freebsd-src/sys/dev/igc/igc_mac.c
Warner Losh 685dc743dc sys: Remove $FreeBSD$: one-line .c pattern
Remove /^[\s*]*__FBSDID\("\$FreeBSD\$"\);?\s*\n/
2023-08-16 11:54:36 -06:00

1049 lines
30 KiB
C

/*-
* Copyright 2021 Intel Corp
* Copyright 2021 Rubicon Communications, LLC (Netgate)
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <sys/cdefs.h>
#include "igc_api.h"
static void igc_config_collision_dist_generic(struct igc_hw *hw);
/**
* igc_init_mac_ops_generic - Initialize MAC function pointers
* @hw: pointer to the HW structure
*
* Setups up the function pointers to no-op functions
**/
void igc_init_mac_ops_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
DEBUGFUNC("igc_init_mac_ops_generic");
/* General Setup */
mac->ops.init_params = igc_null_ops_generic;
mac->ops.config_collision_dist = igc_config_collision_dist_generic;
mac->ops.rar_set = igc_rar_set_generic;
}
/**
* igc_null_ops_generic - No-op function, returns 0
* @hw: pointer to the HW structure
**/
s32 igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG *hw)
{
DEBUGFUNC("igc_null_ops_generic");
return IGC_SUCCESS;
}
/**
* igc_null_mac_generic - No-op function, return void
* @hw: pointer to the HW structure
**/
void igc_null_mac_generic(struct igc_hw IGC_UNUSEDARG *hw)
{
DEBUGFUNC("igc_null_mac_generic");
return;
}
/**
* igc_null_link_info - No-op function, return 0
* @hw: pointer to the HW structure
* @s: dummy variable
* @d: dummy variable
**/
s32 igc_null_link_info(struct igc_hw IGC_UNUSEDARG *hw,
u16 IGC_UNUSEDARG *s, u16 IGC_UNUSEDARG *d)
{
DEBUGFUNC("igc_null_link_info");
return IGC_SUCCESS;
}
/**
* igc_null_mng_mode - No-op function, return false
* @hw: pointer to the HW structure
**/
bool igc_null_mng_mode(struct igc_hw IGC_UNUSEDARG *hw)
{
DEBUGFUNC("igc_null_mng_mode");
return false;
}
/**
* igc_null_update_mc - No-op function, return void
* @hw: pointer to the HW structure
* @h: dummy variable
* @a: dummy variable
**/
void igc_null_update_mc(struct igc_hw IGC_UNUSEDARG *hw,
u8 IGC_UNUSEDARG *h, u32 IGC_UNUSEDARG a)
{
DEBUGFUNC("igc_null_update_mc");
return;
}
/**
* igc_null_write_vfta - No-op function, return void
* @hw: pointer to the HW structure
* @a: dummy variable
* @b: dummy variable
**/
void igc_null_write_vfta(struct igc_hw IGC_UNUSEDARG *hw,
u32 IGC_UNUSEDARG a, u32 IGC_UNUSEDARG b)
{
DEBUGFUNC("igc_null_write_vfta");
return;
}
/**
* igc_null_rar_set - No-op function, return 0
* @hw: pointer to the HW structure
* @h: dummy variable
* @a: dummy variable
**/
int igc_null_rar_set(struct igc_hw IGC_UNUSEDARG *hw,
u8 IGC_UNUSEDARG *h, u32 IGC_UNUSEDARG a)
{
DEBUGFUNC("igc_null_rar_set");
return IGC_SUCCESS;
}
/**
* igc_set_lan_id_single_port - Set LAN id for a single port device
* @hw: pointer to the HW structure
*
* Sets the LAN function id to zero for a single port device.
**/
void igc_set_lan_id_single_port(struct igc_hw *hw)
{
struct igc_bus_info *bus = &hw->bus;
bus->func = 0;
}
/**
* igc_clear_vfta_generic - Clear VLAN filter table
* @hw: pointer to the HW structure
*
* Clears the register array which contains the VLAN filter table by
* setting all the values to 0.
**/
void igc_clear_vfta_generic(struct igc_hw *hw)
{
u32 offset;
DEBUGFUNC("igc_clear_vfta_generic");
for (offset = 0; offset < IGC_VLAN_FILTER_TBL_SIZE; offset++) {
IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, 0);
IGC_WRITE_FLUSH(hw);
}
}
/**
* igc_write_vfta_generic - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: register offset in VLAN filter table
* @value: register value written to VLAN filter table
*
* Writes value at the given offset in the register array which stores
* the VLAN filter table.
**/
void igc_write_vfta_generic(struct igc_hw *hw, u32 offset, u32 value)
{
DEBUGFUNC("igc_write_vfta_generic");
IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value);
IGC_WRITE_FLUSH(hw);
}
/**
* igc_init_rx_addrs_generic - Initialize receive address's
* @hw: pointer to the HW structure
* @rar_count: receive address registers
*
* Setup the receive address registers by setting the base receive address
* register to the devices MAC address and clearing all the other receive
* address registers to 0.
**/
void igc_init_rx_addrs_generic(struct igc_hw *hw, u16 rar_count)
{
u32 i;
u8 mac_addr[ETH_ADDR_LEN] = {0};
DEBUGFUNC("igc_init_rx_addrs_generic");
/* Setup the receive address */
DEBUGOUT("Programming MAC Address into RAR[0]\n");
hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
/* Zero out the other (rar_entry_count - 1) receive addresses */
DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
for (i = 1; i < rar_count; i++)
hw->mac.ops.rar_set(hw, mac_addr, i);
}
/**
* igc_check_alt_mac_addr_generic - Check for alternate MAC addr
* @hw: pointer to the HW structure
*
* Checks the nvm for an alternate MAC address. An alternate MAC address
* can be setup by pre-boot software and must be treated like a permanent
* address and must override the actual permanent MAC address. If an
* alternate MAC address is found it is programmed into RAR0, replacing
* the permanent address that was installed into RAR0 by the Si on reset.
* This function will return SUCCESS unless it encounters an error while
* reading the EEPROM.
**/
s32 igc_check_alt_mac_addr_generic(struct igc_hw *hw)
{
u32 i;
s32 ret_val;
u16 offset, nvm_alt_mac_addr_offset, nvm_data;
u8 alt_mac_addr[ETH_ADDR_LEN];
DEBUGFUNC("igc_check_alt_mac_addr_generic");
ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
if (ret_val)
return ret_val;
ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
&nvm_alt_mac_addr_offset);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
(nvm_alt_mac_addr_offset == 0x0000))
/* There is no Alternate MAC Address */
return IGC_SUCCESS;
if (hw->bus.func == IGC_FUNC_1)
nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1;
for (i = 0; i < ETH_ADDR_LEN; i += 2) {
offset = nvm_alt_mac_addr_offset + (i >> 1);
ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
}
/* if multicast bit is set, the alternate address will not be used */
if (alt_mac_addr[0] & 0x01) {
DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
return IGC_SUCCESS;
}
/* We have a valid alternate MAC address, and we want to treat it the
* same as the normal permanent MAC address stored by the HW into the
* RAR. Do this by mapping this address into RAR0.
*/
hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
return IGC_SUCCESS;
}
/**
* igc_rar_set_generic - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
*
* Sets the receive address array register at index to the address passed
* in by addr.
**/
int igc_rar_set_generic(struct igc_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
DEBUGFUNC("igc_rar_set_generic");
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
((u32) addr[2] << 16) | ((u32) addr[3] << 24));
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
/* If MAC address zero, no need to set the AV bit */
if (rar_low || rar_high)
rar_high |= IGC_RAH_AV;
/* Some bridges will combine consecutive 32-bit writes into
* a single burst write, which will malfunction on some parts.
* The flushes avoid this.
*/
IGC_WRITE_REG(hw, IGC_RAL(index), rar_low);
IGC_WRITE_FLUSH(hw);
IGC_WRITE_REG(hw, IGC_RAH(index), rar_high);
IGC_WRITE_FLUSH(hw);
return IGC_SUCCESS;
}
/**
* igc_hash_mc_addr_generic - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
*
* Generates a multicast address hash value which is used to determine
* the multicast filter table array address and new table value.
**/
u32 igc_hash_mc_addr_generic(struct igc_hw *hw, u8 *mc_addr)
{
u32 hash_value, hash_mask;
u8 bit_shift = 0;
DEBUGFUNC("igc_hash_mc_addr_generic");
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
/* The portion of the address that is used for the hash table
* is determined by the mc_filter_type setting.
* The algorithm is such that there is a total of 8 bits of shifting.
* The bit_shift for a mc_filter_type of 0 represents the number of
* left-shifts where the MSB of mc_addr[5] would still fall within
* the hash_mask. Case 0 does this exactly. Since there are a total
* of 8 bits of shifting, then mc_addr[4] will shift right the
* remaining number of bits. Thus 8 - bit_shift. The rest of the
* cases are a variation of this algorithm...essentially raising the
* number of bits to shift mc_addr[5] left, while still keeping the
* 8-bit shifting total.
*
* For example, given the following Destination MAC Address and an
* mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
* we can see that the bit_shift for case 0 is 4. These are the hash
* values resulting from each mc_filter_type...
* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
* LSB MSB
*
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
* case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
* case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
*/
switch (hw->mac.mc_filter_type) {
default:
case 0:
break;
case 1:
bit_shift += 1;
break;
case 2:
bit_shift += 2;
break;
case 3:
bit_shift += 4;
break;
}
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
(((u16) mc_addr[5]) << bit_shift)));
return hash_value;
}
/**
* igc_update_mc_addr_list_generic - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates entire Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void igc_update_mc_addr_list_generic(struct igc_hw *hw,
u8 *mc_addr_list, u32 mc_addr_count)
{
u32 hash_value, hash_bit, hash_reg;
int i;
DEBUGFUNC("igc_update_mc_addr_list_generic");
/* clear mta_shadow */
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
/* update mta_shadow from mc_addr_list */
for (i = 0; (u32) i < mc_addr_count; i++) {
hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list);
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
mc_addr_list += (ETH_ADDR_LEN);
}
/* replace the entire MTA table */
for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]);
IGC_WRITE_FLUSH(hw);
}
/**
* igc_clear_hw_cntrs_base_generic - Clear base hardware counters
* @hw: pointer to the HW structure
*
* Clears the base hardware counters by reading the counter registers.
**/
void igc_clear_hw_cntrs_base_generic(struct igc_hw *hw)
{
DEBUGFUNC("igc_clear_hw_cntrs_base_generic");
IGC_READ_REG(hw, IGC_CRCERRS);
IGC_READ_REG(hw, IGC_MPC);
IGC_READ_REG(hw, IGC_SCC);
IGC_READ_REG(hw, IGC_ECOL);
IGC_READ_REG(hw, IGC_MCC);
IGC_READ_REG(hw, IGC_LATECOL);
IGC_READ_REG(hw, IGC_COLC);
IGC_READ_REG(hw, IGC_RERC);
IGC_READ_REG(hw, IGC_DC);
IGC_READ_REG(hw, IGC_RLEC);
IGC_READ_REG(hw, IGC_XONRXC);
IGC_READ_REG(hw, IGC_XONTXC);
IGC_READ_REG(hw, IGC_XOFFRXC);
IGC_READ_REG(hw, IGC_XOFFTXC);
IGC_READ_REG(hw, IGC_FCRUC);
IGC_READ_REG(hw, IGC_GPRC);
IGC_READ_REG(hw, IGC_BPRC);
IGC_READ_REG(hw, IGC_MPRC);
IGC_READ_REG(hw, IGC_GPTC);
IGC_READ_REG(hw, IGC_GORCL);
IGC_READ_REG(hw, IGC_GORCH);
IGC_READ_REG(hw, IGC_GOTCL);
IGC_READ_REG(hw, IGC_GOTCH);
IGC_READ_REG(hw, IGC_RNBC);
IGC_READ_REG(hw, IGC_RUC);
IGC_READ_REG(hw, IGC_RFC);
IGC_READ_REG(hw, IGC_ROC);
IGC_READ_REG(hw, IGC_RJC);
IGC_READ_REG(hw, IGC_TORL);
IGC_READ_REG(hw, IGC_TORH);
IGC_READ_REG(hw, IGC_TOTL);
IGC_READ_REG(hw, IGC_TOTH);
IGC_READ_REG(hw, IGC_TPR);
IGC_READ_REG(hw, IGC_TPT);
IGC_READ_REG(hw, IGC_MPTC);
IGC_READ_REG(hw, IGC_BPTC);
IGC_READ_REG(hw, IGC_TLPIC);
IGC_READ_REG(hw, IGC_RLPIC);
IGC_READ_REG(hw, IGC_RXDMTC);
}
/**
* igc_check_for_copper_link_generic - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
**/
s32 igc_check_for_copper_link_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
s32 ret_val;
bool link = false;
DEBUGFUNC("igc_check_for_copper_link");
/* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status)
return IGC_SUCCESS;
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link)
return IGC_SUCCESS; /* No link detected */
mac->get_link_status = false;
/* Check if there was DownShift, must be checked
* immediately after link-up
*/
igc_check_downshift_generic(hw);
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg)
return -IGC_ERR_CONFIG;
/* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
mac->ops.config_collision_dist(hw);
/* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = igc_config_fc_after_link_up_generic(hw);
if (ret_val)
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
/**
* igc_setup_link_generic - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
s32 igc_setup_link_generic(struct igc_hw *hw)
{
s32 ret_val;
DEBUGFUNC("igc_setup_link_generic");
/* In the case of the phy reset being blocked, we already have a link.
* We do not need to set it up again.
*/
if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
return IGC_SUCCESS;
/* If requested flow control is set to default, set flow control
* for both 'rx' and 'tx' pause frames.
*/
if (hw->fc.requested_mode == igc_fc_default) {
hw->fc.requested_mode = igc_fc_full;
}
/* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
hw->fc.current_mode);
/* Call the necessary media_type subroutine to configure the link. */
ret_val = hw->mac.ops.setup_physical_interface(hw);
if (ret_val)
return ret_val;
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE);
IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time);
return igc_set_fc_watermarks_generic(hw);
}
/**
* igc_config_collision_dist_generic - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
* during link setup.
**/
static void igc_config_collision_dist_generic(struct igc_hw *hw)
{
u32 tctl;
DEBUGFUNC("igc_config_collision_dist_generic");
tctl = IGC_READ_REG(hw, IGC_TCTL);
tctl &= ~IGC_TCTL_COLD;
tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
IGC_WRITE_REG(hw, IGC_TCTL, tctl);
IGC_WRITE_FLUSH(hw);
}
/**
* igc_set_fc_watermarks_generic - Set flow control high/low watermarks
* @hw: pointer to the HW structure
*
* Sets the flow control high/low threshold (watermark) registers. If
* flow control XON frame transmission is enabled, then set XON frame
* transmission as well.
**/
s32 igc_set_fc_watermarks_generic(struct igc_hw *hw)
{
u32 fcrtl = 0, fcrth = 0;
DEBUGFUNC("igc_set_fc_watermarks_generic");
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames is not enabled, then these
* registers will be set to 0.
*/
if (hw->fc.current_mode & igc_fc_tx_pause) {
/* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of
* XON frames.
*/
fcrtl = hw->fc.low_water;
if (hw->fc.send_xon)
fcrtl |= IGC_FCRTL_XONE;
fcrth = hw->fc.high_water;
}
IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl);
IGC_WRITE_REG(hw, IGC_FCRTH, fcrth);
return IGC_SUCCESS;
}
/**
* igc_force_mac_fc_generic - Force the MAC's flow control settings
* @hw: pointer to the HW structure
*
* Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
* device control register to reflect the adapter settings. TFCE and RFCE
* need to be explicitly set by software when a copper PHY is used because
* autonegotiation is managed by the PHY rather than the MAC. Software must
* also configure these bits when link is forced on a fiber connection.
**/
s32 igc_force_mac_fc_generic(struct igc_hw *hw)
{
u32 ctrl;
DEBUGFUNC("igc_force_mac_fc_generic");
ctrl = IGC_READ_REG(hw, IGC_CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc.current_mode" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and Tx flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
switch (hw->fc.current_mode) {
case igc_fc_none:
ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
break;
case igc_fc_rx_pause:
ctrl &= (~IGC_CTRL_TFCE);
ctrl |= IGC_CTRL_RFCE;
break;
case igc_fc_tx_pause:
ctrl &= (~IGC_CTRL_RFCE);
ctrl |= IGC_CTRL_TFCE;
break;
case igc_fc_full:
ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -IGC_ERR_CONFIG;
}
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
return IGC_SUCCESS;
}
/**
* igc_config_fc_after_link_up_generic - Configures flow control after link
* @hw: pointer to the HW structure
*
* Checks the status of auto-negotiation after link up to ensure that the
* speed and duplex were not forced. If the link needed to be forced, then
* flow control needs to be forced also. If auto-negotiation is enabled
* and did not fail, then we configure flow control based on our link
* partner.
**/
s32 igc_config_fc_after_link_up_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
s32 ret_val = IGC_SUCCESS;
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
u16 speed, duplex;
DEBUGFUNC("igc_config_fc_after_link_up_generic");
if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if (mac->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
return ret_val;
}
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (Address 4) and the Auto_Negotiation Base
* Page Ability Register (Address 5) to determine how
* flow control was negotiated.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
&mii_nway_adv_reg);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg);
if (ret_val)
return ret_val;
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | igc_fc_none
* 0 | 1 | 0 | DC | igc_fc_none
* 0 | 1 | 1 | 0 | igc_fc_none
* 0 | 1 | 1 | 1 | igc_fc_tx_pause
* 1 | 0 | 0 | DC | igc_fc_none
* 1 | DC | 1 | DC | igc_fc_full
* 1 | 1 | 0 | 0 | igc_fc_none
* 1 | 1 | 0 | 1 | igc_fc_rx_pause
*
* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | IGC_fc_full
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise Rx
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == igc_fc_full) {
hw->fc.current_mode = igc_fc_full;
DEBUGOUT("Flow Control = FULL.\n");
} else {
hw->fc.current_mode = igc_fc_rx_pause;
DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | igc_fc_tx_pause
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = igc_fc_tx_pause;
DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | igc_fc_rx_pause
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = igc_fc_rx_pause;
DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
} else {
/* Per the IEEE spec, at this point flow control
* should be disabled.
*/
hw->fc.current_mode = igc_fc_none;
DEBUGOUT("Flow Control = NONE.\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
if (ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
if (duplex == HALF_DUPLEX)
hw->fc.current_mode = igc_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = igc_force_mac_fc_generic(hw);
if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
}
return IGC_SUCCESS;
}
/**
* igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Read the status register for the current speed/duplex and store the current
* speed and duplex for copper connections.
**/
s32 igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, u16 *speed,
u16 *duplex)
{
u32 status;
DEBUGFUNC("igc_get_speed_and_duplex_copper_generic");
status = IGC_READ_REG(hw, IGC_STATUS);
if (status & IGC_STATUS_SPEED_1000) {
/* For I225, STATUS will indicate 1G speed in both 1 Gbps
* and 2.5 Gbps link modes. An additional bit is used
* to differentiate between 1 Gbps and 2.5 Gbps.
*/
if ((hw->mac.type == igc_i225) &&
(status & IGC_STATUS_SPEED_2500)) {
*speed = SPEED_2500;
DEBUGOUT("2500 Mbs, ");
} else {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
}
} else if (status & IGC_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
*speed = SPEED_10;
DEBUGOUT("10 Mbs, ");
}
if (status & IGC_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\n");
} else {
*duplex = HALF_DUPLEX;
DEBUGOUT("Half Duplex\n");
}
return IGC_SUCCESS;
}
/**
* igc_get_hw_semaphore_generic - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
**/
s32 igc_get_hw_semaphore_generic(struct igc_hw *hw)
{
u32 swsm;
s32 timeout = hw->nvm.word_size + 1;
s32 i = 0;
DEBUGFUNC("igc_get_hw_semaphore_generic");
/* Get the SW semaphore */
while (i < timeout) {
swsm = IGC_READ_REG(hw, IGC_SWSM);
if (!(swsm & IGC_SWSM_SMBI))
break;
usec_delay(50);
i++;
}
if (i == timeout) {
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
return -IGC_ERR_NVM;
}
/* Get the FW semaphore. */
for (i = 0; i < timeout; i++) {
swsm = IGC_READ_REG(hw, IGC_SWSM);
IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
/* Semaphore acquired if bit latched */
if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
break;
usec_delay(50);
}
if (i == timeout) {
/* Release semaphores */
igc_put_hw_semaphore_generic(hw);
DEBUGOUT("Driver can't access the NVM\n");
return -IGC_ERR_NVM;
}
return IGC_SUCCESS;
}
/**
* igc_put_hw_semaphore_generic - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
**/
void igc_put_hw_semaphore_generic(struct igc_hw *hw)
{
u32 swsm;
DEBUGFUNC("igc_put_hw_semaphore_generic");
swsm = IGC_READ_REG(hw, IGC_SWSM);
swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
IGC_WRITE_REG(hw, IGC_SWSM, swsm);
}
/**
* igc_get_auto_rd_done_generic - Check for auto read completion
* @hw: pointer to the HW structure
*
* Check EEPROM for Auto Read done bit.
**/
s32 igc_get_auto_rd_done_generic(struct igc_hw *hw)
{
s32 i = 0;
DEBUGFUNC("igc_get_auto_rd_done_generic");
while (i < AUTO_READ_DONE_TIMEOUT) {
if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD)
break;
msec_delay(1);
i++;
}
if (i == AUTO_READ_DONE_TIMEOUT) {
DEBUGOUT("Auto read by HW from NVM has not completed.\n");
return -IGC_ERR_RESET;
}
return IGC_SUCCESS;
}
/**
* igc_disable_pcie_master_generic - Disables PCI-express master access
* @hw: pointer to the HW structure
*
* Returns IGC_SUCCESS if successful, else returns -10
* (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
* the master requests to be disabled.
*
* Disables PCI-Express master access and verifies there are no pending
* requests.
**/
s32 igc_disable_pcie_master_generic(struct igc_hw *hw)
{
u32 ctrl;
s32 timeout = MASTER_DISABLE_TIMEOUT;
DEBUGFUNC("igc_disable_pcie_master_generic");
ctrl = IGC_READ_REG(hw, IGC_CTRL);
ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
while (timeout) {
if (!(IGC_READ_REG(hw, IGC_STATUS) &
IGC_STATUS_GIO_MASTER_ENABLE))
break;
usec_delay(100);
timeout--;
}
if (!timeout) {
DEBUGOUT("Master requests are pending.\n");
return -IGC_ERR_MASTER_REQUESTS_PENDING;
}
return IGC_SUCCESS;
}