvmf_free_capsule(rc);
return (EIO);
}
nvmf_free_capsule(rc);
return (0);
}
int
nvmf_host_identify_namespace(struct nvmf_qpair *qp, uint32_t nsid,
struct nvme_namespace_data *nsdata)
{
struct nvme_command cmd;
struct nvmf_capsule *cc, *rc;
int error;
uint16_t status;
if (!qp->nq_admin)
return (EINVAL);
nvmf_init_sqe(&cmd, NVME_OPC_IDENTIFY);
/* 5.15.1 Use CNS of 0x00 for namespace data. */
cmd.cdw10 = htole32(0);
cmd.nsid = htole32(nsid);
cc = nvmf_allocate_command(qp, &cmd);
if (cc == NULL)
return (errno);
error = nvmf_capsule_append_data(cc, nsdata, sizeof(*nsdata), false);
if (error != 0) {
nvmf_free_capsule(cc);
return (error);
}
error = nvmf_host_transmit_command(cc);
if (error != 0) {
nvmf_free_capsule(cc);
return (error);
}
error = nvmf_host_wait_for_response(cc, &rc);
nvmf_free_capsule(cc);
if (error != 0)
return (error);
status = le16toh(rc->nc_cqe.status);
if (status != 0) {
printf("NVMF: IDENTIFY failed, status %#x\n", status);
nvmf_free_capsule(rc);
return (EIO);
}
nvmf_free_capsule(rc);
return (0);
}
static int
nvmf_get_discovery_log_page(struct nvmf_qpair *qp, uint64_t offset, void *buf,
size_t len)
{
struct nvme_command cmd;
struct nvmf_capsule *cc, *rc;
size_t numd;
int error;
uint16_t status;
if (len % 4 != 0 || len == 0 || offset % 4 != 0)
return (EINVAL);
numd = (len / 4) - 1;
nvmf_init_sqe(&cmd, NVME_OPC_GET_LOG_PAGE);
cmd.cdw10 = htole32(numd << 16 | NVME_LOG_DISCOVERY);
cmd.cdw11 = htole32(numd >> 16);
cmd.cdw12 = htole32(offset);
cmd.cdw13 = htole32(offset >> 32);
cc = nvmf_allocate_command(qp, &cmd);
if (cc == NULL)
return (errno);
error = nvmf_capsule_append_data(cc, buf, len, false);
if (error != 0) {
nvmf_free_capsule(cc);
return (error);
}
error = nvmf_host_transmit_command(cc);
if (error != 0) {
nvmf_free_capsule(cc);
return (error);
}
error = nvmf_host_wait_for_response(cc, &rc);
nvmf_free_capsule(cc);
if (error != 0)
return (error);
status = le16toh(rc->nc_cqe.status);
if (NVMEV(NVME_STATUS_SC, status) ==
NVMF_FABRIC_SC_LOG_RESTART_DISCOVERY) {
nvmf_free_capsule(rc);
return (EAGAIN);
}
if (status != 0) {
printf("NVMF: GET_LOG_PAGE failed, status %#x\n", status);
nvmf_free_capsule(rc);
return (EIO);
}
nvmf_free_capsule(rc);
return (0);
}
int
nvmf_host_fetch_discovery_log_page(struct nvmf_qpair *qp,
struct nvme_discovery_log **logp)
{
struct nvme_discovery_log hdr, *log;
size_t payload_len;
int error;
if (!qp->nq_admin)
return (EINVAL);
log = NULL;
for (;;) {
error = nvmf_get_discovery_log_page(qp, 0, &hdr, sizeof(hdr));
if (error != 0)
return (error);
nvme_discovery_log_swapbytes(&hdr);
if (hdr.recfmt != 0) {
printf("NVMF: Unsupported discovery log format: %d\n",
hdr.recfmt);
return (EINVAL);
}
if (hdr.numrec > 1024) {
printf("NVMF: Too many discovery log entries: %ju\n",
(uintmax_t)hdr.numrec);
return (EFBIG);
}
payload_len = sizeof(log->entries[0]) * hdr.numrec;
log = reallocf(log, sizeof(*log) + payload_len);
if (log == NULL)
return (ENOMEM);
*log = hdr;
if (hdr.numrec == 0)
break;
error = nvmf_get_discovery_log_page(qp, sizeof(hdr),
log->entries, payload_len);
if (error == EAGAIN)
continue;
if (error != 0) {
free(log);
return (error);
}
/* Re-read the header and check the generation count. */
error = nvmf_get_discovery_log_page(qp, 0, &hdr, sizeof(hdr));
if (error != 0) {
free(log);
return (error);
}
nvme_discovery_log_swapbytes(&hdr);
if (log->genctr != hdr.genctr)
continue;
for (u_int i = 0; i < log->numrec; i++)
nvme_discovery_log_entry_swapbytes(&log->entries[i]);
break;
}
*logp = log;
return (0);
}
int
nvmf_host_request_queues(struct nvmf_qpair *qp, u_int requested, u_int *actual)
{
struct nvme_command cmd;
struct nvmf_capsule *cc, *rc;
int error;
uint16_t status;
if (!qp->nq_admin || requested < 1 || requested > 65535)
return (EINVAL);
/* The number of queues is 0's based. */
requested--;
nvmf_init_sqe(&cmd, NVME_OPC_SET_FEATURES);
cmd.cdw10 = htole32(NVME_FEAT_NUMBER_OF_QUEUES);
/* Same number of completion and submission queues. */
cmd.cdw11 = htole32((requested << 16) | requested);
cc = nvmf_allocate_command(qp, &cmd);
if (cc == NULL)
return (errno);
error = nvmf_host_transmit_command(cc);
if (error != 0) {
nvmf_free_capsule(cc);
return (error);
}
error = nvmf_host_wait_for_response(cc, &rc);
nvmf_free_capsule(cc);
if (error != 0)
return (error);
status = le16toh(rc->nc_cqe.status);
if (status != 0) {
printf("NVMF: SET_FEATURES failed, status %#x\n", status);
nvmf_free_capsule(rc);
return (EIO);
}
*actual = (le32toh(rc->nc_cqe.cdw0) & 0xffff) + 1;
nvmf_free_capsule(rc);
return (0);
}
static bool
is_queue_pair_idle(struct nvmf_qpair *qp)
{
if (qp->nq_sqhd != qp->nq_sqtail)
return (false);
if (!TAILQ_EMPTY(&qp->nq_rx_capsules))
return (false);
return (true);
}
static int
prepare_queues_for_handoff(struct nvmf_handoff_host *hh,
struct nvmf_qpair *admin_qp, u_int num_queues,
struct nvmf_qpair **io_queues, const struct nvme_controller_data *cdata)
{
struct nvmf_handoff_qpair_params *io;
u_int i;
int error;
memset(hh, 0, sizeof(*hh));
/* All queue pairs must be idle. */
if (!is_queue_pair_idle(admin_qp))
return (EBUSY);
for (i = 0; i < num_queues; i++) {
if (!is_queue_pair_idle(io_queues[i]))
return (EBUSY);
}
/* First, the admin queue. */
hh->trtype = admin_qp->nq_association->na_trtype;
hh->kato = admin_qp->nq_kato;
error = nvmf_kernel_handoff_params(admin_qp, &hh->admin);
if (error)
return (error);
/* Next, the I/O queues. */
hh->num_io_queues = num_queues;
io = calloc(num_queues, sizeof(*io));
for (i = 0; i < num_queues; i++) {
error = nvmf_kernel_handoff_params(io_queues[i], &io[i]);
if (error) {
free(io);
return (error);
}
}
hh->io = io;
hh->cdata = cdata;
return (0);
}
int
nvmf_handoff_host(struct nvmf_qpair *admin_qp, u_int num_queues,
struct nvmf_qpair **io_queues, const struct nvme_controller_data *cdata)
{
struct nvmf_handoff_host hh;
u_int i;
int error, fd;
fd = open("/dev/nvmf", O_RDWR);
if (fd == -1) {
error = errno;
goto out;
}
error = prepare_queues_for_handoff(&hh, admin_qp, num_queues, io_queues,
cdata);
if (error != 0)
goto out;
if (ioctl(fd, NVMF_HANDOFF_HOST, &hh) == -1)
error = errno;
free(hh.io);
out:
if (fd >= 0)
close(fd);
for (i = 0; i < num_queues; i++)
(void)nvmf_free_qpair(io_queues[i]);
(void)nvmf_free_qpair(admin_qp);
return (error);
}
int
nvmf_disconnect_host(const char *host)
{
int error, fd;
error = 0;
fd = open("/dev/nvmf", O_RDWR);
if (fd == -1) {
error = errno;
goto out;
}
if (ioctl(fd, NVMF_DISCONNECT_HOST, &host) == -1)
error = errno;
out:
if (fd >= 0)
close(fd);
return (error);
}
int
nvmf_disconnect_all(void)
{
int error, fd;
error = 0;
fd = open("/dev/nvmf", O_RDWR);
if (fd == -1) {
error = errno;
goto out;
}
if (ioctl(fd, NVMF_DISCONNECT_ALL) == -1)
error = errno;
out:
if (fd >= 0)
close(fd);
return (error);
}
int
nvmf_reconnect_params(int fd, struct nvmf_reconnect_params *rparams)
{
if (ioctl(fd, NVMF_RECONNECT_PARAMS, rparams) == -1)
return (errno);
return (0);
}
int
nvmf_reconnect_host(int fd, struct nvmf_qpair *admin_qp, u_int num_queues,
struct nvmf_qpair **io_queues, const struct nvme_controller_data *cdata)
{
struct nvmf_handoff_host hh;
u_int i;
int error;
error = prepare_queues_for_handoff(&hh, admin_qp, num_queues, io_queues,
cdata);
if (error != 0)
goto out;
if (ioctl(fd, NVMF_RECONNECT_HOST, &hh) == -1)
error = errno;
free(hh.io);
out:
for (i = 0; i < num_queues; i++)
(void)nvmf_free_qpair(io_queues[i]);
(void)nvmf_free_qpair(admin_qp);
return (error);
}