freebsd-src/sys/dev/sge/if_sge.c
Warner Losh 685dc743dc sys: Remove $FreeBSD$: one-line .c pattern
Remove /^[\s*]*__FBSDID\("\$FreeBSD\$"\);?\s*\n/
2023-08-16 11:54:36 -06:00

1903 lines
49 KiB
C

/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
* Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AUTHORS OR
* THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
/*
* SiS 190/191 PCI Ethernet NIC driver.
*
* Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
* SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
* Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
* <kmliu@sis.com>. Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
* review and very useful comments.
*
* Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
* Linux and Solaris drivers.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/sge/if_sgereg.h>
MODULE_DEPEND(sge, pci, 1, 1, 1);
MODULE_DEPEND(sge, ether, 1, 1, 1);
MODULE_DEPEND(sge, miibus, 1, 1, 1);
/* "device miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* Various supported device vendors/types and their names.
*/
static struct sge_type sge_devs[] = {
{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
{ 0, 0, NULL }
};
static int sge_probe(device_t);
static int sge_attach(device_t);
static int sge_detach(device_t);
static int sge_shutdown(device_t);
static int sge_suspend(device_t);
static int sge_resume(device_t);
static int sge_miibus_readreg(device_t, int, int);
static int sge_miibus_writereg(device_t, int, int, int);
static void sge_miibus_statchg(device_t);
static int sge_newbuf(struct sge_softc *, int);
static int sge_encap(struct sge_softc *, struct mbuf **);
static __inline void
sge_discard_rxbuf(struct sge_softc *, int);
static void sge_rxeof(struct sge_softc *);
static void sge_txeof(struct sge_softc *);
static void sge_intr(void *);
static void sge_tick(void *);
static void sge_start(if_t);
static void sge_start_locked(if_t);
static int sge_ioctl(if_t, u_long, caddr_t);
static void sge_init(void *);
static void sge_init_locked(struct sge_softc *);
static void sge_stop(struct sge_softc *);
static void sge_watchdog(struct sge_softc *);
static int sge_ifmedia_upd(if_t);
static void sge_ifmedia_sts(if_t, struct ifmediareq *);
static int sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
static int sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
static uint16_t sge_read_eeprom(struct sge_softc *, int);
static void sge_rxfilter(struct sge_softc *);
static void sge_setvlan(struct sge_softc *);
static void sge_reset(struct sge_softc *);
static int sge_list_rx_init(struct sge_softc *);
static int sge_list_rx_free(struct sge_softc *);
static int sge_list_tx_init(struct sge_softc *);
static int sge_list_tx_free(struct sge_softc *);
static int sge_dma_alloc(struct sge_softc *);
static void sge_dma_free(struct sge_softc *);
static void sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static device_method_t sge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sge_probe),
DEVMETHOD(device_attach, sge_attach),
DEVMETHOD(device_detach, sge_detach),
DEVMETHOD(device_suspend, sge_suspend),
DEVMETHOD(device_resume, sge_resume),
DEVMETHOD(device_shutdown, sge_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, sge_miibus_readreg),
DEVMETHOD(miibus_writereg, sge_miibus_writereg),
DEVMETHOD(miibus_statchg, sge_miibus_statchg),
DEVMETHOD_END
};
static driver_t sge_driver = {
"sge", sge_methods, sizeof(struct sge_softc)
};
DRIVER_MODULE(sge, pci, sge_driver, 0, 0);
DRIVER_MODULE(miibus, sge, miibus_driver, 0, 0);
/*
* Register space access macros.
*/
#define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sge_res, reg, val)
#define CSR_WRITE_2(sc, reg, val) bus_write_2(sc->sge_res, reg, val)
#define CSR_WRITE_1(cs, reg, val) bus_write_1(sc->sge_res, reg, val)
#define CSR_READ_4(sc, reg) bus_read_4(sc->sge_res, reg)
#define CSR_READ_2(sc, reg) bus_read_2(sc->sge_res, reg)
#define CSR_READ_1(sc, reg) bus_read_1(sc->sge_res, reg)
/* Define to show Tx/Rx error status. */
#undef SGE_SHOW_ERRORS
#define SGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
static void
sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *p;
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
p = arg;
*p = segs->ds_addr;
}
/*
* Read a sequence of words from the EEPROM.
*/
static uint16_t
sge_read_eeprom(struct sge_softc *sc, int offset)
{
uint32_t val;
int i;
KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
CSR_WRITE_4(sc, ROMInterface,
EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
DELAY(500);
for (i = 0; i < SGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, ROMInterface);
if ((val & EI_REQ) == 0)
break;
DELAY(100);
}
if (i == SGE_TIMEOUT) {
device_printf(sc->sge_dev,
"EEPROM read timeout : 0x%08x\n", val);
return (0xffff);
}
return ((val & EI_DATA) >> EI_DATA_SHIFT);
}
static int
sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
{
uint16_t val;
int i;
val = sge_read_eeprom(sc, EEPROMSignature);
if (val == 0xffff || val == 0) {
device_printf(sc->sge_dev,
"invalid EEPROM signature : 0x%04x\n", val);
return (EINVAL);
}
for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
dest[i + 0] = (uint8_t)val;
dest[i + 1] = (uint8_t)(val >> 8);
}
if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
sc->sge_flags |= SGE_FLAG_RGMII;
return (0);
}
/*
* For SiS96x, APC CMOS RAM is used to store ethernet address.
* APC CMOS RAM is accessed through ISA bridge.
*/
static int
sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
{
#if defined(__amd64__) || defined(__i386__)
devclass_t pci;
device_t bus, dev = NULL;
device_t *kids;
struct apc_tbl {
uint16_t vid;
uint16_t did;
} *tp, apc_tbls[] = {
{ SIS_VENDORID, 0x0965 },
{ SIS_VENDORID, 0x0966 },
{ SIS_VENDORID, 0x0968 }
};
uint8_t reg;
int busnum, i, j, numkids;
pci = devclass_find("pci");
for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
bus = devclass_get_device(pci, busnum);
if (!bus)
continue;
if (device_get_children(bus, &kids, &numkids) != 0)
continue;
for (i = 0; i < numkids; i++) {
dev = kids[i];
if (pci_get_class(dev) == PCIC_BRIDGE &&
pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
tp = apc_tbls;
for (j = 0; j < nitems(apc_tbls); j++) {
if (pci_get_vendor(dev) == tp->vid &&
pci_get_device(dev) == tp->did) {
free(kids, M_TEMP);
goto apc_found;
}
tp++;
}
}
}
free(kids, M_TEMP);
}
device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
return (EINVAL);
apc_found:
/* Enable port 0x78 and 0x79 to access APC registers. */
reg = pci_read_config(dev, 0x48, 1);
pci_write_config(dev, 0x48, reg & ~0x02, 1);
DELAY(50);
pci_read_config(dev, 0x48, 1);
/* Read stored ethernet address. */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
outb(0x78, 0x09 + i);
dest[i] = inb(0x79);
}
outb(0x78, 0x12);
if ((inb(0x79) & 0x80) != 0)
sc->sge_flags |= SGE_FLAG_RGMII;
/* Restore access to APC registers. */
pci_write_config(dev, 0x48, reg, 1);
return (0);
#else
return (EINVAL);
#endif
}
static int
sge_miibus_readreg(device_t dev, int phy, int reg)
{
struct sge_softc *sc;
uint32_t val;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
(reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
DELAY(10);
for (i = 0; i < SGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, GMIIControl);
if ((val & GMI_REQ) == 0)
break;
DELAY(10);
}
if (i == SGE_TIMEOUT) {
device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
return (0);
}
return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
}
static int
sge_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct sge_softc *sc;
uint32_t val;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
(reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
GMI_OP_WR | GMI_REQ);
DELAY(10);
for (i = 0; i < SGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, GMIIControl);
if ((val & GMI_REQ) == 0)
break;
DELAY(10);
}
if (i == SGE_TIMEOUT)
device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
return (0);
}
static void
sge_miibus_statchg(device_t dev)
{
struct sge_softc *sc;
struct mii_data *mii;
if_t ifp;
uint32_t ctl, speed;
sc = device_get_softc(dev);
mii = device_get_softc(sc->sge_miibus);
ifp = sc->sge_ifp;
if (mii == NULL || ifp == NULL ||
(if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
return;
speed = 0;
sc->sge_flags &= ~SGE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
sc->sge_flags |= SGE_FLAG_LINK;
speed = SC_SPEED_10;
break;
case IFM_100_TX:
sc->sge_flags |= SGE_FLAG_LINK;
speed = SC_SPEED_100;
break;
case IFM_1000_T:
if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
sc->sge_flags |= SGE_FLAG_LINK;
speed = SC_SPEED_1000;
}
break;
default:
break;
}
}
if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
return;
/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
ctl = CSR_READ_4(sc, StationControl);
ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
if (speed == SC_SPEED_1000) {
ctl |= 0x07000000;
sc->sge_flags |= SGE_FLAG_SPEED_1000;
} else {
ctl |= 0x04000000;
sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
}
#ifdef notyet
if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
ctl |= 0x03000000;
#endif
ctl |= speed;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
ctl |= SC_FDX;
sc->sge_flags |= SGE_FLAG_FDX;
} else
sc->sge_flags &= ~SGE_FLAG_FDX;
CSR_WRITE_4(sc, StationControl, ctl);
if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
}
}
static u_int
sge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int count)
{
uint32_t crc, *hashes = arg;
crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
return (1);
}
static void
sge_rxfilter(struct sge_softc *sc)
{
if_t ifp;
uint32_t hashes[2];
uint16_t rxfilt;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
rxfilt = CSR_READ_2(sc, RxMacControl);
rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
rxfilt |= AcceptMyPhys;
if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
rxfilt |= AcceptBroadcast;
if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((if_getflags(ifp) & IFF_PROMISC) != 0)
rxfilt |= AcceptAllPhys;
rxfilt |= AcceptMulticast;
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
} else {
rxfilt |= AcceptMulticast;
hashes[0] = hashes[1] = 0;
/* Now program new ones. */
if_foreach_llmaddr(ifp, sge_hash_maddr, hashes);
}
CSR_WRITE_2(sc, RxMacControl, rxfilt);
CSR_WRITE_4(sc, RxHashTable, hashes[0]);
CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
}
static void
sge_setvlan(struct sge_softc *sc)
{
if_t ifp;
uint16_t rxfilt;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
if ((if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
return;
rxfilt = CSR_READ_2(sc, RxMacControl);
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
rxfilt |= RXMAC_STRIP_VLAN;
else
rxfilt &= ~RXMAC_STRIP_VLAN;
CSR_WRITE_2(sc, RxMacControl, rxfilt);
}
static void
sge_reset(struct sge_softc *sc)
{
CSR_WRITE_4(sc, IntrMask, 0);
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
/* Soft reset. */
CSR_WRITE_4(sc, IntrControl, 0x8000);
CSR_READ_4(sc, IntrControl);
DELAY(100);
CSR_WRITE_4(sc, IntrControl, 0);
/* Stop MAC. */
CSR_WRITE_4(sc, TX_CTL, 0x1a00);
CSR_WRITE_4(sc, RX_CTL, 0x1a00);
CSR_WRITE_4(sc, IntrMask, 0);
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
CSR_WRITE_4(sc, GMIIControl, 0);
}
/*
* Probe for an SiS chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
sge_probe(device_t dev)
{
struct sge_type *t;
t = sge_devs;
while (t->sge_name != NULL) {
if ((pci_get_vendor(dev) == t->sge_vid) &&
(pci_get_device(dev) == t->sge_did)) {
device_set_desc(dev, t->sge_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
sge_attach(device_t dev)
{
struct sge_softc *sc;
if_t ifp;
uint8_t eaddr[ETHER_ADDR_LEN];
int error = 0, rid;
sc = device_get_softc(dev);
sc->sge_dev = dev;
mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
/* Allocate resources. */
sc->sge_res_id = PCIR_BAR(0);
sc->sge_res_type = SYS_RES_MEMORY;
sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
&sc->sge_res_id, RF_ACTIVE);
if (sc->sge_res == NULL) {
device_printf(dev, "couldn't allocate resource\n");
error = ENXIO;
goto fail;
}
rid = 0;
sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->sge_irq == NULL) {
device_printf(dev, "couldn't allocate IRQ resources\n");
error = ENXIO;
goto fail;
}
sc->sge_rev = pci_get_revid(dev);
if (pci_get_device(dev) == SIS_DEVICEID_190)
sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
/* Reset the adapter. */
sge_reset(sc);
/* Get MAC address from the EEPROM. */
if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
sge_get_mac_addr_apc(sc, eaddr);
else
sge_get_mac_addr_eeprom(sc, eaddr);
if ((error = sge_dma_alloc(sc)) != 0)
goto fail;
ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure.\n");
error = ENOSPC;
goto fail;
}
if_setsoftc(ifp, sc);
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
if_setioctlfn(ifp, sge_ioctl);
if_setstartfn(ifp, sge_start);
if_setinitfn(ifp, sge_init);
if_setsendqlen(ifp, SGE_TX_RING_CNT - 1);
if_setsendqready(ifp);
if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4);
if_sethwassist(ifp, SGE_CSUM_FEATURES | CSUM_TSO);
if_setcapenable(ifp, if_getcapabilities(ifp));
/*
* Do MII setup.
*/
error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* VLAN setup. */
if_setcapabilities(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU);
if_setcapenable(ifp, if_getcapabilities(ifp));
/* Tell the upper layer(s) we support long frames. */
if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, sge_intr, sc, &sc->sge_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
sge_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
sge_detach(device_t dev)
{
struct sge_softc *sc;
if_t ifp;
sc = device_get_softc(dev);
ifp = sc->sge_ifp;
/* These should only be active if attach succeeded. */
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
SGE_LOCK(sc);
sge_stop(sc);
SGE_UNLOCK(sc);
callout_drain(&sc->sge_stat_ch);
}
if (sc->sge_miibus)
device_delete_child(dev, sc->sge_miibus);
bus_generic_detach(dev);
if (sc->sge_intrhand)
bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
if (sc->sge_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
if (sc->sge_res)
bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
sc->sge_res);
if (ifp)
if_free(ifp);
sge_dma_free(sc);
mtx_destroy(&sc->sge_mtx);
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
sge_shutdown(device_t dev)
{
struct sge_softc *sc;
sc = device_get_softc(dev);
SGE_LOCK(sc);
sge_stop(sc);
SGE_UNLOCK(sc);
return (0);
}
static int
sge_suspend(device_t dev)
{
struct sge_softc *sc;
if_t ifp;
sc = device_get_softc(dev);
SGE_LOCK(sc);
ifp = sc->sge_ifp;
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
sge_stop(sc);
SGE_UNLOCK(sc);
return (0);
}
static int
sge_resume(device_t dev)
{
struct sge_softc *sc;
if_t ifp;
sc = device_get_softc(dev);
SGE_LOCK(sc);
ifp = sc->sge_ifp;
if ((if_getflags(ifp) & IFF_UP) != 0)
sge_init_locked(sc);
SGE_UNLOCK(sc);
return (0);
}
static int
sge_dma_alloc(struct sge_softc *sc)
{
struct sge_chain_data *cd;
struct sge_list_data *ld;
struct sge_rxdesc *rxd;
struct sge_txdesc *txd;
int error, i;
cd = &sc->sge_cdata;
ld = &sc->sge_ldata;
error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&cd->sge_tag);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create parent DMA tag.\n");
goto fail;
}
/* RX descriptor ring */
error = bus_dma_tag_create(cd->sge_tag,
SGE_DESC_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SGE_RX_RING_SZ, 1, /* maxsize,nsegments */
SGE_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&cd->sge_rx_tag);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create Rx ring DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load DMA map for RX ring. */
error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&cd->sge_rx_dmamap);
if (error != 0) {
device_printf(sc->sge_dev,
"could not allocate DMA'able memory for Rx ring.\n");
goto fail;
}
error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
&ld->sge_rx_paddr, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sge_dev,
"could not load DMA'able memory for Rx ring.\n");
}
/* TX descriptor ring */
error = bus_dma_tag_create(cd->sge_tag,
SGE_DESC_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SGE_TX_RING_SZ, 1, /* maxsize,nsegments */
SGE_TX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&cd->sge_tx_tag);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create Rx ring DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load DMA map for TX ring. */
error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&cd->sge_tx_dmamap);
if (error != 0) {
device_printf(sc->sge_dev,
"could not allocate DMA'able memory for Tx ring.\n");
goto fail;
}
error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
&ld->sge_tx_paddr, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sge_dev,
"could not load DMA'able memory for Rx ring.\n");
goto fail;
}
/* Create DMA tag for Tx buffers. */
error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create Tx mbuf DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx buffers. */
error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create Rx mbuf DMA tag.\n");
goto fail;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < SGE_TX_RING_CNT; i++) {
txd = &cd->sge_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
txd->tx_ndesc = 0;
error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create Tx DMA map.\n");
goto fail;
}
}
/* Create spare DMA map for Rx buffer. */
error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
if (error != 0) {
device_printf(sc->sge_dev,
"could not create spare Rx DMA map.\n");
goto fail;
}
/* Create DMA maps for Rx buffers. */
for (i = 0; i < SGE_RX_RING_CNT; i++) {
rxd = &cd->sge_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
&rxd->rx_dmamap);
if (error) {
device_printf(sc->sge_dev,
"could not create Rx DMA map.\n");
goto fail;
}
}
fail:
return (error);
}
static void
sge_dma_free(struct sge_softc *sc)
{
struct sge_chain_data *cd;
struct sge_list_data *ld;
struct sge_rxdesc *rxd;
struct sge_txdesc *txd;
int i;
cd = &sc->sge_cdata;
ld = &sc->sge_ldata;
/* Rx ring. */
if (cd->sge_rx_tag != NULL) {
if (ld->sge_rx_paddr != 0)
bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
if (ld->sge_rx_ring != NULL)
bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
cd->sge_rx_dmamap);
ld->sge_rx_ring = NULL;
ld->sge_rx_paddr = 0;
bus_dma_tag_destroy(cd->sge_rx_tag);
cd->sge_rx_tag = NULL;
}
/* Tx ring. */
if (cd->sge_tx_tag != NULL) {
if (ld->sge_tx_paddr != 0)
bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
if (ld->sge_tx_ring != NULL)
bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
cd->sge_tx_dmamap);
ld->sge_tx_ring = NULL;
ld->sge_tx_paddr = 0;
bus_dma_tag_destroy(cd->sge_tx_tag);
cd->sge_tx_tag = NULL;
}
/* Rx buffers. */
if (cd->sge_rxmbuf_tag != NULL) {
for (i = 0; i < SGE_RX_RING_CNT; i++) {
rxd = &cd->sge_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(cd->sge_rxmbuf_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (cd->sge_rx_spare_map != NULL) {
bus_dmamap_destroy(cd->sge_rxmbuf_tag,
cd->sge_rx_spare_map);
cd->sge_rx_spare_map = NULL;
}
bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
cd->sge_rxmbuf_tag = NULL;
}
/* Tx buffers. */
if (cd->sge_txmbuf_tag != NULL) {
for (i = 0; i < SGE_TX_RING_CNT; i++) {
txd = &cd->sge_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(cd->sge_txmbuf_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(cd->sge_txmbuf_tag);
cd->sge_txmbuf_tag = NULL;
}
if (cd->sge_tag != NULL)
bus_dma_tag_destroy(cd->sge_tag);
cd->sge_tag = NULL;
}
/*
* Initialize the TX descriptors.
*/
static int
sge_list_tx_init(struct sge_softc *sc)
{
struct sge_list_data *ld;
struct sge_chain_data *cd;
SGE_LOCK_ASSERT(sc);
ld = &sc->sge_ldata;
cd = &sc->sge_cdata;
bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
cd->sge_tx_prod = 0;
cd->sge_tx_cons = 0;
cd->sge_tx_cnt = 0;
return (0);
}
static int
sge_list_tx_free(struct sge_softc *sc)
{
struct sge_chain_data *cd;
struct sge_txdesc *txd;
int i;
SGE_LOCK_ASSERT(sc);
cd = &sc->sge_cdata;
for (i = 0; i < SGE_TX_RING_CNT; i++) {
txd = &cd->sge_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->tx_ndesc = 0;
}
}
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* has RING_END flag set.
*/
static int
sge_list_rx_init(struct sge_softc *sc)
{
struct sge_chain_data *cd;
int i;
SGE_LOCK_ASSERT(sc);
cd = &sc->sge_cdata;
cd->sge_rx_cons = 0;
bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
for (i = 0; i < SGE_RX_RING_CNT; i++) {
if (sge_newbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static int
sge_list_rx_free(struct sge_softc *sc)
{
struct sge_chain_data *cd;
struct sge_rxdesc *rxd;
int i;
SGE_LOCK_ASSERT(sc);
cd = &sc->sge_cdata;
for (i = 0; i < SGE_RX_RING_CNT; i++) {
rxd = &cd->sge_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(cd->sge_rxmbuf_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
sge_newbuf(struct sge_softc *sc, int prod)
{
struct mbuf *m;
struct sge_desc *desc;
struct sge_chain_data *cd;
struct sge_rxdesc *rxd;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int error, nsegs;
SGE_LOCK_ASSERT(sc);
cd = &sc->sge_cdata;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, SGE_RX_BUF_ALIGN);
error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
cd->sge_rx_spare_map, m, segs, &nsegs, 0);
if (error != 0) {
m_freem(m);
return (error);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &cd->sge_rxdesc[prod];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = cd->sge_rx_spare_map;
cd->sge_rx_spare_map = map;
bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = &sc->sge_ldata.sge_rx_ring[prod];
desc->sge_sts_size = 0;
desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
desc->sge_flags = htole32(segs[0].ds_len);
if (prod == SGE_RX_RING_CNT - 1)
desc->sge_flags |= htole32(RING_END);
desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
return (0);
}
static __inline void
sge_discard_rxbuf(struct sge_softc *sc, int index)
{
struct sge_desc *desc;
desc = &sc->sge_ldata.sge_rx_ring[index];
desc->sge_sts_size = 0;
desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
if (index == SGE_RX_RING_CNT - 1)
desc->sge_flags |= htole32(RING_END);
desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
sge_rxeof(struct sge_softc *sc)
{
if_t ifp;
struct mbuf *m;
struct sge_chain_data *cd;
struct sge_desc *cur_rx;
uint32_t rxinfo, rxstat;
int cons, prog;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
cd = &sc->sge_cdata;
bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cons = cd->sge_rx_cons;
for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
SGE_INC(cons, SGE_RX_RING_CNT)) {
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
break;
cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
rxinfo = le32toh(cur_rx->sge_cmdsts);
if ((rxinfo & RDC_OWN) != 0)
break;
rxstat = le32toh(cur_rx->sge_sts_size);
if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
SGE_RX_NSEGS(rxstat) != 1) {
/* XXX We don't support multi-segment frames yet. */
#ifdef SGE_SHOW_ERRORS
device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
RX_ERR_BITS);
#endif
sge_discard_rxbuf(sc, cons);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
continue;
}
m = cd->sge_rxdesc[cons].rx_m;
if (sge_newbuf(sc, cons) != 0) {
sge_discard_rxbuf(sc, cons);
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
continue;
}
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
if ((rxinfo & RDC_IP_CSUM) != 0 &&
(rxinfo & RDC_IP_CSUM_OK) != 0)
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED | CSUM_IP_VALID;
if (((rxinfo & RDC_TCP_CSUM) != 0 &&
(rxinfo & RDC_TCP_CSUM_OK) != 0) ||
((rxinfo & RDC_UDP_CSUM) != 0 &&
(rxinfo & RDC_UDP_CSUM_OK) != 0)) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
/* Check for VLAN tagged frame. */
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
(rxstat & RDS_VLAN) != 0) {
m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
m->m_flags |= M_VLANTAG;
}
/*
* Account for 10bytes auto padding which is used
* to align IP header on 32bit boundary. Also note,
* CRC bytes is automatically removed by the
* hardware.
*/
m->m_data += SGE_RX_PAD_BYTES;
m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
SGE_RX_PAD_BYTES;
m->m_pkthdr.rcvif = ifp;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
SGE_UNLOCK(sc);
if_input(ifp, m);
SGE_LOCK(sc);
}
if (prog > 0) {
bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
cd->sge_rx_cons = cons;
}
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
sge_txeof(struct sge_softc *sc)
{
if_t ifp;
struct sge_list_data *ld;
struct sge_chain_data *cd;
struct sge_txdesc *txd;
uint32_t txstat;
int cons, nsegs, prod;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
ld = &sc->sge_ldata;
cd = &sc->sge_cdata;
if (cd->sge_tx_cnt == 0)
return;
bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cons = cd->sge_tx_cons;
prod = cd->sge_tx_prod;
for (; cons != prod;) {
txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
if ((txstat & TDC_OWN) != 0)
break;
/*
* Only the first descriptor of multi-descriptor transmission
* is updated by controller. Driver should skip entire
* chained buffers for the transmitted frame. In other words
* TDC_OWN bit is valid only at the first descriptor of a
* multi-descriptor transmission.
*/
if (SGE_TX_ERROR(txstat) != 0) {
#ifdef SGE_SHOW_ERRORS
device_printf(sc->sge_dev, "Tx error : 0x%b\n",
txstat, TX_ERR_BITS);
#endif
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
} else {
#ifdef notyet
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
#endif
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
}
txd = &cd->sge_txdesc[cons];
for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
ld->sge_tx_ring[cons].sge_cmdsts = 0;
SGE_INC(cons, SGE_TX_RING_CNT);
}
/* Reclaim transmitted mbuf. */
KASSERT(txd->tx_m != NULL,
("%s: freeing NULL mbuf\n", __func__));
bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
cd->sge_tx_cnt -= txd->tx_ndesc;
KASSERT(cd->sge_tx_cnt >= 0,
("%s: Active Tx desc counter was garbled\n", __func__));
txd->tx_ndesc = 0;
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
}
cd->sge_tx_cons = cons;
if (cd->sge_tx_cnt == 0)
sc->sge_timer = 0;
}
static void
sge_tick(void *arg)
{
struct sge_softc *sc;
struct mii_data *mii;
if_t ifp;
sc = arg;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
mii = device_get_softc(sc->sge_miibus);
mii_tick(mii);
if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
sge_miibus_statchg(sc->sge_dev);
if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
!if_sendq_empty(ifp))
sge_start_locked(ifp);
}
/*
* Reclaim transmitted frames here as we do not request
* Tx completion interrupt for every queued frames to
* reduce excessive interrupts.
*/
sge_txeof(sc);
sge_watchdog(sc);
callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
}
static void
sge_intr(void *arg)
{
struct sge_softc *sc;
if_t ifp;
uint32_t status;
sc = arg;
SGE_LOCK(sc);
ifp = sc->sge_ifp;
status = CSR_READ_4(sc, IntrStatus);
if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
/* Not ours. */
SGE_UNLOCK(sc);
return;
}
/* Acknowledge interrupts. */
CSR_WRITE_4(sc, IntrStatus, status);
/* Disable further interrupts. */
CSR_WRITE_4(sc, IntrMask, 0);
/*
* It seems the controller supports some kind of interrupt
* moderation mechanism but we still don't know how to
* enable that. To reduce number of generated interrupts
* under load we check pending interrupts in a loop. This
* will increase number of register access and is not correct
* way to handle interrupt moderation but there seems to be
* no other way at this time.
*/
for (;;) {
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
break;
if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
sge_rxeof(sc);
/* Wakeup Rx MAC. */
if ((status & INTR_RX_IDLE) != 0)
CSR_WRITE_4(sc, RX_CTL,
0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
}
if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
sge_txeof(sc);
status = CSR_READ_4(sc, IntrStatus);
if ((status & SGE_INTRS) == 0)
break;
/* Acknowledge interrupts. */
CSR_WRITE_4(sc, IntrStatus, status);
}
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
/* Re-enable interrupts */
CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
if (!if_sendq_empty(ifp))
sge_start_locked(ifp);
}
SGE_UNLOCK(sc);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
sge_encap(struct sge_softc *sc, struct mbuf **m_head)
{
struct mbuf *m;
struct sge_desc *desc;
struct sge_txdesc *txd;
bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
uint32_t cflags, mss;
int error, i, nsegs, prod, si;
SGE_LOCK_ASSERT(sc);
si = prod = sc->sge_cdata.sge_tx_prod;
txd = &sc->sge_cdata.sge_txdesc[prod];
if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
struct ether_header *eh;
struct ip *ip;
struct tcphdr *tcp;
uint32_t ip_off, poff;
if (M_WRITABLE(*m_head) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
ip_off = sizeof(struct ether_header);
m = m_pullup(*m_head, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/* Check the existence of VLAN tag. */
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ip_off = sizeof(struct ether_vlan_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, ip_off + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
poff = ip_off + (ip->ip_hl << 2);
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
m = m_pullup(m, poff + (tcp->th_off << 2));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
/*
* Reset IP checksum and recompute TCP pseudo
* checksum that NDIS specification requires.
*/
ip = (struct ip *)(mtod(m, char *) + ip_off);
ip->ip_sum = 0;
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
htons(IPPROTO_TCP));
*m_head = m;
}
error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
KASSERT(nsegs != 0, ("zero segment returned"));
/* Check descriptor overrun. */
if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
return (ENOBUFS);
}
bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
m = *m_head;
cflags = 0;
mss = 0;
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
cflags |= TDC_LS;
mss = (uint32_t)m->m_pkthdr.tso_segsz;
mss <<= 16;
} else {
if (m->m_pkthdr.csum_flags & CSUM_IP)
cflags |= TDC_IP_CSUM;
if (m->m_pkthdr.csum_flags & CSUM_TCP)
cflags |= TDC_TCP_CSUM;
if (m->m_pkthdr.csum_flags & CSUM_UDP)
cflags |= TDC_UDP_CSUM;
}
for (i = 0; i < nsegs; i++) {
desc = &sc->sge_ldata.sge_tx_ring[prod];
if (i == 0) {
desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
desc->sge_cmdsts = 0;
} else {
desc->sge_sts_size = 0;
desc->sge_cmdsts = htole32(TDC_OWN);
}
desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
desc->sge_flags = htole32(txsegs[i].ds_len);
if (prod == SGE_TX_RING_CNT - 1)
desc->sge_flags |= htole32(RING_END);
sc->sge_cdata.sge_tx_cnt++;
SGE_INC(prod, SGE_TX_RING_CNT);
}
/* Update producer index. */
sc->sge_cdata.sge_tx_prod = prod;
desc = &sc->sge_ldata.sge_tx_ring[si];
/* Configure VLAN. */
if((m->m_flags & M_VLANTAG) != 0) {
cflags |= m->m_pkthdr.ether_vtag;
desc->sge_sts_size |= htole32(TDS_INS_VLAN);
}
desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
#if 1
if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
desc->sge_cmdsts |= htole32(TDC_BST);
#else
if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
}
#endif
/* Request interrupt and give ownership to controller. */
desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
txd->tx_m = m;
txd->tx_ndesc = nsegs;
return (0);
}
static void
sge_start(if_t ifp)
{
struct sge_softc *sc;
sc = if_getsoftc(ifp);
SGE_LOCK(sc);
sge_start_locked(ifp);
SGE_UNLOCK(sc);
}
static void
sge_start_locked(if_t ifp)
{
struct sge_softc *sc;
struct mbuf *m_head;
int queued = 0;
sc = if_getsoftc(ifp);
SGE_LOCK_ASSERT(sc);
if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
(if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
for (queued = 0; !if_sendq_empty(ifp); ) {
if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
SGE_MAXTXSEGS)) {
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
break;
}
m_head = if_dequeue(ifp);
if (m_head == NULL)
break;
if (sge_encap(sc, &m_head)) {
if (m_head == NULL)
break;
if_sendq_prepend(ifp, m_head);
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
break;
}
queued++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (queued > 0) {
bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
sc->sge_cdata.sge_tx_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
sc->sge_timer = 5;
}
}
static void
sge_init(void *arg)
{
struct sge_softc *sc;
sc = arg;
SGE_LOCK(sc);
sge_init_locked(sc);
SGE_UNLOCK(sc);
}
static void
sge_init_locked(struct sge_softc *sc)
{
if_t ifp;
struct mii_data *mii;
uint16_t rxfilt;
int i;
SGE_LOCK_ASSERT(sc);
ifp = sc->sge_ifp;
mii = device_get_softc(sc->sge_miibus);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
sge_stop(sc);
sge_reset(sc);
/* Init circular RX list. */
if (sge_list_rx_init(sc) == ENOBUFS) {
device_printf(sc->sge_dev, "no memory for Rx buffers\n");
sge_stop(sc);
return;
}
/* Init TX descriptors. */
sge_list_tx_init(sc);
/*
* Load the address of the RX and TX lists.
*/
CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
CSR_WRITE_4(sc, TxMacControl, 0x60);
CSR_WRITE_4(sc, RxWakeOnLan, 0);
CSR_WRITE_4(sc, RxWakeOnLanData, 0);
/* Allow receiving VLAN frames. */
CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
SGE_RX_PAD_BYTES);
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, RxMacAddr + i, if_getlladdr(ifp)[i]);
/* Configure RX MAC. */
rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
CSR_WRITE_2(sc, RxMacControl, rxfilt);
sge_rxfilter(sc);
sge_setvlan(sc);
/* Initialize default speed/duplex information. */
if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
sc->sge_flags |= SGE_FLAG_SPEED_1000;
sc->sge_flags |= SGE_FLAG_FDX;
if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
CSR_WRITE_4(sc, StationControl, 0x04008001);
else
CSR_WRITE_4(sc, StationControl, 0x04000001);
/*
* XXX Try to mitigate interrupts.
*/
CSR_WRITE_4(sc, IntrControl, 0x08880000);
#ifdef notyet
if (sc->sge_intrcontrol != 0)
CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
if (sc->sge_intrtimer != 0)
CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
#endif
/*
* Clear and enable interrupts.
*/
CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
/* Enable receiver and transmitter. */
CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
sc->sge_flags &= ~SGE_FLAG_LINK;
mii_mediachg(mii);
callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
}
/*
* Set media options.
*/
static int
sge_ifmedia_upd(if_t ifp)
{
struct sge_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = if_getsoftc(ifp);
SGE_LOCK(sc);
mii = device_get_softc(sc->sge_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
SGE_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
sge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
{
struct sge_softc *sc;
struct mii_data *mii;
sc = if_getsoftc(ifp);
SGE_LOCK(sc);
mii = device_get_softc(sc->sge_miibus);
if ((if_getflags(ifp) & IFF_UP) == 0) {
SGE_UNLOCK(sc);
return;
}
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
SGE_UNLOCK(sc);
}
static int
sge_ioctl(if_t ifp, u_long command, caddr_t data)
{
struct sge_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error = 0, mask, reinit;
sc = if_getsoftc(ifp);
ifr = (struct ifreq *)data;
switch(command) {
case SIOCSIFFLAGS:
SGE_LOCK(sc);
if ((if_getflags(ifp) & IFF_UP) != 0) {
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
((if_getflags(ifp) ^ sc->sge_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
sge_rxfilter(sc);
else
sge_init_locked(sc);
} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
sge_stop(sc);
sc->sge_if_flags = if_getflags(ifp);
SGE_UNLOCK(sc);
break;
case SIOCSIFCAP:
SGE_LOCK(sc);
reinit = 0;
mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
if ((mask & IFCAP_TXCSUM) != 0 &&
(if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
if_togglecapenable(ifp, IFCAP_TXCSUM);
if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
if_sethwassistbits(ifp, SGE_CSUM_FEATURES, 0);
else
if_sethwassistbits(ifp, 0, SGE_CSUM_FEATURES);
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
if_togglecapenable(ifp, IFCAP_RXCSUM);
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
if ((mask & IFCAP_TSO4) != 0 &&
(if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
if_togglecapenable(ifp, IFCAP_TSO4);
if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
if_sethwassistbits(ifp, CSUM_TSO, 0);
else
if_sethwassistbits(ifp, 0, CSUM_TSO);
}
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
/*
* Due to unknown reason, toggling VLAN hardware
* tagging require interface reinitialization.
*/
if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
if_setcapenablebit(ifp, 0,
IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
reinit = 1;
}
if (reinit > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
sge_init_locked(sc);
}
SGE_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
SGE_LOCK(sc);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
sge_rxfilter(sc);
SGE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->sge_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
sge_watchdog(struct sge_softc *sc)
{
if_t ifp;
SGE_LOCK_ASSERT(sc);
if (sc->sge_timer == 0 || --sc->sge_timer > 0)
return;
ifp = sc->sge_ifp;
if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
if (1 || bootverbose)
device_printf(sc->sge_dev,
"watchdog timeout (lost link)\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
sge_init_locked(sc);
return;
}
device_printf(sc->sge_dev, "watchdog timeout\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
sge_init_locked(sc);
if (!if_sendq_empty(sc->sge_ifp))
sge_start_locked(ifp);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
sge_stop(struct sge_softc *sc)
{
if_t ifp;
ifp = sc->sge_ifp;
SGE_LOCK_ASSERT(sc);
sc->sge_timer = 0;
callout_stop(&sc->sge_stat_ch);
if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
CSR_WRITE_4(sc, IntrMask, 0);
CSR_READ_4(sc, IntrMask);
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
/* Stop TX/RX MAC. */
CSR_WRITE_4(sc, TX_CTL, 0x1a00);
CSR_WRITE_4(sc, RX_CTL, 0x1a00);
/* XXX Can we assume active DMA cycles gone? */
DELAY(2000);
CSR_WRITE_4(sc, IntrMask, 0);
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
sc->sge_flags &= ~SGE_FLAG_LINK;
sge_list_rx_free(sc);
sge_list_tx_free(sc);
}