freebsd-src/sys/dev/mpt/mpt.c
Warner Losh 685dc743dc sys: Remove $FreeBSD$: one-line .c pattern
Remove /^[\s*]*__FBSDID\("\$FreeBSD\$"\);?\s*\n/
2023-08-16 11:54:36 -06:00

3148 lines
84 KiB
C

/*-
* Generic routines for LSI Fusion adapters.
* FreeBSD Version.
*
* SPDX-License-Identifier: BSD-2-Clause AND BSD-3-Clause
*
* Copyright (c) 2000, 2001 by Greg Ansley
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 2002, 2006 by Matthew Jacob
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon including
* a substantially similar Disclaimer requirement for further binary
* redistribution.
* 3. Neither the names of the above listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
* OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Support from Chris Ellsworth in order to make SAS adapters work
* is gratefully acknowledged.
*
*
* Support from LSI-Logic has also gone a great deal toward making this a
* workable subsystem and is gratefully acknowledged.
*/
/*-
* Copyright (c) 2004, Avid Technology, Inc. and its contributors.
* Copyright (c) 2005, WHEEL Sp. z o.o.
* Copyright (c) 2004, 2005 Justin T. Gibbs
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon including
* a substantially similar Disclaimer requirement for further binary
* redistribution.
* 3. Neither the names of the above listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
* OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include <dev/mpt/mpt.h>
#include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
#include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
#include <dev/mpt/mpilib/mpi.h>
#include <dev/mpt/mpilib/mpi_ioc.h>
#include <dev/mpt/mpilib/mpi_fc.h>
#include <dev/mpt/mpilib/mpi_targ.h>
#include <sys/sysctl.h>
#define MPT_MAX_TRYS 3
#define MPT_MAX_WAIT 300000
static int maxwait_ack = 0;
static int maxwait_int = 0;
static int maxwait_state = 0;
static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
static mpt_reply_handler_t mpt_default_reply_handler;
static mpt_reply_handler_t mpt_config_reply_handler;
static mpt_reply_handler_t mpt_handshake_reply_handler;
static mpt_reply_handler_t mpt_event_reply_handler;
static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
static int mpt_soft_reset(struct mpt_softc *mpt);
static void mpt_hard_reset(struct mpt_softc *mpt);
static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
static void mpt_dma_buf_free(struct mpt_softc *mpt);
static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
static int mpt_enable_ioc(struct mpt_softc *mpt, int);
/************************* Personality Module Support *************************/
/*
* We include one extra entry that is guaranteed to be NULL
* to simplify our itterator.
*/
static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
static __inline struct mpt_personality*
mpt_pers_find(struct mpt_softc *, u_int);
static __inline struct mpt_personality*
mpt_pers_find_reverse(struct mpt_softc *, u_int);
static __inline struct mpt_personality *
mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
{
KASSERT(start_at <= MPT_MAX_PERSONALITIES,
("mpt_pers_find: starting position out of range"));
while (start_at < MPT_MAX_PERSONALITIES
&& (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
start_at++;
}
return (mpt_personalities[start_at]);
}
/*
* Used infrequently, so no need to optimize like a forward
* traversal where we use the MAX+1 is guaranteed to be NULL
* trick.
*/
static __inline struct mpt_personality *
mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
{
while (start_at < MPT_MAX_PERSONALITIES
&& (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
start_at--;
}
if (start_at < MPT_MAX_PERSONALITIES)
return (mpt_personalities[start_at]);
return (NULL);
}
#define MPT_PERS_FOREACH(mpt, pers) \
for (pers = mpt_pers_find(mpt, /*start_at*/0); \
pers != NULL; \
pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
#define MPT_PERS_FOREACH_REVERSE(mpt, pers) \
for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
pers != NULL; \
pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
static mpt_load_handler_t mpt_stdload;
static mpt_probe_handler_t mpt_stdprobe;
static mpt_attach_handler_t mpt_stdattach;
static mpt_enable_handler_t mpt_stdenable;
static mpt_ready_handler_t mpt_stdready;
static mpt_event_handler_t mpt_stdevent;
static mpt_reset_handler_t mpt_stdreset;
static mpt_shutdown_handler_t mpt_stdshutdown;
static mpt_detach_handler_t mpt_stddetach;
static mpt_unload_handler_t mpt_stdunload;
static struct mpt_personality mpt_default_personality =
{
.load = mpt_stdload,
.probe = mpt_stdprobe,
.attach = mpt_stdattach,
.enable = mpt_stdenable,
.ready = mpt_stdready,
.event = mpt_stdevent,
.reset = mpt_stdreset,
.shutdown = mpt_stdshutdown,
.detach = mpt_stddetach,
.unload = mpt_stdunload
};
static mpt_load_handler_t mpt_core_load;
static mpt_attach_handler_t mpt_core_attach;
static mpt_enable_handler_t mpt_core_enable;
static mpt_reset_handler_t mpt_core_ioc_reset;
static mpt_event_handler_t mpt_core_event;
static mpt_shutdown_handler_t mpt_core_shutdown;
static mpt_shutdown_handler_t mpt_core_detach;
static mpt_unload_handler_t mpt_core_unload;
static struct mpt_personality mpt_core_personality =
{
.name = "mpt_core",
.load = mpt_core_load,
// .attach = mpt_core_attach,
// .enable = mpt_core_enable,
.event = mpt_core_event,
.reset = mpt_core_ioc_reset,
.shutdown = mpt_core_shutdown,
.detach = mpt_core_detach,
.unload = mpt_core_unload,
};
/*
* Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
* ordering information. We want the core to always register FIRST.
* other modules are set to SI_ORDER_SECOND.
*/
static moduledata_t mpt_core_mod = {
"mpt_core", mpt_modevent, &mpt_core_personality
};
DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
MODULE_VERSION(mpt_core, 1);
#define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
int
mpt_modevent(module_t mod, int type, void *data)
{
struct mpt_personality *pers;
int error;
pers = (struct mpt_personality *)data;
error = 0;
switch (type) {
case MOD_LOAD:
{
mpt_load_handler_t **def_handler;
mpt_load_handler_t **pers_handler;
int i;
for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
if (mpt_personalities[i] == NULL)
break;
}
if (i >= MPT_MAX_PERSONALITIES) {
error = ENOMEM;
break;
}
pers->id = i;
mpt_personalities[i] = pers;
/* Install standard/noop handlers for any NULL entries. */
def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
pers_handler = MPT_PERS_FIRST_HANDLER(pers);
while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
if (*pers_handler == NULL)
*pers_handler = *def_handler;
pers_handler++;
def_handler++;
}
error = (pers->load(pers));
if (error != 0)
mpt_personalities[i] = NULL;
break;
}
case MOD_SHUTDOWN:
break;
case MOD_QUIESCE:
break;
case MOD_UNLOAD:
error = pers->unload(pers);
mpt_personalities[pers->id] = NULL;
break;
default:
error = EINVAL;
break;
}
return (error);
}
static int
mpt_stdload(struct mpt_personality *pers)
{
/* Load is always successful. */
return (0);
}
static int
mpt_stdprobe(struct mpt_softc *mpt)
{
/* Probe is always successful. */
return (0);
}
static int
mpt_stdattach(struct mpt_softc *mpt)
{
/* Attach is always successful. */
return (0);
}
static int
mpt_stdenable(struct mpt_softc *mpt)
{
/* Enable is always successful. */
return (0);
}
static void
mpt_stdready(struct mpt_softc *mpt)
{
}
static int
mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
{
mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
/* Event was not for us. */
return (0);
}
static void
mpt_stdreset(struct mpt_softc *mpt, int type)
{
}
static void
mpt_stdshutdown(struct mpt_softc *mpt)
{
}
static void
mpt_stddetach(struct mpt_softc *mpt)
{
}
static int
mpt_stdunload(struct mpt_personality *pers)
{
/* Unload is always successful. */
return (0);
}
/*
* Post driver attachment, we may want to perform some global actions.
* Here is the hook to do so.
*/
static void
mpt_postattach(void *unused)
{
struct mpt_softc *mpt;
struct mpt_personality *pers;
TAILQ_FOREACH(mpt, &mpt_tailq, links) {
MPT_PERS_FOREACH(mpt, pers)
pers->ready(mpt);
}
}
SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
/******************************* Bus DMA Support ******************************/
void
mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct mpt_map_info *map_info;
map_info = (struct mpt_map_info *)arg;
map_info->error = error;
map_info->phys = segs->ds_addr;
}
/**************************** Reply/Event Handling ****************************/
int
mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
mpt_handler_t handler, uint32_t *phandler_id)
{
switch (type) {
case MPT_HANDLER_REPLY:
{
u_int cbi;
u_int free_cbi;
if (phandler_id == NULL)
return (EINVAL);
free_cbi = MPT_HANDLER_ID_NONE;
for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
/*
* If the same handler is registered multiple
* times, don't error out. Just return the
* index of the original registration.
*/
if (mpt_reply_handlers[cbi] == handler.reply_handler) {
*phandler_id = MPT_CBI_TO_HID(cbi);
return (0);
}
/*
* Fill from the front in the hope that
* all registered handlers consume only a
* single cache line.
*
* We don't break on the first empty slot so
* that the full table is checked to see if
* this handler was previously registered.
*/
if (free_cbi == MPT_HANDLER_ID_NONE &&
(mpt_reply_handlers[cbi]
== mpt_default_reply_handler))
free_cbi = cbi;
}
if (free_cbi == MPT_HANDLER_ID_NONE) {
return (ENOMEM);
}
mpt_reply_handlers[free_cbi] = handler.reply_handler;
*phandler_id = MPT_CBI_TO_HID(free_cbi);
break;
}
default:
mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
return (EINVAL);
}
return (0);
}
int
mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
mpt_handler_t handler, uint32_t handler_id)
{
switch (type) {
case MPT_HANDLER_REPLY:
{
u_int cbi;
cbi = MPT_CBI(handler_id);
if (cbi >= MPT_NUM_REPLY_HANDLERS
|| mpt_reply_handlers[cbi] != handler.reply_handler)
return (ENOENT);
mpt_reply_handlers[cbi] = mpt_default_reply_handler;
break;
}
default:
mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
return (EINVAL);
}
return (0);
}
static int
mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
mpt_prt(mpt,
"Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
req, req->serno, reply_desc, reply_frame);
if (reply_frame != NULL)
mpt_dump_reply_frame(mpt, reply_frame);
mpt_prt(mpt, "Reply Frame Ignored\n");
return (/*free_reply*/TRUE);
}
static int
mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
if (req != NULL) {
if (reply_frame != NULL) {
MSG_CONFIG *cfgp;
MSG_CONFIG_REPLY *reply;
cfgp = (MSG_CONFIG *)req->req_vbuf;
reply = (MSG_CONFIG_REPLY *)reply_frame;
req->IOCStatus = le16toh(reply_frame->IOCStatus);
bcopy(&reply->Header, &cfgp->Header,
sizeof(cfgp->Header));
cfgp->ExtPageLength = reply->ExtPageLength;
cfgp->ExtPageType = reply->ExtPageType;
}
req->state &= ~REQ_STATE_QUEUED;
req->state |= REQ_STATE_DONE;
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
wakeup(req);
} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
/*
* Whew- we can free this request (late completion)
*/
mpt_free_request(mpt, req);
}
}
return (TRUE);
}
static int
mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
/* Nothing to be done. */
return (TRUE);
}
static int
mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
int free_reply;
KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
free_reply = TRUE;
switch (reply_frame->Function) {
case MPI_FUNCTION_EVENT_NOTIFICATION:
{
MSG_EVENT_NOTIFY_REPLY *msg;
struct mpt_personality *pers;
u_int handled;
handled = 0;
msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
msg->EventDataLength = le16toh(msg->EventDataLength);
msg->IOCStatus = le16toh(msg->IOCStatus);
msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
msg->Event = le32toh(msg->Event);
MPT_PERS_FOREACH(mpt, pers)
handled += pers->event(mpt, req, msg);
if (handled == 0 && mpt->mpt_pers_mask == 0) {
mpt_lprt(mpt, MPT_PRT_INFO,
"No Handlers For Any Event Notify Frames. "
"Event %#x (ACK %sequired).\n",
msg->Event, msg->AckRequired? "r" : "not r");
} else if (handled == 0) {
mpt_lprt(mpt,
msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
"Unhandled Event Notify Frame. Event %#x "
"(ACK %sequired).\n",
msg->Event, msg->AckRequired? "r" : "not r");
}
if (msg->AckRequired) {
request_t *ack_req;
uint32_t context;
context = req->index | MPT_REPLY_HANDLER_EVENTS;
ack_req = mpt_get_request(mpt, FALSE);
if (ack_req == NULL) {
struct mpt_evtf_record *evtf;
evtf = (struct mpt_evtf_record *)reply_frame;
evtf->context = context;
LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
free_reply = FALSE;
break;
}
mpt_send_event_ack(mpt, ack_req, msg, context);
/*
* Don't check for CONTINUATION_REPLY here
*/
return (free_reply);
}
break;
}
case MPI_FUNCTION_PORT_ENABLE:
mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
break;
case MPI_FUNCTION_EVENT_ACK:
break;
default:
mpt_prt(mpt, "unknown event function: %x\n",
reply_frame->Function);
break;
}
/*
* I'm not sure that this continuation stuff works as it should.
*
* I've had FC async events occur that free the frame up because
* the continuation bit isn't set, and then additional async events
* then occur using the same context. As you might imagine, this
* leads to Very Bad Thing.
*
* Let's just be safe for now and not free them up until we figure
* out what's actually happening here.
*/
#if 0
if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
TAILQ_REMOVE(&mpt->request_pending_list, req, links);
mpt_free_request(mpt, req);
mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
reply_frame->Function, req, req->serno);
if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
MSG_EVENT_NOTIFY_REPLY *msg =
(MSG_EVENT_NOTIFY_REPLY *)reply_frame;
mpt_prtc(mpt, " Event=0x%x AckReq=%d",
msg->Event, msg->AckRequired);
}
} else {
mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
reply_frame->Function, req, req->serno);
if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
MSG_EVENT_NOTIFY_REPLY *msg =
(MSG_EVENT_NOTIFY_REPLY *)reply_frame;
mpt_prtc(mpt, " Event=0x%x AckReq=%d",
msg->Event, msg->AckRequired);
}
mpt_prtc(mpt, "\n");
}
#endif
return (free_reply);
}
/*
* Process an asynchronous event from the IOC.
*/
static int
mpt_core_event(struct mpt_softc *mpt, request_t *req,
MSG_EVENT_NOTIFY_REPLY *msg)
{
mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
msg->Event & 0xFF);
switch(msg->Event & 0xFF) {
case MPI_EVENT_NONE:
break;
case MPI_EVENT_LOG_DATA:
{
int i;
/* Some error occurred that LSI wants logged */
mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
msg->IOCLogInfo);
mpt_prt(mpt, "\tEvtLogData: Event Data:");
for (i = 0; i < msg->EventDataLength; i++)
mpt_prtc(mpt, " %08x", msg->Data[i]);
mpt_prtc(mpt, "\n");
break;
}
case MPI_EVENT_EVENT_CHANGE:
/*
* This is just an acknowledgement
* of our mpt_send_event_request.
*/
break;
case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
break;
default:
return (0);
break;
}
return (1);
}
static void
mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
{
MSG_EVENT_ACK *ackp;
ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
memset(ackp, 0, sizeof (*ackp));
ackp->Function = MPI_FUNCTION_EVENT_ACK;
ackp->Event = htole32(msg->Event);
ackp->EventContext = htole32(msg->EventContext);
ackp->MsgContext = htole32(context);
mpt_check_doorbell(mpt);
mpt_send_cmd(mpt, ack_req);
}
/***************************** Interrupt Handling *****************************/
void
mpt_intr(void *arg)
{
struct mpt_softc *mpt;
uint32_t reply_desc;
int ntrips = 0;
mpt = (struct mpt_softc *)arg;
mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
MPT_LOCK_ASSERT(mpt);
while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
request_t *req;
MSG_DEFAULT_REPLY *reply_frame;
uint32_t reply_baddr;
uint32_t ctxt_idx;
u_int cb_index;
u_int req_index;
u_int offset;
int free_rf;
req = NULL;
reply_frame = NULL;
reply_baddr = 0;
offset = 0;
if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
/*
* Ensure that the reply frame is coherent.
*/
reply_baddr = MPT_REPLY_BADDR(reply_desc);
offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
bus_dmamap_sync_range(mpt->reply_dmat,
mpt->reply_dmap, offset, MPT_REPLY_SIZE,
BUS_DMASYNC_POSTREAD);
reply_frame = MPT_REPLY_OTOV(mpt, offset);
ctxt_idx = le32toh(reply_frame->MsgContext);
} else {
uint32_t type;
type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
ctxt_idx = reply_desc;
mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
reply_desc);
switch (type) {
case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
break;
case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
ctxt_idx = GET_IO_INDEX(reply_desc);
if (mpt->tgt_cmd_ptrs == NULL) {
mpt_prt(mpt,
"mpt_intr: no target cmd ptrs\n");
reply_desc = MPT_REPLY_EMPTY;
break;
}
if (ctxt_idx >= mpt->tgt_cmds_allocated) {
mpt_prt(mpt,
"mpt_intr: bad tgt cmd ctxt %u\n",
ctxt_idx);
reply_desc = MPT_REPLY_EMPTY;
ntrips = 1000;
break;
}
req = mpt->tgt_cmd_ptrs[ctxt_idx];
if (req == NULL) {
mpt_prt(mpt, "no request backpointer "
"at index %u", ctxt_idx);
reply_desc = MPT_REPLY_EMPTY;
ntrips = 1000;
break;
}
/*
* Reformulate ctxt_idx to be just as if
* it were another type of context reply
* so the code below will find the request
* via indexing into the pool.
*/
ctxt_idx =
req->index | mpt->scsi_tgt_handler_id;
req = NULL;
break;
case MPI_CONTEXT_REPLY_TYPE_LAN:
mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
reply_desc);
reply_desc = MPT_REPLY_EMPTY;
break;
default:
mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
reply_desc = MPT_REPLY_EMPTY;
break;
}
if (reply_desc == MPT_REPLY_EMPTY) {
if (ntrips++ > 1000) {
break;
}
continue;
}
}
cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
if (req_index < MPT_MAX_REQUESTS(mpt)) {
req = &mpt->request_pool[req_index];
} else {
mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
" 0x%x)\n", req_index, reply_desc);
}
bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
free_rf = mpt_reply_handlers[cb_index](mpt, req,
reply_desc, reply_frame);
if (reply_frame != NULL && free_rf) {
bus_dmamap_sync_range(mpt->reply_dmat,
mpt->reply_dmap, offset, MPT_REPLY_SIZE,
BUS_DMASYNC_PREREAD);
mpt_free_reply(mpt, reply_baddr);
}
/*
* If we got ourselves disabled, don't get stuck in a loop
*/
if (mpt->disabled) {
mpt_disable_ints(mpt);
break;
}
if (ntrips++ > 1000) {
break;
}
}
mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
}
/******************************* Error Recovery *******************************/
void
mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
u_int iocstatus)
{
MSG_DEFAULT_REPLY ioc_status_frame;
request_t *req;
memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
ioc_status_frame.IOCStatus = iocstatus;
while((req = TAILQ_FIRST(chain)) != NULL) {
MSG_REQUEST_HEADER *msg_hdr;
u_int cb_index;
bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
ioc_status_frame.Function = msg_hdr->Function;
ioc_status_frame.MsgContext = msg_hdr->MsgContext;
cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
&ioc_status_frame);
if (mpt_req_on_pending_list(mpt, req) != 0)
TAILQ_REMOVE(chain, req, links);
}
}
/********************************* Diagnostics ********************************/
/*
* Perform a diagnostic dump of a reply frame.
*/
void
mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
{
mpt_prt(mpt, "Address Reply:\n");
mpt_print_reply(reply_frame);
}
/******************************* Doorbell Access ******************************/
static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt);
static __inline uint32_t
mpt_rd_db(struct mpt_softc *mpt)
{
return mpt_read(mpt, MPT_OFFSET_DOORBELL);
}
static __inline uint32_t
mpt_rd_intr(struct mpt_softc *mpt)
{
return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
}
/* Busy wait for a door bell to be read by IOC */
static int
mpt_wait_db_ack(struct mpt_softc *mpt)
{
int i;
for (i=0; i < MPT_MAX_WAIT; i++) {
if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
return (MPT_OK);
}
DELAY(200);
}
return (MPT_FAIL);
}
/* Busy wait for a door bell interrupt */
static int
mpt_wait_db_int(struct mpt_softc *mpt)
{
int i;
for (i = 0; i < MPT_MAX_WAIT; i++) {
if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
maxwait_int = i > maxwait_int ? i : maxwait_int;
return MPT_OK;
}
DELAY(100);
}
return (MPT_FAIL);
}
/* Wait for IOC to transition to a give state */
void
mpt_check_doorbell(struct mpt_softc *mpt)
{
uint32_t db = mpt_rd_db(mpt);
if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
mpt_prt(mpt, "Device not running\n");
mpt_print_db(db);
}
}
/* Wait for IOC to transition to a give state */
static int
mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
{
int i;
for (i = 0; i < MPT_MAX_WAIT; i++) {
uint32_t db = mpt_rd_db(mpt);
if (MPT_STATE(db) == state) {
maxwait_state = i > maxwait_state ? i : maxwait_state;
return (MPT_OK);
}
DELAY(100);
}
return (MPT_FAIL);
}
/************************* Initialization/Configuration ************************/
static int mpt_download_fw(struct mpt_softc *mpt);
/* Issue the reset COMMAND to the IOC */
static int
mpt_soft_reset(struct mpt_softc *mpt)
{
mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
/* Have to use hard reset if we are not in Running state */
if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
mpt_prt(mpt, "soft reset failed: device not running\n");
return (MPT_FAIL);
}
/* If door bell is in use we don't have a chance of getting
* a word in since the IOC probably crashed in message
* processing. So don't waste our time.
*/
if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
return (MPT_FAIL);
}
/* Send the reset request to the IOC */
mpt_write(mpt, MPT_OFFSET_DOORBELL,
MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
if (mpt_wait_db_ack(mpt) != MPT_OK) {
mpt_prt(mpt, "soft reset failed: ack timeout\n");
return (MPT_FAIL);
}
/* Wait for the IOC to reload and come out of reset state */
if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
mpt_prt(mpt, "soft reset failed: device did not restart\n");
return (MPT_FAIL);
}
return MPT_OK;
}
static int
mpt_enable_diag_mode(struct mpt_softc *mpt)
{
int try;
try = 20;
while (--try) {
if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
break;
/* Enable diagnostic registers */
mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
DELAY(100000);
}
if (try == 0)
return (EIO);
return (0);
}
static void
mpt_disable_diag_mode(struct mpt_softc *mpt)
{
mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
}
/* This is a magic diagnostic reset that resets all the ARM
* processors in the chip.
*/
static void
mpt_hard_reset(struct mpt_softc *mpt)
{
int error;
int wait;
uint32_t diagreg;
mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
if (mpt->is_1078) {
mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
DELAY(1000);
return;
}
error = mpt_enable_diag_mode(mpt);
if (error) {
mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
mpt_prt(mpt, "Trying to reset anyway.\n");
}
diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
/*
* This appears to be a workaround required for some
* firmware or hardware revs.
*/
mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
DELAY(1000);
/* Diag. port is now active so we can now hit the reset bit */
mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
/*
* Ensure that the reset has finished. We delay 1ms
* prior to reading the register to make sure the chip
* has sufficiently completed its reset to handle register
* accesses.
*/
wait = 5000;
do {
DELAY(1000);
diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
if (wait == 0) {
mpt_prt(mpt, "WARNING - Failed hard reset! "
"Trying to initialize anyway.\n");
}
/*
* If we have firmware to download, it must be loaded before
* the controller will become operational. Do so now.
*/
if (mpt->fw_image != NULL) {
error = mpt_download_fw(mpt);
if (error) {
mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
mpt_prt(mpt, "Trying to initialize anyway.\n");
}
}
/*
* Reseting the controller should have disabled write
* access to the diagnostic registers, but disable
* manually to be sure.
*/
mpt_disable_diag_mode(mpt);
}
static void
mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
{
/*
* Complete all pending requests with a status
* appropriate for an IOC reset.
*/
mpt_complete_request_chain(mpt, &mpt->request_pending_list,
MPI_IOCSTATUS_INVALID_STATE);
}
/*
* Reset the IOC when needed. Try software command first then if needed
* poke at the magic diagnostic reset. Note that a hard reset resets
* *both* IOCs on dual function chips (FC929 && LSI1030) as well as
* fouls up the PCI configuration registers.
*/
int
mpt_reset(struct mpt_softc *mpt, int reinit)
{
struct mpt_personality *pers;
int ret;
int retry_cnt = 0;
/*
* Try a soft reset. If that fails, get out the big hammer.
*/
again:
if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
int cnt;
for (cnt = 0; cnt < 5; cnt++) {
/* Failed; do a hard reset */
mpt_hard_reset(mpt);
/*
* Wait for the IOC to reload
* and come out of reset state
*/
ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
if (ret == MPT_OK) {
break;
}
/*
* Okay- try to check again...
*/
ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
if (ret == MPT_OK) {
break;
}
mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
retry_cnt, cnt);
}
}
if (retry_cnt == 0) {
/*
* Invoke reset handlers. We bump the reset count so
* that mpt_wait_req() understands that regardless of
* the specified wait condition, it should stop its wait.
*/
mpt->reset_cnt++;
MPT_PERS_FOREACH(mpt, pers)
pers->reset(mpt, ret);
}
if (reinit) {
ret = mpt_enable_ioc(mpt, 1);
if (ret == MPT_OK) {
mpt_enable_ints(mpt);
}
}
if (ret != MPT_OK && retry_cnt++ < 2) {
goto again;
}
return ret;
}
/* Return a command buffer to the free queue */
void
mpt_free_request(struct mpt_softc *mpt, request_t *req)
{
request_t *nxt;
struct mpt_evtf_record *record;
uint32_t offset, reply_baddr;
if (req == NULL || req != &mpt->request_pool[req->index]) {
panic("mpt_free_request: bad req ptr");
}
if ((nxt = req->chain) != NULL) {
req->chain = NULL;
mpt_free_request(mpt, nxt); /* NB: recursion */
}
KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
MPT_LOCK_ASSERT(mpt);
KASSERT(mpt_req_on_free_list(mpt, req) == 0,
("mpt_free_request: req %p:%u func %x already on freelist",
req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
("mpt_free_request: req %p:%u func %x on pending list",
req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
#ifdef INVARIANTS
mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
#endif
req->ccb = NULL;
if (LIST_EMPTY(&mpt->ack_frames)) {
/*
* Insert free ones at the tail
*/
req->serno = 0;
req->state = REQ_STATE_FREE;
#ifdef INVARIANTS
memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
#endif
TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
if (mpt->getreqwaiter != 0) {
mpt->getreqwaiter = 0;
wakeup(&mpt->request_free_list);
}
return;
}
/*
* Process an ack frame deferred due to resource shortage.
*/
record = LIST_FIRST(&mpt->ack_frames);
LIST_REMOVE(record, links);
req->state = REQ_STATE_ALLOCATED;
mpt_assign_serno(mpt, req);
mpt_send_event_ack(mpt, req, &record->reply, record->context);
offset = (uint32_t)((uint8_t *)record - mpt->reply);
reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
mpt_free_reply(mpt, reply_baddr);
}
/* Get a command buffer from the free queue */
request_t *
mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
{
request_t *req;
retry:
MPT_LOCK_ASSERT(mpt);
req = TAILQ_FIRST(&mpt->request_free_list);
if (req != NULL) {
KASSERT(req == &mpt->request_pool[req->index],
("mpt_get_request: corrupted request free list"));
KASSERT(req->state == REQ_STATE_FREE,
("req %p:%u not free on free list %x index %d function %x",
req, req->serno, req->state, req->index,
((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
TAILQ_REMOVE(&mpt->request_free_list, req, links);
req->state = REQ_STATE_ALLOCATED;
req->chain = NULL;
mpt_assign_serno(mpt, req);
} else if (sleep_ok != 0) {
mpt->getreqwaiter = 1;
mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
goto retry;
}
return (req);
}
/* Pass the command to the IOC */
void
mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
{
if (mpt->verbose > MPT_PRT_DEBUG2) {
mpt_dump_request(mpt, req);
}
bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
req->state |= REQ_STATE_QUEUED;
KASSERT(mpt_req_on_free_list(mpt, req) == 0,
("req %p:%u func %x on freelist list in mpt_send_cmd",
req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
("req %p:%u func %x already on pending list in mpt_send_cmd",
req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
}
/*
* Wait for a request to complete.
*
* Inputs:
* mpt softc of controller executing request
* req request to wait for
* sleep_ok nonzero implies may sleep in this context
* time_ms timeout in ms. 0 implies no timeout.
*
* Return Values:
* 0 Request completed
* non-0 Timeout fired before request completion.
*/
int
mpt_wait_req(struct mpt_softc *mpt, request_t *req,
mpt_req_state_t state, mpt_req_state_t mask,
int sleep_ok, int time_ms)
{
int timeout;
u_int saved_cnt;
sbintime_t sbt;
/*
* time_ms is in ms, 0 indicates infinite wait.
* Convert to sbintime_t or 500us units depending on
* our sleep mode.
*/
if (sleep_ok != 0) {
sbt = SBT_1MS * time_ms;
/* Set timeout as well so final timeout check works. */
timeout = time_ms;
} else {
sbt = 0; /* Squelch bogus gcc warning. */
timeout = time_ms * 2;
}
req->state |= REQ_STATE_NEED_WAKEUP;
mask &= ~REQ_STATE_NEED_WAKEUP;
saved_cnt = mpt->reset_cnt;
while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
if (sleep_ok != 0) {
if (mpt_sleep(mpt, req, PUSER, "mptreq", sbt) ==
EWOULDBLOCK) {
timeout = 0;
break;
}
} else {
if (time_ms != 0 && --timeout == 0) {
break;
}
DELAY(500);
mpt_intr(mpt);
}
}
req->state &= ~REQ_STATE_NEED_WAKEUP;
if (mpt->reset_cnt != saved_cnt) {
return (EIO);
}
if (time_ms && timeout <= 0) {
MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
req->state |= REQ_STATE_TIMEDOUT;
mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
return (ETIMEDOUT);
}
return (0);
}
/*
* Send a command to the IOC via the handshake register.
*
* Only done at initialization time and for certain unusual
* commands such as device/bus reset as specified by LSI.
*/
int
mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
{
int i;
uint32_t data, *data32;
/* Check condition of the IOC */
data = mpt_rd_db(mpt);
if ((MPT_STATE(data) != MPT_DB_STATE_READY
&& MPT_STATE(data) != MPT_DB_STATE_RUNNING
&& MPT_STATE(data) != MPT_DB_STATE_FAULT)
|| MPT_DB_IS_IN_USE(data)) {
mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
mpt_print_db(data);
return (EBUSY);
}
/* We move things in 32 bit chunks */
len = (len + 3) >> 2;
data32 = cmd;
/* Clear any left over pending doorbell interrupts */
if (MPT_DB_INTR(mpt_rd_intr(mpt)))
mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
/*
* Tell the handshake reg. we are going to send a command
* and how long it is going to be.
*/
data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
(len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
/* Wait for the chip to notice */
if (mpt_wait_db_int(mpt) != MPT_OK) {
mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
return (ETIMEDOUT);
}
/* Clear the interrupt */
mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
if (mpt_wait_db_ack(mpt) != MPT_OK) {
mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
return (ETIMEDOUT);
}
/* Send the command */
for (i = 0; i < len; i++) {
mpt_write_stream(mpt, MPT_OFFSET_DOORBELL, *data32++);
if (mpt_wait_db_ack(mpt) != MPT_OK) {
mpt_prt(mpt,
"mpt_send_handshake_cmd: timeout @ index %d\n", i);
return (ETIMEDOUT);
}
}
return MPT_OK;
}
/* Get the response from the handshake register */
int
mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
{
int left, reply_left;
u_int16_t *data16;
uint32_t data;
MSG_DEFAULT_REPLY *hdr;
/* We move things out in 16 bit chunks */
reply_len >>= 1;
data16 = (u_int16_t *)reply;
hdr = (MSG_DEFAULT_REPLY *)reply;
/* Get first word */
if (mpt_wait_db_int(mpt) != MPT_OK) {
mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
return ETIMEDOUT;
}
data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
*data16++ = le16toh(data & MPT_DB_DATA_MASK);
mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
/* Get second word */
if (mpt_wait_db_int(mpt) != MPT_OK) {
mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
return ETIMEDOUT;
}
data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
*data16++ = le16toh(data & MPT_DB_DATA_MASK);
mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
/*
* With the second word, we can now look at the length.
* Warn about a reply that's too short (except for IOC FACTS REPLY)
*/
if ((reply_len >> 1) != hdr->MsgLength &&
(hdr->Function != MPI_FUNCTION_IOC_FACTS)){
mpt_prt(mpt, "reply length does not match message length: "
"got %x; expected %zx for function %x\n",
hdr->MsgLength << 2, reply_len << 1, hdr->Function);
}
/* Get rest of the reply; but don't overflow the provided buffer */
left = (hdr->MsgLength << 1) - 2;
reply_left = reply_len - 2;
while (left--) {
if (mpt_wait_db_int(mpt) != MPT_OK) {
mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
return ETIMEDOUT;
}
data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
if (reply_left-- > 0)
*data16++ = le16toh(data & MPT_DB_DATA_MASK);
mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
}
/* One more wait & clear at the end */
if (mpt_wait_db_int(mpt) != MPT_OK) {
mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
return ETIMEDOUT;
}
mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
if (mpt->verbose >= MPT_PRT_TRACE)
mpt_print_reply(hdr);
return (MPT_FAIL | hdr->IOCStatus);
}
return (0);
}
static int
mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
{
MSG_IOC_FACTS f_req;
int error;
memset(&f_req, 0, sizeof f_req);
f_req.Function = MPI_FUNCTION_IOC_FACTS;
f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
if (error) {
return(error);
}
error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
return (error);
}
static int
mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
{
MSG_PORT_FACTS f_req;
int error;
memset(&f_req, 0, sizeof f_req);
f_req.Function = MPI_FUNCTION_PORT_FACTS;
f_req.PortNumber = port;
f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
if (error) {
return(error);
}
error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
return (error);
}
/*
* Send the initialization request. This is where we specify how many
* SCSI buses and how many devices per bus we wish to emulate.
* This is also the command that specifies the max size of the reply
* frames from the IOC that we will be allocating.
*/
static int
mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
{
int error = 0;
MSG_IOC_INIT init;
MSG_IOC_INIT_REPLY reply;
memset(&init, 0, sizeof init);
init.WhoInit = who;
init.Function = MPI_FUNCTION_IOC_INIT;
init.MaxDevices = 0; /* at least 256 devices per bus */
init.MaxBuses = 16; /* at least 16 buses */
init.MsgVersion = htole16(MPI_VERSION);
init.HeaderVersion = htole16(MPI_HEADER_VERSION);
init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
return(error);
}
error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
return (error);
}
/*
* Utiltity routine to read configuration headers and pages
*/
int
mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
{
MSG_CONFIG *cfgp;
SGE_SIMPLE32 *se;
cfgp = req->req_vbuf;
memset(cfgp, 0, sizeof *cfgp);
cfgp->Action = params->Action;
cfgp->Function = MPI_FUNCTION_CONFIG;
cfgp->Header.PageVersion = params->PageVersion;
cfgp->Header.PageNumber = params->PageNumber;
cfgp->PageAddress = htole32(params->PageAddress);
if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
MPI_CONFIG_PAGETYPE_EXTENDED) {
cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
cfgp->Header.PageLength = 0;
cfgp->ExtPageLength = htole16(params->ExtPageLength);
cfgp->ExtPageType = params->ExtPageType;
} else {
cfgp->Header.PageType = params->PageType;
cfgp->Header.PageLength = params->PageLength;
}
se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
se->Address = htole32(addr);
MPI_pSGE_SET_LENGTH(se, len);
MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
MPI_SGE_FLAGS_END_OF_LIST |
((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
|| params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
se->FlagsLength = htole32(se->FlagsLength);
cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
mpt_check_doorbell(mpt);
mpt_send_cmd(mpt, req);
return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
sleep_ok, timeout_ms));
}
int
mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
uint32_t PageAddress, int ExtPageType,
CONFIG_EXTENDED_PAGE_HEADER *rslt,
int sleep_ok, int timeout_ms)
{
request_t *req;
cfgparms_t params;
MSG_CONFIG_REPLY *cfgp;
int error;
req = mpt_get_request(mpt, sleep_ok);
if (req == NULL) {
mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
return (ENOMEM);
}
params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
params.PageVersion = PageVersion;
params.PageLength = 0;
params.PageNumber = PageNumber;
params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
params.PageAddress = PageAddress;
params.ExtPageType = ExtPageType;
params.ExtPageLength = 0;
error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
sleep_ok, timeout_ms);
if (error != 0) {
/*
* Leave the request. Without resetting the chip, it's
* still owned by it and we'll just get into trouble
* freeing it now. Mark it as abandoned so that if it
* shows up later it can be freed.
*/
mpt_prt(mpt, "read_extcfg_header timed out\n");
return (ETIMEDOUT);
}
switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
case MPI_IOCSTATUS_SUCCESS:
cfgp = req->req_vbuf;
rslt->PageVersion = cfgp->Header.PageVersion;
rslt->PageNumber = cfgp->Header.PageNumber;
rslt->PageType = cfgp->Header.PageType;
rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
rslt->ExtPageType = cfgp->ExtPageType;
error = 0;
break;
case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Invalid Page Type %d Number %d Addr 0x%0x\n",
MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
error = EINVAL;
break;
default:
mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
req->IOCStatus);
error = EIO;
break;
}
mpt_free_request(mpt, req);
return (error);
}
int
mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
int sleep_ok, int timeout_ms)
{
request_t *req;
cfgparms_t params;
int error;
req = mpt_get_request(mpt, sleep_ok);
if (req == NULL) {
mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
return (-1);
}
params.Action = Action;
params.PageVersion = hdr->PageVersion;
params.PageLength = 0;
params.PageNumber = hdr->PageNumber;
params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
params.PageAddress = PageAddress;
params.ExtPageType = hdr->ExtPageType;
params.ExtPageLength = hdr->ExtPageLength;
error = mpt_issue_cfg_req(mpt, req, &params,
req->req_pbuf + MPT_RQSL(mpt),
len, sleep_ok, timeout_ms);
if (error != 0) {
mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
return (-1);
}
if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
req->IOCStatus);
mpt_free_request(mpt, req);
return (-1);
}
memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
mpt_free_request(mpt, req);
return (0);
}
int
mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
int sleep_ok, int timeout_ms)
{
request_t *req;
cfgparms_t params;
MSG_CONFIG *cfgp;
int error;
req = mpt_get_request(mpt, sleep_ok);
if (req == NULL) {
mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
return (ENOMEM);
}
params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
params.PageVersion = 0;
params.PageLength = 0;
params.PageNumber = PageNumber;
params.PageType = PageType;
params.PageAddress = PageAddress;
error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
sleep_ok, timeout_ms);
if (error != 0) {
/*
* Leave the request. Without resetting the chip, it's
* still owned by it and we'll just get into trouble
* freeing it now. Mark it as abandoned so that if it
* shows up later it can be freed.
*/
mpt_prt(mpt, "read_cfg_header timed out\n");
return (ETIMEDOUT);
}
switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
case MPI_IOCSTATUS_SUCCESS:
cfgp = req->req_vbuf;
bcopy(&cfgp->Header, rslt, sizeof(*rslt));
error = 0;
break;
case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
mpt_lprt(mpt, MPT_PRT_DEBUG,
"Invalid Page Type %d Number %d Addr 0x%0x\n",
PageType, PageNumber, PageAddress);
error = EINVAL;
break;
default:
mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
req->IOCStatus);
error = EIO;
break;
}
mpt_free_request(mpt, req);
return (error);
}
int
mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
int timeout_ms)
{
request_t *req;
cfgparms_t params;
int error;
req = mpt_get_request(mpt, sleep_ok);
if (req == NULL) {
mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
return (-1);
}
params.Action = Action;
params.PageVersion = hdr->PageVersion;
params.PageLength = hdr->PageLength;
params.PageNumber = hdr->PageNumber;
params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
params.PageAddress = PageAddress;
error = mpt_issue_cfg_req(mpt, req, &params,
req->req_pbuf + MPT_RQSL(mpt),
len, sleep_ok, timeout_ms);
if (error != 0) {
mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
return (-1);
}
if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
req->IOCStatus);
mpt_free_request(mpt, req);
return (-1);
}
memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
mpt_free_request(mpt, req);
return (0);
}
int
mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
int timeout_ms)
{
request_t *req;
cfgparms_t params;
u_int hdr_attr;
int error;
hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
mpt_prt(mpt, "page type 0x%x not changeable\n",
hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
return (-1);
}
#if 0
/*
* We shouldn't mask off other bits here.
*/
hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
#endif
req = mpt_get_request(mpt, sleep_ok);
if (req == NULL)
return (-1);
memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
/*
* There isn't any point in restoring stripped out attributes
* if you then mask them going down to issue the request.
*/
params.Action = Action;
params.PageVersion = hdr->PageVersion;
params.PageLength = hdr->PageLength;
params.PageNumber = hdr->PageNumber;
params.PageAddress = PageAddress;
#if 0
/* Restore stripped out attributes */
hdr->PageType |= hdr_attr;
params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
#else
params.PageType = hdr->PageType;
#endif
error = mpt_issue_cfg_req(mpt, req, &params,
req->req_pbuf + MPT_RQSL(mpt),
len, sleep_ok, timeout_ms);
if (error != 0) {
mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
return (-1);
}
if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
req->IOCStatus);
mpt_free_request(mpt, req);
return (-1);
}
mpt_free_request(mpt, req);
return (0);
}
/*
* Read IOC configuration information
*/
static int
mpt_read_config_info_ioc(struct mpt_softc *mpt)
{
CONFIG_PAGE_HEADER hdr;
struct mpt_raid_volume *mpt_raid;
int rv;
int i;
size_t len;
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2, 0, &hdr, FALSE, 5000);
/*
* If it's an invalid page, so what? Not a supported function....
*/
if (rv == EINVAL) {
return (0);
}
if (rv) {
return (rv);
}
mpt_lprt(mpt, MPT_PRT_DEBUG,
"IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
hdr.PageVersion, hdr.PageLength << 2,
hdr.PageNumber, hdr.PageType);
len = hdr.PageLength * sizeof(uint32_t);
mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
if (mpt->ioc_page2 == NULL) {
mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
mpt_raid_free_mem(mpt);
return (ENOMEM);
}
memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
rv = mpt_read_cur_cfg_page(mpt, 0,
&mpt->ioc_page2->Header, len, FALSE, 5000);
if (rv) {
mpt_prt(mpt, "failed to read IOC Page 2\n");
mpt_raid_free_mem(mpt);
return (EIO);
}
mpt2host_config_page_ioc2(mpt->ioc_page2);
if (mpt->ioc_page2->CapabilitiesFlags != 0) {
uint32_t mask;
mpt_prt(mpt, "Capabilities: (");
for (mask = 1; mask != 0; mask <<= 1) {
if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
continue;
}
switch (mask) {
case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
mpt_prtc(mpt, " RAID-0");
break;
case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
mpt_prtc(mpt, " RAID-1E");
break;
case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
mpt_prtc(mpt, " RAID-1");
break;
case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
mpt_prtc(mpt, " SES");
break;
case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
mpt_prtc(mpt, " SAFTE");
break;
case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
mpt_prtc(mpt, " Multi-Channel-Arrays");
default:
break;
}
}
mpt_prtc(mpt, " )\n");
if ((mpt->ioc_page2->CapabilitiesFlags
& (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
| MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
| MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
mpt->ioc_page2->NumActiveVolumes,
mpt->ioc_page2->NumActiveVolumes != 1
? "s " : " ",
mpt->ioc_page2->MaxVolumes);
mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
mpt->ioc_page2->NumActivePhysDisks,
mpt->ioc_page2->NumActivePhysDisks != 1
? "s " : " ",
mpt->ioc_page2->MaxPhysDisks);
}
}
len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
if (mpt->raid_volumes == NULL) {
mpt_prt(mpt, "Could not allocate RAID volume data\n");
mpt_raid_free_mem(mpt);
return (ENOMEM);
}
/*
* Copy critical data out of ioc_page2 so that we can
* safely refresh the page without windows of unreliable
* data.
*/
mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes;
len = sizeof(*mpt->raid_volumes->config_page) +
(sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
mpt_raid = &mpt->raid_volumes[i];
mpt_raid->config_page =
malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
if (mpt_raid->config_page == NULL) {
mpt_prt(mpt, "Could not allocate RAID page data\n");
mpt_raid_free_mem(mpt);
return (ENOMEM);
}
}
mpt->raid_page0_len = len;
len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
if (mpt->raid_disks == NULL) {
mpt_prt(mpt, "Could not allocate RAID disk data\n");
mpt_raid_free_mem(mpt);
return (ENOMEM);
}
mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks;
/*
* Load page 3.
*/
rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
3, 0, &hdr, FALSE, 5000);
if (rv) {
mpt_raid_free_mem(mpt);
return (EIO);
}
mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
len = hdr.PageLength * sizeof(uint32_t);
mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
if (mpt->ioc_page3 == NULL) {
mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
mpt_raid_free_mem(mpt);
return (ENOMEM);
}
memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
rv = mpt_read_cur_cfg_page(mpt, 0,
&mpt->ioc_page3->Header, len, FALSE, 5000);
if (rv) {
mpt_raid_free_mem(mpt);
return (EIO);
}
mpt2host_config_page_ioc3(mpt->ioc_page3);
mpt_raid_wakeup(mpt);
return (0);
}
/*
* Enable IOC port
*/
static int
mpt_send_port_enable(struct mpt_softc *mpt, int port)
{
request_t *req;
MSG_PORT_ENABLE *enable_req;
int error;
req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
if (req == NULL)
return (-1);
enable_req = req->req_vbuf;
memset(enable_req, 0, MPT_RQSL(mpt));
enable_req->Function = MPI_FUNCTION_PORT_ENABLE;
enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
enable_req->PortNumber = port;
mpt_check_doorbell(mpt);
mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
mpt_send_cmd(mpt, req);
error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
if (error != 0) {
mpt_prt(mpt, "port %d enable timed out\n", port);
return (-1);
}
mpt_free_request(mpt, req);
mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
return (0);
}
/*
* Enable/Disable asynchronous event reporting.
*/
static int
mpt_send_event_request(struct mpt_softc *mpt, int onoff)
{
request_t *req;
MSG_EVENT_NOTIFY *enable_req;
req = mpt_get_request(mpt, FALSE);
if (req == NULL) {
return (ENOMEM);
}
enable_req = req->req_vbuf;
memset(enable_req, 0, sizeof *enable_req);
enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION;
enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
enable_req->Switch = onoff;
mpt_check_doorbell(mpt);
mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
onoff ? "en" : "dis");
/*
* Send the command off, but don't wait for it.
*/
mpt_send_cmd(mpt, req);
return (0);
}
/*
* Un-mask the interrupts on the chip.
*/
void
mpt_enable_ints(struct mpt_softc *mpt)
{
/* Unmask every thing except door bell int */
mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
}
/*
* Mask the interrupts on the chip.
*/
void
mpt_disable_ints(struct mpt_softc *mpt)
{
/* Mask all interrupts */
mpt_write(mpt, MPT_OFFSET_INTR_MASK,
MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
}
static void
mpt_sysctl_attach(struct mpt_softc *mpt)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"debug", CTLFLAG_RW, &mpt->verbose, 0,
"Debugging/Verbose level");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"role", CTLFLAG_RD, &mpt->role, 0,
"HBA role");
#ifdef MPT_TEST_MULTIPATH
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
"Next Target to Fail");
#endif
}
int
mpt_attach(struct mpt_softc *mpt)
{
struct mpt_personality *pers;
int i;
int error;
mpt_core_attach(mpt);
mpt_core_enable(mpt);
TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
pers = mpt_personalities[i];
if (pers == NULL) {
continue;
}
if (pers->probe(mpt) == 0) {
error = pers->attach(mpt);
if (error != 0) {
mpt_detach(mpt);
return (error);
}
mpt->mpt_pers_mask |= (0x1 << pers->id);
pers->use_count++;
}
}
/*
* Now that we've attached everything, do the enable function
* for all of the personalities. This allows the personalities
* to do setups that are appropriate for them prior to enabling
* any ports.
*/
for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
pers = mpt_personalities[i];
if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) {
error = pers->enable(mpt);
if (error != 0) {
mpt_prt(mpt, "personality %s attached but would"
" not enable (%d)\n", pers->name, error);
mpt_detach(mpt);
return (error);
}
}
}
return (0);
}
int
mpt_shutdown(struct mpt_softc *mpt)
{
struct mpt_personality *pers;
MPT_PERS_FOREACH_REVERSE(mpt, pers) {
pers->shutdown(mpt);
}
return (0);
}
int
mpt_detach(struct mpt_softc *mpt)
{
struct mpt_personality *pers;
MPT_PERS_FOREACH_REVERSE(mpt, pers) {
pers->detach(mpt);
mpt->mpt_pers_mask &= ~(0x1 << pers->id);
pers->use_count--;
}
TAILQ_REMOVE(&mpt_tailq, mpt, links);
return (0);
}
static int
mpt_core_load(struct mpt_personality *pers)
{
int i;
/*
* Setup core handlers and insert the default handler
* into all "empty slots".
*/
for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
mpt_reply_handlers[i] = mpt_default_reply_handler;
}
mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
mpt_event_reply_handler;
mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
mpt_config_reply_handler;
mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
mpt_handshake_reply_handler;
return (0);
}
/*
* Initialize per-instance driver data and perform
* initial controller configuration.
*/
static int
mpt_core_attach(struct mpt_softc *mpt)
{
int val, error;
LIST_INIT(&mpt->ack_frames);
/* Put all request buffers on the free list */
TAILQ_INIT(&mpt->request_pending_list);
TAILQ_INIT(&mpt->request_free_list);
TAILQ_INIT(&mpt->request_timeout_list);
for (val = 0; val < MPT_MAX_LUNS; val++) {
STAILQ_INIT(&mpt->trt[val].atios);
STAILQ_INIT(&mpt->trt[val].inots);
}
STAILQ_INIT(&mpt->trt_wildcard.atios);
STAILQ_INIT(&mpt->trt_wildcard.inots);
#ifdef MPT_TEST_MULTIPATH
mpt->failure_id = -1;
#endif
mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
mpt_sysctl_attach(mpt);
mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
MPT_LOCK(mpt);
error = mpt_configure_ioc(mpt, 0, 0);
MPT_UNLOCK(mpt);
return (error);
}
static int
mpt_core_enable(struct mpt_softc *mpt)
{
/*
* We enter with the IOC enabled, but async events
* not enabled, ports not enabled and interrupts
* not enabled.
*/
MPT_LOCK(mpt);
/*
* Enable asynchronous event reporting- all personalities
* have attached so that they should be able to now field
* async events.
*/
mpt_send_event_request(mpt, 1);
/*
* Catch any pending interrupts
*
* This seems to be crucial- otherwise
* the portenable below times out.
*/
mpt_intr(mpt);
/*
* Enable Interrupts
*/
mpt_enable_ints(mpt);
/*
* Catch any pending interrupts
*
* This seems to be crucial- otherwise
* the portenable below times out.
*/
mpt_intr(mpt);
/*
* Enable the port.
*/
if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
mpt_prt(mpt, "failed to enable port 0\n");
MPT_UNLOCK(mpt);
return (ENXIO);
}
MPT_UNLOCK(mpt);
return (0);
}
static void
mpt_core_shutdown(struct mpt_softc *mpt)
{
mpt_disable_ints(mpt);
}
static void
mpt_core_detach(struct mpt_softc *mpt)
{
int val;
/*
* XXX: FREE MEMORY
*/
mpt_disable_ints(mpt);
/* Make sure no request has pending timeouts. */
for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
request_t *req = &mpt->request_pool[val];
mpt_callout_drain(mpt, &req->callout);
}
mpt_dma_buf_free(mpt);
}
static int
mpt_core_unload(struct mpt_personality *pers)
{
/* Unload is always successful. */
return (0);
}
#define FW_UPLOAD_REQ_SIZE \
(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \
+ sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
static int
mpt_upload_fw(struct mpt_softc *mpt)
{
uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
MSG_FW_UPLOAD_REPLY fw_reply;
MSG_FW_UPLOAD *fw_req;
FW_UPLOAD_TCSGE *tsge;
SGE_SIMPLE32 *sge;
uint32_t flags;
int error;
memset(&fw_req_buf, 0, sizeof(fw_req_buf));
fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
tsge->DetailsLength = 12;
tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
tsge->ImageSize = htole32(mpt->fw_image_size);
sge = (SGE_SIMPLE32 *)(tsge + 1);
flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
| MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
| MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
flags <<= MPI_SGE_FLAGS_SHIFT;
sge->FlagsLength = htole32(flags | mpt->fw_image_size);
sge->Address = htole32(mpt->fw_phys);
bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
if (error)
return(error);
error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
return (error);
}
static void
mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
uint32_t *data, bus_size_t len)
{
uint32_t *data_end;
data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
if (mpt->is_sas) {
pci_enable_io(mpt->dev, SYS_RES_IOPORT);
}
mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
while (data != data_end) {
mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
data++;
}
if (mpt->is_sas) {
pci_disable_io(mpt->dev, SYS_RES_IOPORT);
}
}
static int
mpt_download_fw(struct mpt_softc *mpt)
{
MpiFwHeader_t *fw_hdr;
int error;
uint32_t ext_offset;
uint32_t data;
if (mpt->pci_pio_reg == NULL) {
mpt_prt(mpt, "No PIO resource!\n");
return (ENXIO);
}
mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
mpt->fw_image_size);
error = mpt_enable_diag_mode(mpt);
if (error != 0) {
mpt_prt(mpt, "Could not enter diagnostic mode!\n");
return (EIO);
}
mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
fw_hdr->ImageSize);
bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
ext_offset = fw_hdr->NextImageHeaderOffset;
while (ext_offset != 0) {
MpiExtImageHeader_t *ext;
ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
ext_offset = ext->NextImageHeaderOffset;
bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
BUS_DMASYNC_PREWRITE);
mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
ext->ImageSize);
bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
BUS_DMASYNC_POSTWRITE);
}
if (mpt->is_sas) {
pci_enable_io(mpt->dev, SYS_RES_IOPORT);
}
/* Setup the address to jump to on reset. */
mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
/*
* The controller sets the "flash bad" status after attempting
* to auto-boot from flash. Clear the status so that the controller
* will continue the boot process with our newly installed firmware.
*/
mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
if (mpt->is_sas) {
pci_disable_io(mpt->dev, SYS_RES_IOPORT);
}
/*
* Re-enable the processor and clear the boot halt flag.
*/
data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
mpt_disable_diag_mode(mpt);
return (0);
}
static int
mpt_dma_buf_alloc(struct mpt_softc *mpt)
{
struct mpt_map_info mi;
uint8_t *vptr;
uint32_t pptr, end;
int i, error;
/* Create a child tag for data buffers */
if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
&mpt->buffer_dmat) != 0) {
mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
return (1);
}
/* Create a child tag for request buffers */
if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
&mpt->request_dmat) != 0) {
mpt_prt(mpt, "cannot create a dma tag for requests\n");
return (1);
}
/* Allocate some DMA accessible memory for requests */
if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
MPT_REQ_MEM_SIZE(mpt));
return (1);
}
mi.mpt = mpt;
mi.error = 0;
/* Load and lock it into "bus space" */
bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
if (mi.error) {
mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
mi.error);
return (1);
}
mpt->request_phys = mi.phys;
/*
* Now create per-request dma maps
*/
i = 0;
pptr = mpt->request_phys;
vptr = mpt->request;
end = pptr + MPT_REQ_MEM_SIZE(mpt);
while(pptr < end) {
request_t *req = &mpt->request_pool[i];
req->index = i++;
/* Store location of Request Data */
req->req_pbuf = pptr;
req->req_vbuf = vptr;
pptr += MPT_REQUEST_AREA;
vptr += MPT_REQUEST_AREA;
req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
if (error) {
mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
error);
return (1);
}
}
return (0);
}
static void
mpt_dma_buf_free(struct mpt_softc *mpt)
{
int i;
if (mpt->request_dmat == 0) {
mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
return;
}
for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
}
bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
bus_dma_tag_destroy(mpt->request_dmat);
mpt->request_dmat = 0;
bus_dma_tag_destroy(mpt->buffer_dmat);
}
/*
* Allocate/Initialize data structures for the controller. Called
* once at instance startup.
*/
static int
mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
{
PTR_MSG_PORT_FACTS_REPLY pfp;
int error, port, val;
size_t len;
if (tn == MPT_MAX_TRYS) {
return (-1);
}
/*
* No need to reset if the IOC is already in the READY state.
*
* Force reset if initialization failed previously.
* Note that a hard_reset of the second channel of a '929
* will stop operation of the first channel. Hopefully, if the
* first channel is ok, the second will not require a hard
* reset.
*/
if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
if (mpt_reset(mpt, FALSE) != MPT_OK) {
return (mpt_configure_ioc(mpt, tn++, 1));
}
needreset = 0;
}
if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
mpt_prt(mpt, "mpt_get_iocfacts failed\n");
return (mpt_configure_ioc(mpt, tn++, 1));
}
mpt2host_iocfacts_reply(&mpt->ioc_facts);
mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
mpt->ioc_facts.MsgVersion >> 8,
mpt->ioc_facts.MsgVersion & 0xFF,
mpt->ioc_facts.HeaderVersion >> 8,
mpt->ioc_facts.HeaderVersion & 0xFF);
/*
* Now that we know request frame size, we can calculate
* the actual (reasonable) segment limit for read/write I/O.
*
* This limit is constrained by:
*
* + The size of each area we allocate per command (and how
* many chain segments we can fit into it).
* + The total number of areas we've set up.
* + The actual chain depth the card will allow.
*
* The first area's segment count is limited by the I/O request
* at the head of it. We cannot allocate realistically more
* than MPT_MAX_REQUESTS areas. Therefore, to account for both
* conditions, we'll just start out with MPT_MAX_REQUESTS-2.
*
*/
/* total number of request areas we (can) allocate */
mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
/* converted to the number of chain areas possible */
mpt->max_seg_cnt *= MPT_NRFM(mpt);
/* limited by the number of chain areas the card will support */
if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
mpt_lprt(mpt, MPT_PRT_INFO,
"chain depth limited to %u (from %u)\n",
mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
}
/* converted to the number of simple sges in chain segments. */
mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
/*
* Use this as the basis for reporting the maximum I/O size to CAM.
*/
mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, btoc(maxphys) + 1);
/* XXX Lame Locking! */
MPT_UNLOCK(mpt);
error = mpt_dma_buf_alloc(mpt);
MPT_LOCK(mpt);
if (error != 0) {
mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
return (EIO);
}
for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
request_t *req = &mpt->request_pool[val];
req->state = REQ_STATE_ALLOCATED;
mpt_callout_init(mpt, &req->callout);
mpt_free_request(mpt, req);
}
mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
"CAM Segment Count: %u\n", mpt->max_seg_cnt,
mpt->max_cam_seg_cnt);
mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
mpt_lprt(mpt, MPT_PRT_INFO,
"IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
"Request Frame Size %u bytes Max Chain Depth %u\n",
mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
mpt->ioc_facts.RequestFrameSize << 2,
mpt->ioc_facts.MaxChainDepth);
mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
"Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
if (mpt->port_facts == NULL) {
mpt_prt(mpt, "unable to allocate memory for port facts\n");
return (ENOMEM);
}
if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
(mpt->fw_uploaded == 0)) {
struct mpt_map_info mi;
/*
* In some configurations, the IOC's firmware is
* stored in a shared piece of system NVRAM that
* is only accessible via the BIOS. In this
* case, the firmware keeps a copy of firmware in
* RAM until the OS driver retrieves it. Once
* retrieved, we are responsible for re-downloading
* the firmware after any hard-reset.
*/
MPT_UNLOCK(mpt);
mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
mpt->fw_image_size, 1, mpt->fw_image_size, 0,
&mpt->fw_dmat);
if (error != 0) {
mpt_prt(mpt, "cannot create firmware dma tag\n");
MPT_LOCK(mpt);
return (ENOMEM);
}
error = bus_dmamem_alloc(mpt->fw_dmat,
(void **)&mpt->fw_image, BUS_DMA_NOWAIT |
BUS_DMA_COHERENT, &mpt->fw_dmap);
if (error != 0) {
mpt_prt(mpt, "cannot allocate firmware memory\n");
bus_dma_tag_destroy(mpt->fw_dmat);
MPT_LOCK(mpt);
return (ENOMEM);
}
mi.mpt = mpt;
mi.error = 0;
bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
mpt->fw_phys = mi.phys;
MPT_LOCK(mpt);
error = mpt_upload_fw(mpt);
if (error != 0) {
mpt_prt(mpt, "firmware upload failed.\n");
bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
mpt->fw_dmap);
bus_dma_tag_destroy(mpt->fw_dmat);
mpt->fw_image = NULL;
return (EIO);
}
mpt->fw_uploaded = 1;
}
for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
pfp = &mpt->port_facts[port];
error = mpt_get_portfacts(mpt, 0, pfp);
if (error != MPT_OK) {
mpt_prt(mpt,
"mpt_get_portfacts on port %d failed\n", port);
free(mpt->port_facts, M_DEVBUF);
mpt->port_facts = NULL;
return (mpt_configure_ioc(mpt, tn++, 1));
}
mpt2host_portfacts_reply(pfp);
if (port > 0) {
error = MPT_PRT_INFO;
} else {
error = MPT_PRT_DEBUG;
}
mpt_lprt(mpt, error,
"PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
pfp->MaxDevices);
}
/*
* XXX: Not yet supporting more than port 0
*/
pfp = &mpt->port_facts[0];
if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
mpt->is_fc = 1;
mpt->is_sas = 0;
mpt->is_spi = 0;
} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
mpt->is_fc = 0;
mpt->is_sas = 1;
mpt->is_spi = 0;
} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
mpt->is_fc = 0;
mpt->is_sas = 0;
mpt->is_spi = 1;
if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
mpt->mpt_ini_id = pfp->PortSCSIID;
} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
mpt_prt(mpt, "iSCSI not supported yet\n");
return (ENXIO);
} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
mpt_prt(mpt, "Inactive Port\n");
return (ENXIO);
} else {
mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
return (ENXIO);
}
/*
* Set our role with what this port supports.
*
* Note this might be changed later in different modules
* if this is different from what is wanted.
*/
mpt->role = MPT_ROLE_NONE;
if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
mpt->role |= MPT_ROLE_INITIATOR;
}
if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
mpt->role |= MPT_ROLE_TARGET;
}
/*
* Enable the IOC
*/
if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
mpt_prt(mpt, "unable to initialize IOC\n");
return (ENXIO);
}
/*
* Read IOC configuration information.
*
* We need this to determine whether or not we have certain
* settings for Integrated Mirroring (e.g.).
*/
mpt_read_config_info_ioc(mpt);
return (0);
}
static int
mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
{
uint32_t pptr;
int val;
if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
mpt_prt(mpt, "mpt_send_ioc_init failed\n");
return (EIO);
}
mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
mpt_prt(mpt, "IOC failed to go to run state\n");
return (ENXIO);
}
mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
/*
* Give it reply buffers
*
* Do *not* exceed global credits.
*/
for (val = 0, pptr = mpt->reply_phys;
(pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
pptr += MPT_REPLY_SIZE) {
mpt_free_reply(mpt, pptr);
if (++val == mpt->ioc_facts.GlobalCredits - 1)
break;
}
/*
* Enable the port if asked. This is only done if we're resetting
* the IOC after initial startup.
*/
if (portenable) {
/*
* Enable asynchronous event reporting
*/
mpt_send_event_request(mpt, 1);
if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
return (ENXIO);
}
}
return (MPT_OK);
}
/*
* Endian Conversion Functions- only used on Big Endian machines
*/
#if _BYTE_ORDER == _BIG_ENDIAN
void
mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
{
MPT_2_HOST32(sge, FlagsLength);
MPT_2_HOST32(sge, u.Address64.Low);
MPT_2_HOST32(sge, u.Address64.High);
}
void
mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
{
MPT_2_HOST16(rp, MsgVersion);
MPT_2_HOST16(rp, HeaderVersion);
MPT_2_HOST32(rp, MsgContext);
MPT_2_HOST16(rp, IOCExceptions);
MPT_2_HOST16(rp, IOCStatus);
MPT_2_HOST32(rp, IOCLogInfo);
MPT_2_HOST16(rp, ReplyQueueDepth);
MPT_2_HOST16(rp, RequestFrameSize);
MPT_2_HOST16(rp, Reserved_0101_FWVersion);
MPT_2_HOST16(rp, ProductID);
MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
MPT_2_HOST16(rp, GlobalCredits);
MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
MPT_2_HOST16(rp, CurReplyFrameSize);
MPT_2_HOST32(rp, FWImageSize);
MPT_2_HOST32(rp, IOCCapabilities);
MPT_2_HOST32(rp, FWVersion.Word);
MPT_2_HOST16(rp, HighPriorityQueueDepth);
MPT_2_HOST16(rp, Reserved2);
mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
}
void
mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
{
MPT_2_HOST16(pfp, Reserved);
MPT_2_HOST16(pfp, Reserved1);
MPT_2_HOST32(pfp, MsgContext);
MPT_2_HOST16(pfp, Reserved2);
MPT_2_HOST16(pfp, IOCStatus);
MPT_2_HOST32(pfp, IOCLogInfo);
MPT_2_HOST16(pfp, MaxDevices);
MPT_2_HOST16(pfp, PortSCSIID);
MPT_2_HOST16(pfp, ProtocolFlags);
MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
MPT_2_HOST16(pfp, MaxPersistentIDs);
MPT_2_HOST16(pfp, MaxLanBuckets);
MPT_2_HOST16(pfp, Reserved4);
MPT_2_HOST32(pfp, Reserved5);
}
void
mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
{
int i;
MPT_2_HOST32(ioc2, CapabilitiesFlags);
for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
}
}
void
mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
{
MPT_2_HOST16(ioc3, Reserved2);
}
void
mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
{
MPT_2_HOST32(sp0, Capabilities);
MPT_2_HOST32(sp0, PhysicalInterface);
}
void
mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
{
MPT_2_HOST32(sp1, Configuration);
MPT_2_HOST32(sp1, OnBusTimerValue);
MPT_2_HOST16(sp1, IDConfig);
}
void
host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
{
HOST_2_MPT32(sp1, Configuration);
HOST_2_MPT32(sp1, OnBusTimerValue);
HOST_2_MPT16(sp1, IDConfig);
}
void
mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
{
int i;
MPT_2_HOST32(sp2, PortFlags);
MPT_2_HOST32(sp2, PortSettings);
for (i = 0; i < sizeof(sp2->DeviceSettings) /
sizeof(*sp2->DeviceSettings); i++) {
MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
}
}
void
mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
{
MPT_2_HOST32(sd0, NegotiatedParameters);
MPT_2_HOST32(sd0, Information);
}
void
mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
{
MPT_2_HOST32(sd1, RequestedParameters);
MPT_2_HOST32(sd1, Reserved);
MPT_2_HOST32(sd1, Configuration);
}
void
host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
{
HOST_2_MPT32(sd1, RequestedParameters);
HOST_2_MPT32(sd1, Reserved);
HOST_2_MPT32(sd1, Configuration);
}
void
mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
{
MPT_2_HOST32(fp0, Flags);
MPT_2_HOST32(fp0, PortIdentifier);
MPT_2_HOST32(fp0, WWNN.Low);
MPT_2_HOST32(fp0, WWNN.High);
MPT_2_HOST32(fp0, WWPN.Low);
MPT_2_HOST32(fp0, WWPN.High);
MPT_2_HOST32(fp0, SupportedServiceClass);
MPT_2_HOST32(fp0, SupportedSpeeds);
MPT_2_HOST32(fp0, CurrentSpeed);
MPT_2_HOST32(fp0, MaxFrameSize);
MPT_2_HOST32(fp0, FabricWWNN.Low);
MPT_2_HOST32(fp0, FabricWWNN.High);
MPT_2_HOST32(fp0, FabricWWPN.Low);
MPT_2_HOST32(fp0, FabricWWPN.High);
MPT_2_HOST32(fp0, DiscoveredPortsCount);
MPT_2_HOST32(fp0, MaxInitiators);
}
void
mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
{
MPT_2_HOST32(fp1, Flags);
MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
}
void
host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
{
HOST_2_MPT32(fp1, Flags);
HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
}
void
mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
{
int i;
MPT_2_HOST16(volp, VolumeStatus.Reserved);
MPT_2_HOST16(volp, VolumeSettings.Settings);
MPT_2_HOST32(volp, MaxLBA);
MPT_2_HOST32(volp, MaxLBAHigh);
MPT_2_HOST32(volp, StripeSize);
MPT_2_HOST32(volp, Reserved2);
MPT_2_HOST32(volp, Reserved3);
for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
MPT_2_HOST16(volp, PhysDisk[i].Reserved);
}
}
void
mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
{
MPT_2_HOST32(rpd0, Reserved1);
MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
MPT_2_HOST32(rpd0, MaxLBA);
MPT_2_HOST16(rpd0, ErrorData.Reserved);
MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
MPT_2_HOST16(rpd0, ErrorData.SmartCount);
}
void
mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
{
MPT_2_HOST16(vi, TotalBlocks.High);
MPT_2_HOST16(vi, TotalBlocks.Low);
MPT_2_HOST16(vi, BlocksRemaining.High);
MPT_2_HOST16(vi, BlocksRemaining.Low);
}
#endif