freebsd-src/sys/dev/wg/wg_crypto.c
John Baldwin 854d066251 wg: Trim compat shims for versions older than current stable/13.
Reviewed by:	kevans, markj, emaste
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D36913
2022-10-28 13:36:13 -07:00

284 lines
7.3 KiB
C

/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2015-2021 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
* Copyright (c) 2022 The FreeBSD Foundation
*/
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <opencrypto/cryptodev.h>
#include "crypto.h"
static crypto_session_t chacha20_poly1305_sid;
#ifdef COMPAT_NEED_BLAKE2S
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#endif
#ifndef DIV_ROUND_UP
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
#endif
#define le32_to_cpup(a) le32toh(*(a))
#define cpu_to_le32(a) htole32(a)
static inline void cpu_to_le32_array(uint32_t *buf, unsigned int words)
{
while (words--) {
*buf = cpu_to_le32(*buf);
++buf;
}
}
static inline void le32_to_cpu_array(uint32_t *buf, unsigned int words)
{
while (words--) {
*buf = le32_to_cpup(buf);
++buf;
}
}
static inline uint32_t ror32(uint32_t word, unsigned int shift)
{
return (word >> (shift & 31)) | (word << ((-shift) & 31));
}
static const uint32_t blake2s_iv[8] = {
0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL
};
static const uint8_t blake2s_sigma[10][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
};
static inline void blake2s_set_lastblock(struct blake2s_state *state)
{
state->f[0] = -1;
}
static inline void blake2s_increment_counter(struct blake2s_state *state,
const uint32_t inc)
{
state->t[0] += inc;
state->t[1] += (state->t[0] < inc);
}
static inline void blake2s_init_param(struct blake2s_state *state,
const uint32_t param)
{
int i;
memset(state, 0, sizeof(*state));
for (i = 0; i < 8; ++i)
state->h[i] = blake2s_iv[i];
state->h[0] ^= param;
}
void blake2s_init(struct blake2s_state *state, const size_t outlen)
{
blake2s_init_param(state, 0x01010000 | outlen);
state->outlen = outlen;
}
void blake2s_init_key(struct blake2s_state *state, const size_t outlen,
const uint8_t *key, const size_t keylen)
{
uint8_t block[BLAKE2S_BLOCK_SIZE] = { 0 };
blake2s_init_param(state, 0x01010000 | keylen << 8 | outlen);
state->outlen = outlen;
memcpy(block, key, keylen);
blake2s_update(state, block, BLAKE2S_BLOCK_SIZE);
explicit_bzero(block, BLAKE2S_BLOCK_SIZE);
}
static inline void blake2s_compress(struct blake2s_state *state,
const uint8_t *block, size_t nblocks,
const uint32_t inc)
{
uint32_t m[16];
uint32_t v[16];
int i;
while (nblocks > 0) {
blake2s_increment_counter(state, inc);
memcpy(m, block, BLAKE2S_BLOCK_SIZE);
le32_to_cpu_array(m, ARRAY_SIZE(m));
memcpy(v, state->h, 32);
v[ 8] = blake2s_iv[0];
v[ 9] = blake2s_iv[1];
v[10] = blake2s_iv[2];
v[11] = blake2s_iv[3];
v[12] = blake2s_iv[4] ^ state->t[0];
v[13] = blake2s_iv[5] ^ state->t[1];
v[14] = blake2s_iv[6] ^ state->f[0];
v[15] = blake2s_iv[7] ^ state->f[1];
#define G(r, i, a, b, c, d) do { \
a += b + m[blake2s_sigma[r][2 * i + 0]]; \
d = ror32(d ^ a, 16); \
c += d; \
b = ror32(b ^ c, 12); \
a += b + m[blake2s_sigma[r][2 * i + 1]]; \
d = ror32(d ^ a, 8); \
c += d; \
b = ror32(b ^ c, 7); \
} while (0)
#define ROUND(r) do { \
G(r, 0, v[0], v[ 4], v[ 8], v[12]); \
G(r, 1, v[1], v[ 5], v[ 9], v[13]); \
G(r, 2, v[2], v[ 6], v[10], v[14]); \
G(r, 3, v[3], v[ 7], v[11], v[15]); \
G(r, 4, v[0], v[ 5], v[10], v[15]); \
G(r, 5, v[1], v[ 6], v[11], v[12]); \
G(r, 6, v[2], v[ 7], v[ 8], v[13]); \
G(r, 7, v[3], v[ 4], v[ 9], v[14]); \
} while (0)
ROUND(0);
ROUND(1);
ROUND(2);
ROUND(3);
ROUND(4);
ROUND(5);
ROUND(6);
ROUND(7);
ROUND(8);
ROUND(9);
#undef G
#undef ROUND
for (i = 0; i < 8; ++i)
state->h[i] ^= v[i] ^ v[i + 8];
block += BLAKE2S_BLOCK_SIZE;
--nblocks;
}
}
void blake2s_update(struct blake2s_state *state, const uint8_t *in, size_t inlen)
{
const size_t fill = BLAKE2S_BLOCK_SIZE - state->buflen;
if (!inlen)
return;
if (inlen > fill) {
memcpy(state->buf + state->buflen, in, fill);
blake2s_compress(state, state->buf, 1, BLAKE2S_BLOCK_SIZE);
state->buflen = 0;
in += fill;
inlen -= fill;
}
if (inlen > BLAKE2S_BLOCK_SIZE) {
const size_t nblocks = DIV_ROUND_UP(inlen, BLAKE2S_BLOCK_SIZE);
/* Hash one less (full) block than strictly possible */
blake2s_compress(state, in, nblocks - 1, BLAKE2S_BLOCK_SIZE);
in += BLAKE2S_BLOCK_SIZE * (nblocks - 1);
inlen -= BLAKE2S_BLOCK_SIZE * (nblocks - 1);
}
memcpy(state->buf + state->buflen, in, inlen);
state->buflen += inlen;
}
void blake2s_final(struct blake2s_state *state, uint8_t *out)
{
blake2s_set_lastblock(state);
memset(state->buf + state->buflen, 0,
BLAKE2S_BLOCK_SIZE - state->buflen); /* Padding */
blake2s_compress(state, state->buf, 1, state->buflen);
cpu_to_le32_array(state->h, ARRAY_SIZE(state->h));
memcpy(out, state->h, state->outlen);
explicit_bzero(state, sizeof(*state));
}
#endif
static int
crypto_callback(struct cryptop *crp)
{
return (0);
}
int
chacha20poly1305_encrypt_mbuf(struct mbuf *m, const uint64_t nonce,
const uint8_t key[CHACHA20POLY1305_KEY_SIZE])
{
static const char blank_tag[POLY1305_HASH_LEN];
struct cryptop crp;
int ret;
if (!m_append(m, POLY1305_HASH_LEN, blank_tag))
return (ENOMEM);
crypto_initreq(&crp, chacha20_poly1305_sid);
crp.crp_op = CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST;
crp.crp_flags = CRYPTO_F_IV_SEPARATE | CRYPTO_F_CBIMM;
crypto_use_mbuf(&crp, m);
crp.crp_payload_length = m->m_pkthdr.len - POLY1305_HASH_LEN;
crp.crp_digest_start = crp.crp_payload_length;
le64enc(crp.crp_iv, nonce);
crp.crp_cipher_key = key;
crp.crp_callback = crypto_callback;
ret = crypto_dispatch(&crp);
crypto_destroyreq(&crp);
return (ret);
}
int
chacha20poly1305_decrypt_mbuf(struct mbuf *m, const uint64_t nonce,
const uint8_t key[CHACHA20POLY1305_KEY_SIZE])
{
struct cryptop crp;
int ret;
if (m->m_pkthdr.len < POLY1305_HASH_LEN)
return (EMSGSIZE);
crypto_initreq(&crp, chacha20_poly1305_sid);
crp.crp_op = CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST;
crp.crp_flags = CRYPTO_F_IV_SEPARATE | CRYPTO_F_CBIMM;
crypto_use_mbuf(&crp, m);
crp.crp_payload_length = m->m_pkthdr.len - POLY1305_HASH_LEN;
crp.crp_digest_start = crp.crp_payload_length;
le64enc(crp.crp_iv, nonce);
crp.crp_cipher_key = key;
crp.crp_callback = crypto_callback;
ret = crypto_dispatch(&crp);
crypto_destroyreq(&crp);
if (ret)
return (ret);
m_adj(m, -POLY1305_HASH_LEN);
return (0);
}
int
crypto_init(void)
{
struct crypto_session_params csp = {
.csp_mode = CSP_MODE_AEAD,
.csp_ivlen = sizeof(uint64_t),
.csp_cipher_alg = CRYPTO_CHACHA20_POLY1305,
.csp_cipher_klen = CHACHA20POLY1305_KEY_SIZE,
.csp_flags = CSP_F_SEPARATE_AAD | CSP_F_SEPARATE_OUTPUT
};
int ret = crypto_newsession(&chacha20_poly1305_sid, &csp, CRYPTOCAP_F_SOFTWARE);
if (ret != 0)
return (ret);
return (0);
}
void
crypto_deinit(void)
{
crypto_freesession(chacha20_poly1305_sid);
}