freebsd-src/sys/dev/ocs_fc/ocs_pci.c
Warner Losh 95ee2897e9 sys: Remove $FreeBSD$: two-line .h pattern
Remove /^\s*\*\n \*\s+\$FreeBSD\$$\n/
2023-08-16 11:54:11 -06:00

1007 lines
25 KiB
C

/*-
* Copyright (c) 2017 Broadcom. All rights reserved.
* The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#define OCS_COPYRIGHT "Copyright (C) 2017 Broadcom. All rights reserved."
/**
* @file
* Implementation of required FreeBSD PCI interface functions
*/
#include "ocs.h"
#include "version.h"
#include <sys/sysctl.h>
#include <sys/malloc.h>
static MALLOC_DEFINE(M_OCS, "OCS", "OneCore Storage data");
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
/**
* Tunable parameters for transport
*/
int logmask = 0;
int ctrlmask = 2;
int logdest = 1;
int loglevel = LOG_INFO;
int ramlog_size = 1*1024*1024;
int ddump_saved_size = 0;
static const char *queue_topology = "eq cq rq cq mq $nulp($nwq(cq wq:ulp=$rpt1)) cq wq:len=256:class=1";
static void ocs_release_bus(struct ocs_softc *);
static int32_t ocs_intr_alloc(struct ocs_softc *);
static int32_t ocs_intr_setup(struct ocs_softc *);
static int32_t ocs_intr_teardown(struct ocs_softc *);
static int ocs_pci_intx_filter(void *);
static void ocs_pci_intr(void *);
static int32_t ocs_init_dma_tag(struct ocs_softc *ocs);
static int32_t ocs_setup_fcports(ocs_t *ocs);
ocs_t *ocs_devices[MAX_OCS_DEVICES];
/**
* @brief Check support for the given device
*
* Determine support for a given device by examining the PCI vendor and
* device IDs
*
* @param dev device abstraction
*
* @return 0 if device is supported, ENXIO otherwise
*/
static int
ocs_pci_probe(device_t dev)
{
char *desc = NULL;
if (pci_get_vendor(dev) != PCI_VENDOR_EMULEX) {
return ENXIO;
}
switch (pci_get_device(dev)) {
case PCI_PRODUCT_EMULEX_OCE16001:
desc = "Emulex LightPulse FC Adapter";
break;
case PCI_PRODUCT_EMULEX_LPE31004:
desc = "Emulex LightPulse FC Adapter";
break;
case PCI_PRODUCT_EMULEX_OCE50102:
desc = "Emulex LightPulse 10GbE FCoE/NIC Adapter";
break;
case PCI_PRODUCT_EMULEX_LANCER_G7:
desc = "Emulex LightPulse G7 FC Adapter";
break;
default:
return ENXIO;
}
device_set_desc(dev, desc);
return BUS_PROBE_DEFAULT;
}
static int
ocs_map_g7_bars(device_t dev, struct ocs_softc *ocs)
{
int i, r;
uint32_t val = 0;
for (i = 0, r = 0; i < PCI_MAX_BAR; i++) {
val = pci_read_config(dev, PCIR_BAR(i), 4);
if (!PCI_BAR_MEM(val)) {
continue;
}
if (!(val & PCIM_BAR_MEM_BASE)) {
/* no address */
continue;
}
ocs->reg[r].rid = PCIR_BAR(i);
ocs->reg[r].res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&ocs->reg[r].rid, RF_ACTIVE);
if (ocs->reg[r].res) {
ocs->reg[r].btag = rman_get_bustag(ocs->reg[r].res);
ocs->reg[r].bhandle = rman_get_bushandle(ocs->reg[r].res);
r++;
} else {
device_printf(dev, "bus_alloc_resource failed rid=%#x\n",
ocs->reg[r].rid);
ocs_release_bus(ocs);
return ENXIO;
}
/*
* If the 64-bit attribute is set, both this BAR and the
* next form the complete address. Skip processing the
* next BAR.
*/
if (val & PCIM_BAR_MEM_64) {
i++;
}
}
return 0;
}
static int
ocs_map_bars(device_t dev, struct ocs_softc *ocs)
{
/*
* Map PCI BAR0 register into the CPU's space.
*/
ocs->reg[0].rid = PCIR_BAR(PCI_64BIT_BAR0);
ocs->reg[0].res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&ocs->reg[0].rid, RF_ACTIVE);
if (ocs->reg[0].res == NULL) {
device_printf(dev, "bus_alloc_resource failed rid=%#x\n",
ocs->reg[0].rid);
return ENXIO;
}
ocs->reg[0].btag = rman_get_bustag(ocs->reg[0].res);
ocs->reg[0].bhandle = rman_get_bushandle(ocs->reg[0].res);
return 0;
}
static int
ocs_setup_params(struct ocs_softc *ocs)
{
int32_t i = 0;
const char *hw_war_version;
/* Setup tunable parameters */
ocs->ctrlmask = ctrlmask;
ocs->speed = 0;
ocs->topology = 0;
ocs->ethernet_license = 0;
ocs->num_scsi_ios = 8192;
ocs->enable_hlm = 0;
ocs->hlm_group_size = 8;
ocs->logmask = logmask;
ocs->config_tgt = FALSE;
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"target", &i)) {
if (1 == i) {
ocs->config_tgt = TRUE;
device_printf(ocs->dev, "Enabling target\n");
}
}
ocs->config_ini = TRUE;
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"initiator", &i)) {
if (0 == i) {
ocs->config_ini = FALSE;
device_printf(ocs->dev, "Disabling initiator\n");
}
}
ocs->enable_ini = ocs->config_ini;
if (!ocs->config_ini && !ocs->config_tgt) {
device_printf(ocs->dev, "Unsupported, both initiator and target mode disabled.\n");
return 1;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"logmask", &logmask)) {
device_printf(ocs->dev, "logmask = %#x\n", logmask);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"logdest", &logdest)) {
device_printf(ocs->dev, "logdest = %#x\n", logdest);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"loglevel", &loglevel)) {
device_printf(ocs->dev, "loglevel = %#x\n", loglevel);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"ramlog_size", &ramlog_size)) {
device_printf(ocs->dev, "ramlog_size = %#x\n", ramlog_size);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"ddump_saved_size", &ddump_saved_size)) {
device_printf(ocs->dev, "ddump_saved_size= %#x\n", ddump_saved_size);
}
/* If enabled, initailize a RAM logging buffer */
if (logdest & 2) {
ocs->ramlog = ocs_ramlog_init(ocs, ramlog_size/OCS_RAMLOG_DEFAULT_BUFFERS,
OCS_RAMLOG_DEFAULT_BUFFERS);
/* If NULL was returned, then we'll simply skip using the ramlog but */
/* set logdest to 1 to ensure that we at least get default logging. */
if (ocs->ramlog == NULL) {
logdest = 1;
}
}
/* initialize a saved ddump */
if (ddump_saved_size) {
if (ocs_textbuf_alloc(ocs, &ocs->ddump_saved, ddump_saved_size)) {
ocs_log_err(ocs, "failed to allocate memory for saved ddump\n");
}
}
if (0 == resource_string_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"hw_war_version", &hw_war_version)) {
device_printf(ocs->dev, "hw_war_version = %s\n", hw_war_version);
ocs->hw_war_version = strdup(hw_war_version, M_OCS);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"explicit_buffer_list", &i)) {
ocs->explicit_buffer_list = i;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"ethernet_license", &i)) {
ocs->ethernet_license = i;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"speed", &i)) {
device_printf(ocs->dev, "speed = %d Mbps\n", i);
ocs->speed = i;
}
ocs->desc = device_get_desc(ocs->dev);
ocs_device_lock_init(ocs);
ocs->driver_version = STR_BE_MAJOR "." STR_BE_MINOR "." STR_BE_BUILD "." STR_BE_BRANCH;
ocs->model = ocs_pci_model(ocs->pci_vendor, ocs->pci_device);
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"enable_hlm", &i)) {
device_printf(ocs->dev, "enable_hlm = %d\n", i);
ocs->enable_hlm = i;
if (ocs->enable_hlm) {
ocs->hlm_group_size = 8;
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"hlm_group_size", &i)) {
ocs->hlm_group_size = i;
}
device_printf(ocs->dev, "hlm_group_size = %d\n", i);
}
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"num_scsi_ios", &i)) {
ocs->num_scsi_ios = i;
device_printf(ocs->dev, "num_scsi_ios = %d\n", ocs->num_scsi_ios);
} else {
ocs->num_scsi_ios = 8192;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"topology", &i)) {
ocs->topology = i;
device_printf(ocs->dev, "Setting topology=%#x\n", i);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"num_vports", &i)) {
if (i >= 0 && i <= 254) {
device_printf(ocs->dev, "num_vports = %d\n", i);
ocs->num_vports = i;
} else {
device_printf(ocs->dev, "num_vports: %d not supported \n", i);
}
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"external_loopback", &i)) {
device_printf(ocs->dev, "external_loopback = %d\n", i);
ocs->external_loopback = i;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"tgt_rscn_delay", &i)) {
device_printf(ocs->dev, "tgt_rscn_delay = %d\n", i);
ocs->tgt_rscn_delay_msec = i * 1000;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"tgt_rscn_period", &i)) {
device_printf(ocs->dev, "tgt_rscn_period = %d\n", i);
ocs->tgt_rscn_period_msec = i * 1000;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"target_io_timer", &i)) {
device_printf(ocs->dev, "target_io_timer = %d\n", i);
ocs->target_io_timer_sec = i;
}
hw_global.queue_topology_string = queue_topology;
ocs->rq_selection_policy = 0;
ocs->rr_quanta = 1;
ocs->filter_def = "0,0,0,0";
return 0;
}
static int32_t
ocs_setup_fcports(ocs_t *ocs)
{
uint32_t i = 0, role = 0;
uint64_t sli_wwpn, sli_wwnn;
size_t size;
ocs_xport_t *xport = ocs->xport;
ocs_vport_spec_t *vport;
ocs_fcport *fcp = NULL;
size = sizeof(ocs_fcport) * (ocs->num_vports + 1);
ocs->fcports = ocs_malloc(ocs, size, M_ZERO|M_NOWAIT);
if (ocs->fcports == NULL) {
device_printf(ocs->dev, "Can't allocate fcport \n");
return 1;
}
role = (ocs->enable_ini)? KNOB_ROLE_INITIATOR: 0 |
(ocs->enable_tgt)? KNOB_ROLE_TARGET: 0;
fcp = FCPORT(ocs, i);
fcp->role = role;
i++;
ocs_list_foreach(&xport->vport_list, vport) {
fcp = FCPORT(ocs, i);
vport->tgt_data = fcp;
fcp->vport = vport;
fcp->role = role;
if (ocs_hw_get_def_wwn(ocs, i, &sli_wwpn, &sli_wwnn)) {
ocs_log_err(ocs, "Get default wwn failed \n");
i++;
continue;
}
vport->wwpn = ocs_be64toh(sli_wwpn);
vport->wwnn = ocs_be64toh(sli_wwnn);
i++;
ocs_log_debug(ocs, "VPort wwpn: %lx wwnn: %lx \n", vport->wwpn, vport->wwnn);
}
return 0;
}
int32_t
ocs_device_attach(ocs_t *ocs)
{
int32_t i;
ocs_io_t *io = NULL;
if (ocs->attached) {
ocs_log_warn(ocs, "%s: Device is already attached\n", __func__);
return -1;
}
/* Allocate transport object and bring online */
ocs->xport = ocs_xport_alloc(ocs);
if (ocs->xport == NULL) {
device_printf(ocs->dev, "failed to allocate transport object\n");
return ENOMEM;
} else if (ocs_xport_attach(ocs->xport) != 0) {
device_printf(ocs->dev, "%s: failed to attach transport object\n", __func__);
goto fail_xport_attach;
} else if (ocs_xport_initialize(ocs->xport) != 0) {
device_printf(ocs->dev, "%s: failed to initialize transport object\n", __func__);
goto fail_xport_init;
}
if (ocs_init_dma_tag(ocs)) {
goto fail_intr_setup;
}
for (i = 0; (io = ocs_io_get_instance(ocs, i)); i++) {
if (bus_dmamap_create(ocs->buf_dmat, 0, &io->tgt_io.dmap)) {
device_printf(ocs->dev, "%s: bad dma map create\n", __func__);
}
io->tgt_io.state = OCS_CAM_IO_FREE;
}
if (ocs_setup_fcports(ocs)) {
device_printf(ocs->dev, "FCports creation failed\n");
goto fail_intr_setup;
}
if (ocs_cam_attach(ocs)) {
device_printf(ocs->dev, "cam attach failed \n");
goto fail_intr_setup;
}
if (ocs_intr_setup(ocs)) {
device_printf(ocs->dev, "Interrupt setup failed\n");
goto fail_intr_setup;
}
if (ocs->enable_ini || ocs->enable_tgt) {
if (ocs_xport_control(ocs->xport, OCS_XPORT_PORT_ONLINE)) {
device_printf(ocs->dev, "Can't init port\n");
goto fail_xport_online;
}
}
ocs->attached = true;
return 0;
fail_xport_online:
if (ocs_xport_control(ocs->xport, OCS_XPORT_SHUTDOWN)) {
device_printf(ocs->dev, "Transport Shutdown timed out\n");
}
ocs_intr_teardown(ocs);
fail_intr_setup:
fail_xport_init:
ocs_xport_detach(ocs->xport);
if (ocs->config_tgt)
ocs_scsi_tgt_del_device(ocs);
ocs_xport_free(ocs->xport);
ocs->xport = NULL;
fail_xport_attach:
if (ocs->xport)
ocs_free(ocs, ocs->xport, sizeof(*(ocs->xport)));
ocs->xport = NULL;
return ENXIO;
}
/**
* @brief Connect the driver to the given device
*
* If the probe routine is successful, the OS will give the driver
* the opportunity to connect itself to the device. This routine
* maps PCI resources (memory BARs and interrupts) and initialize a
* hardware object.
*
* @param dev device abstraction
*
* @return 0 if the driver attaches to the device, ENXIO otherwise
*/
static int
ocs_pci_attach(device_t dev)
{
struct ocs_softc *ocs;
int instance;
instance = device_get_unit(dev);
ocs = (struct ocs_softc *)device_get_softc(dev);
if (NULL == ocs) {
device_printf(dev, "cannot allocate softc\n");
return ENOMEM;
}
memset(ocs, 0, sizeof(struct ocs_softc));
if (instance < ARRAY_SIZE(ocs_devices)) {
ocs_devices[instance] = ocs;
} else {
device_printf(dev, "got unexpected ocs instance number %d\n", instance);
}
ocs->instance_index = instance;
ocs->dev = dev;
pci_enable_io(dev, SYS_RES_MEMORY);
pci_enable_busmaster(dev);
ocs->pci_vendor = pci_get_vendor(dev);
ocs->pci_device = pci_get_device(dev);
ocs->pci_subsystem_vendor = pci_get_subvendor(dev);
ocs->pci_subsystem_device = pci_get_subdevice(dev);
snprintf(ocs->businfo, sizeof(ocs->businfo), "%02X:%02X:%02X",
pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev));
/* Map all memory BARs */
if (ocs->pci_device == PCI_PRODUCT_EMULEX_LANCER_G7) {
if(ocs_map_g7_bars(dev,ocs)) {
device_printf(dev, "Failed to map pci bars\n");
goto release_bus;
}
} else {
if (ocs_map_bars(dev, ocs)) {
device_printf(dev, "Failed to map pci bars\n");
goto release_bus;
}
}
/* create a root DMA tag for the device */
if (bus_dma_tag_create(bus_get_dma_tag(dev),
1, /* byte alignment */
0, /* no boundary restrictions */
BUS_SPACE_MAXADDR, /* no minimum low address */
BUS_SPACE_MAXADDR, /* no maximum high address */
NULL, /* no filter function */
NULL, /* or arguments */
BUS_SPACE_MAXSIZE, /* max size covered by tag */
BUS_SPACE_UNRESTRICTED, /* no segment count restrictions */
BUS_SPACE_MAXSIZE, /* no segment length restrictions */
0, /* flags */
NULL, /* no lock manipulation function */
NULL, /* or arguments */
&ocs->dmat)) {
device_printf(dev, "parent DMA tag allocation failed\n");
goto release_bus;
}
if (ocs_intr_alloc(ocs)) {
device_printf(dev, "Interrupt allocation failed\n");
goto release_bus;
}
if (PCIC_SERIALBUS == pci_get_class(dev) &&
PCIS_SERIALBUS_FC == pci_get_subclass(dev))
ocs->ocs_xport = OCS_XPORT_FC;
else {
device_printf(dev, "unsupported class (%#x : %#x)\n",
pci_get_class(dev),
pci_get_class(dev));
goto release_bus;
}
/* Setup tunable parameters */
if (ocs_setup_params(ocs)) {
device_printf(ocs->dev, "failed to setup params\n");
goto release_bus;
}
if (ocs_device_attach(ocs)) {
device_printf(ocs->dev, "failed to attach device\n");
goto release_params;
}
ocs->fc_type = FC_TYPE_FCP;
ocs_debug_attach(ocs);
return 0;
release_params:
ocs_ramlog_free(ocs, ocs->ramlog);
ocs_device_lock_free(ocs);
free(ocs->hw_war_version, M_OCS);
release_bus:
ocs_release_bus(ocs);
return ENXIO;
}
/**
* @brief free resources when pci device detach
*
* @param ocs pointer to ocs structure
*
* @return 0 for success, a negative error code value for failure.
*/
int32_t
ocs_device_detach(ocs_t *ocs)
{
int32_t rc = 0, i;
ocs_io_t *io = NULL;
if (ocs != NULL) {
if (!ocs->attached) {
ocs_log_warn(ocs, "%s: Device is not attached\n", __func__);
return -1;
}
ocs->attached = FALSE;
rc = ocs_xport_control(ocs->xport, OCS_XPORT_SHUTDOWN);
if (rc) {
ocs_log_err(ocs, "%s: Transport Shutdown timed out\n", __func__);
}
ocs_intr_teardown(ocs);
if (ocs_xport_detach(ocs->xport) != 0) {
ocs_log_err(ocs, "%s: Transport detach failed\n", __func__);
}
ocs_cam_detach(ocs);
ocs_free(ocs, ocs->fcports, sizeof(*(ocs->fcports)));
for (i = 0; (io = ocs_io_get_instance(ocs, i)); i++) {
if (bus_dmamap_destroy(ocs->buf_dmat, io->tgt_io.dmap)) {
device_printf(ocs->dev, "%s: bad dma map destroy\n", __func__);
}
}
bus_dma_tag_destroy(ocs->dmat);
ocs_xport_free(ocs->xport);
ocs->xport = NULL;
}
return 0;
}
/**
* @brief Detach the driver from the given device
*
* If the driver is a loadable module, this routine gets called at unload
* time. This routine will stop the device and free any allocated resources.
*
* @param dev device abstraction
*
* @return 0 if the driver detaches from the device, ENXIO otherwise
*/
static int
ocs_pci_detach(device_t dev)
{
struct ocs_softc *ocs;
ocs = (struct ocs_softc *)device_get_softc(dev);
if (!ocs) {
device_printf(dev, "no driver context?!?\n");
return -1;
}
if (ocs->config_tgt && ocs->enable_tgt) {
device_printf(dev, "can't detach with target mode enabled\n");
return EBUSY;
}
ocs_device_detach(ocs);
/*
* Workaround for OCS SCSI Transport quirk.
*
* CTL requires that target mode is disabled prior to unloading the
* driver (ie ocs->enable_tgt = FALSE), but once the target is disabled,
* the transport will not call ocs_scsi_tgt_del_device() which deallocates
* CAM resources. The workaround is to explicitly make the call here.
*/
if (ocs->config_tgt)
ocs_scsi_tgt_del_device(ocs);
/* free strdup created buffer.*/
free(ocs->hw_war_version, M_OCS);
ocs_device_lock_free(ocs);
ocs_debug_detach(ocs);
ocs_ramlog_free(ocs, ocs->ramlog);
ocs_release_bus(ocs);
return 0;
}
/**
* @brief Notify driver of system shutdown
*
* @param dev device abstraction
*
* @return 0 if the driver attaches to the device, ENXIO otherwise
*/
static int
ocs_pci_shutdown(device_t dev)
{
device_printf(dev, "%s\n", __func__);
return 0;
}
/**
* @brief Release bus resources allocated within the soft context
*
* @param ocs Pointer to the driver's context
*
* @return none
*/
static void
ocs_release_bus(struct ocs_softc *ocs)
{
if (NULL != ocs) {
uint32_t i;
ocs_intr_teardown(ocs);
if (ocs->irq) {
bus_release_resource(ocs->dev, SYS_RES_IRQ,
rman_get_rid(ocs->irq), ocs->irq);
if (ocs->n_vec) {
pci_release_msi(ocs->dev);
ocs->n_vec = 0;
}
ocs->irq = NULL;
}
bus_dma_tag_destroy(ocs->dmat);
for (i = 0; i < PCI_MAX_BAR; i++) {
if (ocs->reg[i].res) {
bus_release_resource(ocs->dev, SYS_RES_MEMORY,
ocs->reg[i].rid,
ocs->reg[i].res);
}
}
}
}
/**
* @brief Allocate and initialize interrupts
*
* @param ocs Pointer to the driver's context
*
* @return none
*/
static int32_t
ocs_intr_alloc(struct ocs_softc *ocs)
{
ocs->n_vec = 1;
if (pci_alloc_msix(ocs->dev, &ocs->n_vec)) {
device_printf(ocs->dev, "MSI-X allocation failed\n");
if (pci_alloc_msi(ocs->dev, &ocs->n_vec)) {
device_printf(ocs->dev, "MSI allocation failed \n");
ocs->irqid = 0;
ocs->n_vec = 0;
} else
ocs->irqid = 1;
} else {
ocs->irqid = 1;
}
ocs->irq = bus_alloc_resource_any(ocs->dev, SYS_RES_IRQ, &ocs->irqid,
RF_ACTIVE | RF_SHAREABLE);
if (NULL == ocs->irq) {
device_printf(ocs->dev, "could not allocate interrupt\n");
return -1;
}
ocs->intr_ctx.vec = 0;
ocs->intr_ctx.softc = ocs;
snprintf(ocs->intr_ctx.name, sizeof(ocs->intr_ctx.name),
"%s_intr_%d",
device_get_nameunit(ocs->dev),
ocs->intr_ctx.vec);
return 0;
}
/**
* @brief Create and attach an interrupt handler
*
* @param ocs Pointer to the driver's context
*
* @return 0 on success, non-zero otherwise
*/
static int32_t
ocs_intr_setup(struct ocs_softc *ocs)
{
driver_filter_t *filter = NULL;
if (0 == ocs->n_vec) {
filter = ocs_pci_intx_filter;
}
if (bus_setup_intr(ocs->dev, ocs->irq, INTR_MPSAFE | INTR_TYPE_CAM,
filter, ocs_pci_intr, &ocs->intr_ctx,
&ocs->tag)) {
device_printf(ocs->dev, "could not initialize interrupt\n");
return -1;
}
return 0;
}
/**
* @brief Detach an interrupt handler
*
* @param ocs Pointer to the driver's context
*
* @return 0 on success, non-zero otherwise
*/
static int32_t
ocs_intr_teardown(struct ocs_softc *ocs)
{
if (!ocs) {
printf("%s: bad driver context?!?\n", __func__);
return -1;
}
if (ocs->tag) {
bus_teardown_intr(ocs->dev, ocs->irq, ocs->tag);
ocs->tag = NULL;
}
return 0;
}
/**
* @brief PCI interrupt handler
*
* @param arg pointer to the driver's software context
*
* @return FILTER_HANDLED if interrupt is processed, FILTER_STRAY otherwise
*/
static int
ocs_pci_intx_filter(void *arg)
{
ocs_intr_ctx_t *intr = arg;
struct ocs_softc *ocs = NULL;
uint16_t val = 0;
if (NULL == intr) {
return FILTER_STRAY;
}
ocs = intr->softc;
#ifndef PCIM_STATUS_INTR
#define PCIM_STATUS_INTR 0x0008
#endif
val = pci_read_config(ocs->dev, PCIR_STATUS, 2);
if (0xffff == val) {
device_printf(ocs->dev, "%s: pci_read_config(PCIR_STATUS) failed\n", __func__);
return FILTER_STRAY;
}
if (0 == (val & PCIM_STATUS_INTR)) {
return FILTER_STRAY;
}
val = pci_read_config(ocs->dev, PCIR_COMMAND, 2);
val |= PCIM_CMD_INTxDIS;
pci_write_config(ocs->dev, PCIR_COMMAND, val, 2);
return FILTER_SCHEDULE_THREAD;
}
/**
* @brief interrupt handler
*
* @param context pointer to the interrupt context
*/
static void
ocs_pci_intr(void *context)
{
ocs_intr_ctx_t *intr = context;
struct ocs_softc *ocs = intr->softc;
mtx_lock(&ocs->sim_lock);
ocs_hw_process(&ocs->hw, intr->vec, OCS_OS_MAX_ISR_TIME_MSEC);
mtx_unlock(&ocs->sim_lock);
}
/**
* @brief Initialize DMA tag
*
* @param ocs the driver instance's software context
*
* @return 0 on success, non-zero otherwise
*/
static int32_t
ocs_init_dma_tag(struct ocs_softc *ocs)
{
uint32_t max_sgl = 0;
uint32_t max_sge = 0;
/*
* IOs can't use the parent DMA tag and must create their
* own, based primarily on a restricted number of DMA segments.
* This is more of a BSD requirement than a SLI Port requirement
*/
ocs_hw_get(&ocs->hw, OCS_HW_N_SGL, &max_sgl);
ocs_hw_get(&ocs->hw, OCS_HW_MAX_SGE, &max_sge);
if (bus_dma_tag_create(ocs->dmat,
1, /* byte alignment */
0, /* no boundary restrictions */
BUS_SPACE_MAXADDR, /* no minimum low address */
BUS_SPACE_MAXADDR, /* no maximum high address */
NULL, /* no filter function */
NULL, /* or arguments */
BUS_SPACE_MAXSIZE, /* max size covered by tag */
max_sgl, /* segment count restrictions */
max_sge, /* segment length restrictions */
0, /* flags */
NULL, /* no lock manipulation function */
NULL, /* or arguments */
&ocs->buf_dmat)) {
device_printf(ocs->dev, "%s: bad bus_dma_tag_create(buf_dmat)\n", __func__);
return -1;
}
return 0;
}
int32_t
ocs_get_property(const char *prop_name, char *buffer, uint32_t buffer_len)
{
return -1;
}
/**
* @brief return pointer to ocs structure given instance index
*
* A pointer to an ocs structure is returned given an instance index.
*
* @param index index to ocs_devices array
*
* @return ocs pointer
*/
ocs_t *ocs_get_instance(uint32_t index)
{
if (index < ARRAY_SIZE(ocs_devices)) {
return ocs_devices[index];
}
return NULL;
}
/**
* @brief Return instance index of an opaque ocs structure
*
* Returns the ocs instance index
*
* @param os pointer to ocs instance
*
* @return pointer to ocs instance index
*/
uint32_t
ocs_instance(void *os)
{
ocs_t *ocs = os;
return ocs->instance_index;
}
static device_method_t ocs_methods[] = {
DEVMETHOD(device_probe, ocs_pci_probe),
DEVMETHOD(device_attach, ocs_pci_attach),
DEVMETHOD(device_detach, ocs_pci_detach),
DEVMETHOD(device_shutdown, ocs_pci_shutdown),
{0, 0}
};
static driver_t ocs_driver = {
"ocs_fc",
ocs_methods,
sizeof(struct ocs_softc)
};
DRIVER_MODULE(ocs_fc, pci, ocs_driver, 0, 0);
MODULE_VERSION(ocs_fc, 1);