freebsd-src/sys/dev/igc/if_igc.c
Marius Strobl f221d35be7 igb(4): Remove disconnected SYSCTL
The global hw.igb.rx_process_limit knob never was adhered to by the
in-tree version of this driver but similar functionality is available
via the device-specific dev.igb.N.iflib.rx_budget.

While at it, remove the - besides initialization of tx_process_limit -
unused {r,t}x_process_limit members.
2024-01-09 23:15:44 +01:00

2918 lines
86 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
* All rights reserved.
* Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "if_igc.h"
#include <sys/sbuf.h>
#include <machine/_inttypes.h>
#ifdef RSS
#include <net/rss_config.h>
#include <netinet/in_rss.h>
#endif
/*********************************************************************
* PCI Device ID Table
*
* Used by probe to select devices to load on
* Last entry must be all 0s
*
* { Vendor ID, Device ID, String }
*********************************************************************/
static const pci_vendor_info_t igc_vendor_info_array[] =
{
/* Intel(R) PRO/1000 Network Connection - igc */
PVID(0x8086, IGC_DEV_ID_I225_LM, "Intel(R) Ethernet Controller I225-LM"),
PVID(0x8086, IGC_DEV_ID_I225_V, "Intel(R) Ethernet Controller I225-V"),
PVID(0x8086, IGC_DEV_ID_I225_K, "Intel(R) Ethernet Controller I225-K"),
PVID(0x8086, IGC_DEV_ID_I225_I, "Intel(R) Ethernet Controller I225-I"),
PVID(0x8086, IGC_DEV_ID_I220_V, "Intel(R) Ethernet Controller I220-V"),
PVID(0x8086, IGC_DEV_ID_I225_K2, "Intel(R) Ethernet Controller I225-K(2)"),
PVID(0x8086, IGC_DEV_ID_I225_LMVP, "Intel(R) Ethernet Controller I225-LMvP(2)"),
PVID(0x8086, IGC_DEV_ID_I226_K, "Intel(R) Ethernet Controller I226-K"),
PVID(0x8086, IGC_DEV_ID_I226_LMVP, "Intel(R) Ethernet Controller I226-LMvP"),
PVID(0x8086, IGC_DEV_ID_I225_IT, "Intel(R) Ethernet Controller I225-IT(2)"),
PVID(0x8086, IGC_DEV_ID_I226_LM, "Intel(R) Ethernet Controller I226-LM"),
PVID(0x8086, IGC_DEV_ID_I226_V, "Intel(R) Ethernet Controller I226-V"),
PVID(0x8086, IGC_DEV_ID_I226_IT, "Intel(R) Ethernet Controller I226-IT"),
PVID(0x8086, IGC_DEV_ID_I221_V, "Intel(R) Ethernet Controller I221-V"),
PVID(0x8086, IGC_DEV_ID_I226_BLANK_NVM, "Intel(R) Ethernet Controller I226(blankNVM)"),
PVID(0x8086, IGC_DEV_ID_I225_BLANK_NVM, "Intel(R) Ethernet Controller I225(blankNVM)"),
/* required last entry */
PVID_END
};
/*********************************************************************
* Function prototypes
*********************************************************************/
static void *igc_register(device_t dev);
static int igc_if_attach_pre(if_ctx_t ctx);
static int igc_if_attach_post(if_ctx_t ctx);
static int igc_if_detach(if_ctx_t ctx);
static int igc_if_shutdown(if_ctx_t ctx);
static int igc_if_suspend(if_ctx_t ctx);
static int igc_if_resume(if_ctx_t ctx);
static int igc_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
static int igc_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
static void igc_if_queues_free(if_ctx_t ctx);
static uint64_t igc_if_get_counter(if_ctx_t, ift_counter);
static void igc_if_init(if_ctx_t ctx);
static void igc_if_stop(if_ctx_t ctx);
static void igc_if_media_status(if_ctx_t, struct ifmediareq *);
static int igc_if_media_change(if_ctx_t ctx);
static int igc_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
static void igc_if_timer(if_ctx_t ctx, uint16_t qid);
static void igc_if_watchdog_reset(if_ctx_t ctx);
static bool igc_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
static void igc_identify_hardware(if_ctx_t ctx);
static int igc_allocate_pci_resources(if_ctx_t ctx);
static void igc_free_pci_resources(if_ctx_t ctx);
static void igc_reset(if_ctx_t ctx);
static int igc_setup_interface(if_ctx_t ctx);
static int igc_setup_msix(if_ctx_t ctx);
static void igc_initialize_transmit_unit(if_ctx_t ctx);
static void igc_initialize_receive_unit(if_ctx_t ctx);
static void igc_if_intr_enable(if_ctx_t ctx);
static void igc_if_intr_disable(if_ctx_t ctx);
static int igc_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
static int igc_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
static void igc_if_multi_set(if_ctx_t ctx);
static void igc_if_update_admin_status(if_ctx_t ctx);
static void igc_if_debug(if_ctx_t ctx);
static void igc_update_stats_counters(struct igc_adapter *);
static void igc_add_hw_stats(struct igc_adapter *adapter);
static int igc_if_set_promisc(if_ctx_t ctx, int flags);
static void igc_setup_vlan_hw_support(if_ctx_t ctx);
static int igc_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
static void igc_print_nvm_info(struct igc_adapter *);
static int igc_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
static int igc_get_rs(SYSCTL_HANDLER_ARGS);
static void igc_print_debug_info(struct igc_adapter *);
static int igc_is_valid_ether_addr(u8 *);
static int igc_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
static void igc_add_int_delay_sysctl(struct igc_adapter *, const char *,
const char *, struct igc_int_delay_info *, int, int);
/* Management and WOL Support */
static void igc_get_hw_control(struct igc_adapter *);
static void igc_release_hw_control(struct igc_adapter *);
static void igc_get_wakeup(if_ctx_t ctx);
static void igc_enable_wakeup(if_ctx_t ctx);
int igc_intr(void *arg);
/* MSI-X handlers */
static int igc_if_msix_intr_assign(if_ctx_t, int);
static int igc_msix_link(void *);
static void igc_handle_link(void *context);
static int igc_set_flowcntl(SYSCTL_HANDLER_ARGS);
static int igc_sysctl_eee(SYSCTL_HANDLER_ARGS);
static int igc_get_regs(SYSCTL_HANDLER_ARGS);
static void igc_configure_queues(struct igc_adapter *adapter);
/*********************************************************************
* FreeBSD Device Interface Entry Points
*********************************************************************/
static device_method_t igc_methods[] = {
/* Device interface */
DEVMETHOD(device_register, igc_register),
DEVMETHOD(device_probe, iflib_device_probe),
DEVMETHOD(device_attach, iflib_device_attach),
DEVMETHOD(device_detach, iflib_device_detach),
DEVMETHOD(device_shutdown, iflib_device_shutdown),
DEVMETHOD(device_suspend, iflib_device_suspend),
DEVMETHOD(device_resume, iflib_device_resume),
DEVMETHOD_END
};
static driver_t igc_driver = {
"igc", igc_methods, sizeof(struct igc_adapter),
};
DRIVER_MODULE(igc, pci, igc_driver, 0, 0);
MODULE_DEPEND(igc, pci, 1, 1, 1);
MODULE_DEPEND(igc, ether, 1, 1, 1);
MODULE_DEPEND(igc, iflib, 1, 1, 1);
IFLIB_PNP_INFO(pci, igc, igc_vendor_info_array);
static device_method_t igc_if_methods[] = {
DEVMETHOD(ifdi_attach_pre, igc_if_attach_pre),
DEVMETHOD(ifdi_attach_post, igc_if_attach_post),
DEVMETHOD(ifdi_detach, igc_if_detach),
DEVMETHOD(ifdi_shutdown, igc_if_shutdown),
DEVMETHOD(ifdi_suspend, igc_if_suspend),
DEVMETHOD(ifdi_resume, igc_if_resume),
DEVMETHOD(ifdi_init, igc_if_init),
DEVMETHOD(ifdi_stop, igc_if_stop),
DEVMETHOD(ifdi_msix_intr_assign, igc_if_msix_intr_assign),
DEVMETHOD(ifdi_intr_enable, igc_if_intr_enable),
DEVMETHOD(ifdi_intr_disable, igc_if_intr_disable),
DEVMETHOD(ifdi_tx_queues_alloc, igc_if_tx_queues_alloc),
DEVMETHOD(ifdi_rx_queues_alloc, igc_if_rx_queues_alloc),
DEVMETHOD(ifdi_queues_free, igc_if_queues_free),
DEVMETHOD(ifdi_update_admin_status, igc_if_update_admin_status),
DEVMETHOD(ifdi_multi_set, igc_if_multi_set),
DEVMETHOD(ifdi_media_status, igc_if_media_status),
DEVMETHOD(ifdi_media_change, igc_if_media_change),
DEVMETHOD(ifdi_mtu_set, igc_if_mtu_set),
DEVMETHOD(ifdi_promisc_set, igc_if_set_promisc),
DEVMETHOD(ifdi_timer, igc_if_timer),
DEVMETHOD(ifdi_watchdog_reset, igc_if_watchdog_reset),
DEVMETHOD(ifdi_get_counter, igc_if_get_counter),
DEVMETHOD(ifdi_rx_queue_intr_enable, igc_if_rx_queue_intr_enable),
DEVMETHOD(ifdi_tx_queue_intr_enable, igc_if_tx_queue_intr_enable),
DEVMETHOD(ifdi_debug, igc_if_debug),
DEVMETHOD(ifdi_needs_restart, igc_if_needs_restart),
DEVMETHOD_END
};
static driver_t igc_if_driver = {
"igc_if", igc_if_methods, sizeof(struct igc_adapter)
};
/*********************************************************************
* Tunable default values.
*********************************************************************/
#define IGC_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
#define IGC_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
#define MAX_INTS_PER_SEC 8000
#define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256))
/* Allow common code without TSO */
#ifndef CSUM_TSO
#define CSUM_TSO 0
#endif
static SYSCTL_NODE(_hw, OID_AUTO, igc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"igc driver parameters");
static int igc_disable_crc_stripping = 0;
SYSCTL_INT(_hw_igc, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
&igc_disable_crc_stripping, 0, "Disable CRC Stripping");
static int igc_tx_int_delay_dflt = IGC_TICKS_TO_USECS(IGC_TIDV_VAL);
static int igc_rx_int_delay_dflt = IGC_TICKS_TO_USECS(IGC_RDTR_VAL);
SYSCTL_INT(_hw_igc, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &igc_tx_int_delay_dflt,
0, "Default transmit interrupt delay in usecs");
SYSCTL_INT(_hw_igc, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &igc_rx_int_delay_dflt,
0, "Default receive interrupt delay in usecs");
static int igc_tx_abs_int_delay_dflt = IGC_TICKS_TO_USECS(IGC_TADV_VAL);
static int igc_rx_abs_int_delay_dflt = IGC_TICKS_TO_USECS(IGC_RADV_VAL);
SYSCTL_INT(_hw_igc, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
&igc_tx_abs_int_delay_dflt, 0,
"Default transmit interrupt delay limit in usecs");
SYSCTL_INT(_hw_igc, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
&igc_rx_abs_int_delay_dflt, 0,
"Default receive interrupt delay limit in usecs");
static int igc_smart_pwr_down = false;
SYSCTL_INT(_hw_igc, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &igc_smart_pwr_down,
0, "Set to true to leave smart power down enabled on newer adapters");
/* Controls whether promiscuous also shows bad packets */
static int igc_debug_sbp = true;
SYSCTL_INT(_hw_igc, OID_AUTO, sbp, CTLFLAG_RDTUN, &igc_debug_sbp, 0,
"Show bad packets in promiscuous mode");
/* Energy efficient ethernet - default to OFF */
static int igc_eee_setting = 1;
SYSCTL_INT(_hw_igc, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &igc_eee_setting, 0,
"Enable Energy Efficient Ethernet");
/*
** Tuneable Interrupt rate
*/
static int igc_max_interrupt_rate = 20000;
SYSCTL_INT(_hw_igc, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
&igc_max_interrupt_rate, 0, "Maximum interrupts per second");
extern struct if_txrx igc_txrx;
static struct if_shared_ctx igc_sctx_init = {
.isc_magic = IFLIB_MAGIC,
.isc_q_align = PAGE_SIZE,
.isc_tx_maxsize = IGC_TSO_SIZE + sizeof(struct ether_vlan_header),
.isc_tx_maxsegsize = PAGE_SIZE,
.isc_tso_maxsize = IGC_TSO_SIZE + sizeof(struct ether_vlan_header),
.isc_tso_maxsegsize = IGC_TSO_SEG_SIZE,
.isc_rx_maxsize = MAX_JUMBO_FRAME_SIZE,
.isc_rx_nsegments = 1,
.isc_rx_maxsegsize = MJUM9BYTES,
.isc_nfl = 1,
.isc_nrxqs = 1,
.isc_ntxqs = 1,
.isc_admin_intrcnt = 1,
.isc_vendor_info = igc_vendor_info_array,
.isc_driver_version = "1",
.isc_driver = &igc_if_driver,
.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
.isc_nrxd_min = {IGC_MIN_RXD},
.isc_ntxd_min = {IGC_MIN_TXD},
.isc_nrxd_max = {IGC_MAX_RXD},
.isc_ntxd_max = {IGC_MAX_TXD},
.isc_nrxd_default = {IGC_DEFAULT_RXD},
.isc_ntxd_default = {IGC_DEFAULT_TXD},
};
/*****************************************************************
*
* Dump Registers
*
****************************************************************/
#define IGC_REGS_LEN 739
static int igc_get_regs(SYSCTL_HANDLER_ARGS)
{
struct igc_adapter *adapter = (struct igc_adapter *)arg1;
struct igc_hw *hw = &adapter->hw;
struct sbuf *sb;
u32 *regs_buff;
int rc;
regs_buff = malloc(sizeof(u32) * IGC_REGS_LEN, M_DEVBUF, M_WAITOK);
memset(regs_buff, 0, IGC_REGS_LEN * sizeof(u32));
rc = sysctl_wire_old_buffer(req, 0);
MPASS(rc == 0);
if (rc != 0) {
free(regs_buff, M_DEVBUF);
return (rc);
}
sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
MPASS(sb != NULL);
if (sb == NULL) {
free(regs_buff, M_DEVBUF);
return (ENOMEM);
}
/* General Registers */
regs_buff[0] = IGC_READ_REG(hw, IGC_CTRL);
regs_buff[1] = IGC_READ_REG(hw, IGC_STATUS);
regs_buff[2] = IGC_READ_REG(hw, IGC_CTRL_EXT);
regs_buff[3] = IGC_READ_REG(hw, IGC_ICR);
regs_buff[4] = IGC_READ_REG(hw, IGC_RCTL);
regs_buff[5] = IGC_READ_REG(hw, IGC_RDLEN(0));
regs_buff[6] = IGC_READ_REG(hw, IGC_RDH(0));
regs_buff[7] = IGC_READ_REG(hw, IGC_RDT(0));
regs_buff[8] = IGC_READ_REG(hw, IGC_RXDCTL(0));
regs_buff[9] = IGC_READ_REG(hw, IGC_RDBAL(0));
regs_buff[10] = IGC_READ_REG(hw, IGC_RDBAH(0));
regs_buff[11] = IGC_READ_REG(hw, IGC_TCTL);
regs_buff[12] = IGC_READ_REG(hw, IGC_TDBAL(0));
regs_buff[13] = IGC_READ_REG(hw, IGC_TDBAH(0));
regs_buff[14] = IGC_READ_REG(hw, IGC_TDLEN(0));
regs_buff[15] = IGC_READ_REG(hw, IGC_TDH(0));
regs_buff[16] = IGC_READ_REG(hw, IGC_TDT(0));
regs_buff[17] = IGC_READ_REG(hw, IGC_TXDCTL(0));
sbuf_printf(sb, "General Registers\n");
sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
sbuf_printf(sb, "Interrupt Registers\n");
sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
sbuf_printf(sb, "RX Registers\n");
sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
sbuf_printf(sb, "TX Registers\n");
sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
free(regs_buff, M_DEVBUF);
#ifdef DUMP_DESCS
{
if_softc_ctx_t scctx = adapter->shared;
struct rx_ring *rxr = &rx_que->rxr;
struct tx_ring *txr = &tx_que->txr;
int ntxd = scctx->isc_ntxd[0];
int nrxd = scctx->isc_nrxd[0];
int j;
for (j = 0; j < nrxd; j++) {
u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
u32 length = le32toh(rxr->rx_base[j].wb.upper.length);
sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
}
for (j = 0; j < min(ntxd, 256); j++) {
unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n",
j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & IGC_TXD_STAT_DD : 0);
}
}
#endif
rc = sbuf_finish(sb);
sbuf_delete(sb);
return(rc);
}
static void *
igc_register(device_t dev)
{
return (&igc_sctx_init);
}
static int
igc_set_num_queues(if_ctx_t ctx)
{
int maxqueues;
maxqueues = 4;
return (maxqueues);
}
#define IGC_CAPS \
IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_TSO4 | IFCAP_LRO | \
IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | IFCAP_TSO6
/*********************************************************************
* Device initialization routine
*
* The attach entry point is called when the driver is being loaded.
* This routine identifies the type of hardware, allocates all resources
* and initializes the hardware.
*
* return 0 on success, positive on failure
*********************************************************************/
static int
igc_if_attach_pre(if_ctx_t ctx)
{
struct igc_adapter *adapter;
if_softc_ctx_t scctx;
device_t dev;
struct igc_hw *hw;
int error = 0;
INIT_DEBUGOUT("igc_if_attach_pre: begin");
dev = iflib_get_dev(ctx);
adapter = iflib_get_softc(ctx);
adapter->ctx = adapter->osdep.ctx = ctx;
adapter->dev = adapter->osdep.dev = dev;
scctx = adapter->shared = iflib_get_softc_ctx(ctx);
adapter->media = iflib_get_media(ctx);
hw = &adapter->hw;
/* SYSCTL stuff */
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
adapter, 0, igc_sysctl_nvm_info, "I", "NVM Information");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
adapter, 0, igc_sysctl_debug_info, "I", "Debug Information");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
adapter, 0, igc_set_flowcntl, "I", "Flow Control");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "reg_dump",
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
igc_get_regs, "A", "Dump Registers");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "rs_dump",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
igc_get_rs, "I", "Dump RS indexes");
/* Determine hardware and mac info */
igc_identify_hardware(ctx);
scctx->isc_tx_nsegments = IGC_MAX_SCATTER;
scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = igc_set_num_queues(ctx);
if (bootverbose)
device_printf(dev, "attach_pre capping queues at %d\n",
scctx->isc_ntxqsets_max);
scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union igc_adv_tx_desc), IGC_DBA_ALIGN);
scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
scctx->isc_txd_size[0] = sizeof(union igc_adv_tx_desc);
scctx->isc_rxd_size[0] = sizeof(union igc_adv_rx_desc);
scctx->isc_txrx = &igc_txrx;
scctx->isc_tx_tso_segments_max = IGC_MAX_SCATTER;
scctx->isc_tx_tso_size_max = IGC_TSO_SIZE;
scctx->isc_tx_tso_segsize_max = IGC_TSO_SEG_SIZE;
scctx->isc_capabilities = scctx->isc_capenable = IGC_CAPS;
scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_SCTP | CSUM_IP6_SCTP;
/*
** Some new devices, as with ixgbe, now may
** use a different BAR, so we need to keep
** track of which is used.
*/
scctx->isc_msix_bar = PCIR_BAR(IGC_MSIX_BAR);
if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0)
scctx->isc_msix_bar += 4;
/* Setup PCI resources */
if (igc_allocate_pci_resources(ctx)) {
device_printf(dev, "Allocation of PCI resources failed\n");
error = ENXIO;
goto err_pci;
}
/* Do Shared Code initialization */
error = igc_setup_init_funcs(hw, true);
if (error) {
device_printf(dev, "Setup of Shared code failed, error %d\n",
error);
error = ENXIO;
goto err_pci;
}
igc_setup_msix(ctx);
igc_get_bus_info(hw);
/* Set up some sysctls for the tunable interrupt delays */
igc_add_int_delay_sysctl(adapter, "rx_int_delay",
"receive interrupt delay in usecs", &adapter->rx_int_delay,
IGC_REGISTER(hw, IGC_RDTR), igc_rx_int_delay_dflt);
igc_add_int_delay_sysctl(adapter, "tx_int_delay",
"transmit interrupt delay in usecs", &adapter->tx_int_delay,
IGC_REGISTER(hw, IGC_TIDV), igc_tx_int_delay_dflt);
igc_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
"receive interrupt delay limit in usecs",
&adapter->rx_abs_int_delay,
IGC_REGISTER(hw, IGC_RADV),
igc_rx_abs_int_delay_dflt);
igc_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
"transmit interrupt delay limit in usecs",
&adapter->tx_abs_int_delay,
IGC_REGISTER(hw, IGC_TADV),
igc_tx_abs_int_delay_dflt);
igc_add_int_delay_sysctl(adapter, "itr",
"interrupt delay limit in usecs/4",
&adapter->tx_itr,
IGC_REGISTER(hw, IGC_ITR),
DEFAULT_ITR);
hw->mac.autoneg = DO_AUTO_NEG;
hw->phy.autoneg_wait_to_complete = false;
hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
/* Copper options */
if (hw->phy.media_type == igc_media_type_copper) {
hw->phy.mdix = AUTO_ALL_MODES;
}
/*
* Set the frame limits assuming
* standard ethernet sized frames.
*/
scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
/* Allocate multicast array memory. */
adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
if (adapter->mta == NULL) {
device_printf(dev, "Can not allocate multicast setup array\n");
error = ENOMEM;
goto err_late;
}
/* Check SOL/IDER usage */
if (igc_check_reset_block(hw))
device_printf(dev, "PHY reset is blocked"
" due to SOL/IDER session.\n");
/* Sysctl for setting Energy Efficient Ethernet */
adapter->hw.dev_spec._i225.eee_disable = igc_eee_setting;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "eee_control",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
adapter, 0, igc_sysctl_eee, "I",
"Disable Energy Efficient Ethernet");
/*
** Start from a known state, this is
** important in reading the nvm and
** mac from that.
*/
igc_reset_hw(hw);
/* Make sure we have a good EEPROM before we read from it */
if (igc_validate_nvm_checksum(hw) < 0) {
/*
** Some PCI-E parts fail the first check due to
** the link being in sleep state, call it again,
** if it fails a second time its a real issue.
*/
if (igc_validate_nvm_checksum(hw) < 0) {
device_printf(dev,
"The EEPROM Checksum Is Not Valid\n");
error = EIO;
goto err_late;
}
}
/* Copy the permanent MAC address out of the EEPROM */
if (igc_read_mac_addr(hw) < 0) {
device_printf(dev, "EEPROM read error while reading MAC"
" address\n");
error = EIO;
goto err_late;
}
if (!igc_is_valid_ether_addr(hw->mac.addr)) {
device_printf(dev, "Invalid MAC address\n");
error = EIO;
goto err_late;
}
/*
* Get Wake-on-Lan and Management info for later use
*/
igc_get_wakeup(ctx);
/* Enable only WOL MAGIC by default */
scctx->isc_capenable &= ~IFCAP_WOL;
if (adapter->wol != 0)
scctx->isc_capenable |= IFCAP_WOL_MAGIC;
iflib_set_mac(ctx, hw->mac.addr);
return (0);
err_late:
igc_release_hw_control(adapter);
err_pci:
igc_free_pci_resources(ctx);
free(adapter->mta, M_DEVBUF);
return (error);
}
static int
igc_if_attach_post(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct igc_hw *hw = &adapter->hw;
int error = 0;
/* Setup OS specific network interface */
error = igc_setup_interface(ctx);
if (error != 0) {
goto err_late;
}
igc_reset(ctx);
/* Initialize statistics */
igc_update_stats_counters(adapter);
hw->mac.get_link_status = true;
igc_if_update_admin_status(ctx);
igc_add_hw_stats(adapter);
/* the driver can now take control from firmware */
igc_get_hw_control(adapter);
INIT_DEBUGOUT("igc_if_attach_post: end");
return (error);
err_late:
igc_release_hw_control(adapter);
igc_free_pci_resources(ctx);
igc_if_queues_free(ctx);
free(adapter->mta, M_DEVBUF);
return (error);
}
/*********************************************************************
* Device removal routine
*
* The detach entry point is called when the driver is being removed.
* This routine stops the adapter and deallocates all the resources
* that were allocated for driver operation.
*
* return 0 on success, positive on failure
*********************************************************************/
static int
igc_if_detach(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
INIT_DEBUGOUT("igc_if_detach: begin");
igc_phy_hw_reset(&adapter->hw);
igc_release_hw_control(adapter);
igc_free_pci_resources(ctx);
return (0);
}
/*********************************************************************
*
* Shutdown entry point
*
**********************************************************************/
static int
igc_if_shutdown(if_ctx_t ctx)
{
return igc_if_suspend(ctx);
}
/*
* Suspend/resume device methods.
*/
static int
igc_if_suspend(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
igc_release_hw_control(adapter);
igc_enable_wakeup(ctx);
return (0);
}
static int
igc_if_resume(if_ctx_t ctx)
{
igc_if_init(ctx);
return(0);
}
static int
igc_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
{
int max_frame_size;
struct igc_adapter *adapter = iflib_get_softc(ctx);
if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
/* 9K Jumbo Frame size */
max_frame_size = 9234;
if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
return (EINVAL);
}
scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
return (0);
}
/*********************************************************************
* Init entry point
*
* This routine is used in two ways. It is used by the stack as
* init entry point in network interface structure. It is also used
* by the driver as a hw/sw initialization routine to get to a
* consistent state.
*
**********************************************************************/
static void
igc_if_init(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
if_softc_ctx_t scctx = adapter->shared;
if_t ifp = iflib_get_ifp(ctx);
struct igc_tx_queue *tx_que;
int i;
INIT_DEBUGOUT("igc_if_init: begin");
/* Get the latest mac address, User can use a LAA */
bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
ETHER_ADDR_LEN);
/* Put the address into the Receive Address Array */
igc_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
/* Initialize the hardware */
igc_reset(ctx);
igc_if_update_admin_status(ctx);
for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
struct tx_ring *txr = &tx_que->txr;
txr->tx_rs_cidx = txr->tx_rs_pidx;
/* Initialize the last processed descriptor to be the end of
* the ring, rather than the start, so that we avoid an
* off-by-one error when calculating how many descriptors are
* done in the credits_update function.
*/
txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
}
/* Setup VLAN support, basic and offload if available */
IGC_WRITE_REG(&adapter->hw, IGC_VET, ETHERTYPE_VLAN);
/* Prepare transmit descriptors and buffers */
igc_initialize_transmit_unit(ctx);
/* Setup Multicast table */
igc_if_multi_set(ctx);
adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
igc_initialize_receive_unit(ctx);
/* Set up VLAN support */
igc_setup_vlan_hw_support(ctx);
/* Don't lose promiscuous settings */
igc_if_set_promisc(ctx, if_getflags(ifp));
igc_clear_hw_cntrs_base_generic(&adapter->hw);
if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
igc_configure_queues(adapter);
/* this clears any pending interrupts */
IGC_READ_REG(&adapter->hw, IGC_ICR);
IGC_WRITE_REG(&adapter->hw, IGC_ICS, IGC_ICS_LSC);
/* the driver can now take control from firmware */
igc_get_hw_control(adapter);
/* Set Energy Efficient Ethernet */
igc_set_eee_i225(&adapter->hw, true, true, true);
}
/*********************************************************************
*
* Fast Legacy/MSI Combined Interrupt Service routine
*
*********************************************************************/
int
igc_intr(void *arg)
{
struct igc_adapter *adapter = arg;
if_ctx_t ctx = adapter->ctx;
u32 reg_icr;
reg_icr = IGC_READ_REG(&adapter->hw, IGC_ICR);
/* Hot eject? */
if (reg_icr == 0xffffffff)
return FILTER_STRAY;
/* Definitely not our interrupt. */
if (reg_icr == 0x0)
return FILTER_STRAY;
if ((reg_icr & IGC_ICR_INT_ASSERTED) == 0)
return FILTER_STRAY;
/*
* Only MSI-X interrupts have one-shot behavior by taking advantage
* of the EIAC register. Thus, explicitly disable interrupts. This
* also works around the MSI message reordering errata on certain
* systems.
*/
IFDI_INTR_DISABLE(ctx);
/* Link status change */
if (reg_icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC))
igc_handle_link(ctx);
if (reg_icr & IGC_ICR_RXO)
adapter->rx_overruns++;
return (FILTER_SCHEDULE_THREAD);
}
static int
igc_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct igc_rx_queue *rxq = &adapter->rx_queues[rxqid];
IGC_WRITE_REG(&adapter->hw, IGC_EIMS, rxq->eims);
return (0);
}
static int
igc_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct igc_tx_queue *txq = &adapter->tx_queues[txqid];
IGC_WRITE_REG(&adapter->hw, IGC_EIMS, txq->eims);
return (0);
}
/*********************************************************************
*
* MSI-X RX Interrupt Service routine
*
**********************************************************************/
static int
igc_msix_que(void *arg)
{
struct igc_rx_queue *que = arg;
++que->irqs;
return (FILTER_SCHEDULE_THREAD);
}
/*********************************************************************
*
* MSI-X Link Fast Interrupt Service routine
*
**********************************************************************/
static int
igc_msix_link(void *arg)
{
struct igc_adapter *adapter = arg;
u32 reg_icr;
++adapter->link_irq;
MPASS(adapter->hw.back != NULL);
reg_icr = IGC_READ_REG(&adapter->hw, IGC_ICR);
if (reg_icr & IGC_ICR_RXO)
adapter->rx_overruns++;
if (reg_icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
igc_handle_link(adapter->ctx);
}
IGC_WRITE_REG(&adapter->hw, IGC_IMS, IGC_IMS_LSC);
IGC_WRITE_REG(&adapter->hw, IGC_EIMS, adapter->link_mask);
return (FILTER_HANDLED);
}
static void
igc_handle_link(void *context)
{
if_ctx_t ctx = context;
struct igc_adapter *adapter = iflib_get_softc(ctx);
adapter->hw.mac.get_link_status = true;
iflib_admin_intr_deferred(ctx);
}
/*********************************************************************
*
* Media Ioctl callback
*
* This routine is called whenever the user queries the status of
* the interface using ifconfig.
*
**********************************************************************/
static void
igc_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
INIT_DEBUGOUT("igc_if_media_status: begin");
iflib_admin_intr_deferred(ctx);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (!adapter->link_active) {
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
switch (adapter->link_speed) {
case 10:
ifmr->ifm_active |= IFM_10_T;
break;
case 100:
ifmr->ifm_active |= IFM_100_TX;
break;
case 1000:
ifmr->ifm_active |= IFM_1000_T;
break;
case 2500:
ifmr->ifm_active |= IFM_2500_T;
break;
}
if (adapter->link_duplex == FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
}
/*********************************************************************
*
* Media Ioctl callback
*
* This routine is called when the user changes speed/duplex using
* media/mediopt option with ifconfig.
*
**********************************************************************/
static int
igc_if_media_change(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct ifmedia *ifm = iflib_get_media(ctx);
INIT_DEBUGOUT("igc_if_media_change: begin");
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
adapter->hw.mac.autoneg = DO_AUTO_NEG;
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
break;
case IFM_2500_T:
adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
break;
case IFM_1000_T:
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case IFM_100_TX:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
adapter->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
else
adapter->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
break;
case IFM_10_T:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
adapter->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
else
adapter->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
break;
default:
device_printf(adapter->dev, "Unsupported media type\n");
}
igc_if_init(ctx);
return (0);
}
static int
igc_if_set_promisc(if_ctx_t ctx, int flags)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
if_t ifp = iflib_get_ifp(ctx);
u32 reg_rctl;
int mcnt = 0;
reg_rctl = IGC_READ_REG(&adapter->hw, IGC_RCTL);
reg_rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_UPE);
if (flags & IFF_ALLMULTI)
mcnt = MAX_NUM_MULTICAST_ADDRESSES;
else
mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
/* Don't disable if in MAX groups */
if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
reg_rctl &= (~IGC_RCTL_MPE);
IGC_WRITE_REG(&adapter->hw, IGC_RCTL, reg_rctl);
if (flags & IFF_PROMISC) {
reg_rctl |= (IGC_RCTL_UPE | IGC_RCTL_MPE);
/* Turn this on if you want to see bad packets */
if (igc_debug_sbp)
reg_rctl |= IGC_RCTL_SBP;
IGC_WRITE_REG(&adapter->hw, IGC_RCTL, reg_rctl);
} else if (flags & IFF_ALLMULTI) {
reg_rctl |= IGC_RCTL_MPE;
reg_rctl &= ~IGC_RCTL_UPE;
IGC_WRITE_REG(&adapter->hw, IGC_RCTL, reg_rctl);
}
return (0);
}
static u_int
igc_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
{
u8 *mta = arg;
if (idx == MAX_NUM_MULTICAST_ADDRESSES)
return (0);
bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
return (1);
}
/*********************************************************************
* Multicast Update
*
* This routine is called whenever multicast address list is updated.
*
**********************************************************************/
static void
igc_if_multi_set(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
if_t ifp = iflib_get_ifp(ctx);
u8 *mta; /* Multicast array memory */
u32 reg_rctl = 0;
int mcnt = 0;
IOCTL_DEBUGOUT("igc_set_multi: begin");
mta = adapter->mta;
bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
mcnt = if_foreach_llmaddr(ifp, igc_copy_maddr, mta);
reg_rctl = IGC_READ_REG(&adapter->hw, IGC_RCTL);
if (if_getflags(ifp) & IFF_PROMISC) {
reg_rctl |= (IGC_RCTL_UPE | IGC_RCTL_MPE);
/* Turn this on if you want to see bad packets */
if (igc_debug_sbp)
reg_rctl |= IGC_RCTL_SBP;
} else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
if_getflags(ifp) & IFF_ALLMULTI) {
reg_rctl |= IGC_RCTL_MPE;
reg_rctl &= ~IGC_RCTL_UPE;
} else
reg_rctl &= ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
igc_update_mc_addr_list(&adapter->hw, mta, mcnt);
IGC_WRITE_REG(&adapter->hw, IGC_RCTL, reg_rctl);
}
/*********************************************************************
* Timer routine
*
* This routine schedules igc_if_update_admin_status() to check for
* link status and to gather statistics as well as to perform some
* controller-specific hardware patting.
*
**********************************************************************/
static void
igc_if_timer(if_ctx_t ctx, uint16_t qid)
{
if (qid != 0)
return;
iflib_admin_intr_deferred(ctx);
}
static void
igc_if_update_admin_status(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct igc_hw *hw = &adapter->hw;
device_t dev = iflib_get_dev(ctx);
u32 link_check, thstat, ctrl;
link_check = thstat = ctrl = 0;
/* Get the cached link value or read phy for real */
switch (hw->phy.media_type) {
case igc_media_type_copper:
if (hw->mac.get_link_status == true) {
/* Do the work to read phy */
igc_check_for_link(hw);
link_check = !hw->mac.get_link_status;
} else
link_check = true;
break;
case igc_media_type_unknown:
igc_check_for_link(hw);
link_check = !hw->mac.get_link_status;
/* FALLTHROUGH */
default:
break;
}
/* Now check for a transition */
if (link_check && (adapter->link_active == 0)) {
igc_get_speed_and_duplex(hw, &adapter->link_speed,
&adapter->link_duplex);
if (bootverbose)
device_printf(dev, "Link is up %d Mbps %s\n",
adapter->link_speed,
((adapter->link_duplex == FULL_DUPLEX) ?
"Full Duplex" : "Half Duplex"));
adapter->link_active = 1;
iflib_link_state_change(ctx, LINK_STATE_UP,
IF_Mbps(adapter->link_speed));
} else if (!link_check && (adapter->link_active == 1)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
adapter->link_active = 0;
iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
}
igc_update_stats_counters(adapter);
}
static void
igc_if_watchdog_reset(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
/*
* Just count the event; iflib(4) will already trigger a
* sufficient reset of the controller.
*/
adapter->watchdog_events++;
}
/*********************************************************************
*
* This routine disables all traffic on the adapter by issuing a
* global reset on the MAC.
*
**********************************************************************/
static void
igc_if_stop(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
INIT_DEBUGOUT("igc_if_stop: begin");
igc_reset_hw(&adapter->hw);
IGC_WRITE_REG(&adapter->hw, IGC_WUC, 0);
}
/*********************************************************************
*
* Determine hardware revision.
*
**********************************************************************/
static void
igc_identify_hardware(if_ctx_t ctx)
{
device_t dev = iflib_get_dev(ctx);
struct igc_adapter *adapter = iflib_get_softc(ctx);
/* Make sure our PCI config space has the necessary stuff set */
adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
/* Save off the information about this board */
adapter->hw.vendor_id = pci_get_vendor(dev);
adapter->hw.device_id = pci_get_device(dev);
adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
adapter->hw.subsystem_vendor_id =
pci_read_config(dev, PCIR_SUBVEND_0, 2);
adapter->hw.subsystem_device_id =
pci_read_config(dev, PCIR_SUBDEV_0, 2);
/* Do Shared Code Init and Setup */
if (igc_set_mac_type(&adapter->hw)) {
device_printf(dev, "Setup init failure\n");
return;
}
}
static int
igc_allocate_pci_resources(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
device_t dev = iflib_get_dev(ctx);
int rid;
rid = PCIR_BAR(0);
adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (adapter->memory == NULL) {
device_printf(dev, "Unable to allocate bus resource: memory\n");
return (ENXIO);
}
adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
adapter->osdep.mem_bus_space_handle =
rman_get_bushandle(adapter->memory);
adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
adapter->hw.back = &adapter->osdep;
return (0);
}
/*********************************************************************
*
* Set up the MSI-X Interrupt handlers
*
**********************************************************************/
static int
igc_if_msix_intr_assign(if_ctx_t ctx, int msix)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct igc_rx_queue *rx_que = adapter->rx_queues;
struct igc_tx_queue *tx_que = adapter->tx_queues;
int error, rid, i, vector = 0, rx_vectors;
char buf[16];
/* First set up ring resources */
for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
rid = vector + 1;
snprintf(buf, sizeof(buf), "rxq%d", i);
error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, igc_msix_que, rx_que, rx_que->me, buf);
if (error) {
device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
adapter->rx_num_queues = i + 1;
goto fail;
}
rx_que->msix = vector;
/*
* Set the bit to enable interrupt
* in IGC_IMS -- bits 20 and 21
* are for RX0 and RX1, note this has
* NOTHING to do with the MSI-X vector
*/
rx_que->eims = 1 << vector;
}
rx_vectors = vector;
vector = 0;
for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
snprintf(buf, sizeof(buf), "txq%d", i);
tx_que = &adapter->tx_queues[i];
iflib_softirq_alloc_generic(ctx,
&adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
IFLIB_INTR_TX, tx_que, tx_que->me, buf);
tx_que->msix = (vector % adapter->rx_num_queues);
/*
* Set the bit to enable interrupt
* in IGC_IMS -- bits 22 and 23
* are for TX0 and TX1, note this has
* NOTHING to do with the MSI-X vector
*/
tx_que->eims = 1 << i;
}
/* Link interrupt */
rid = rx_vectors + 1;
error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, igc_msix_link, adapter, 0, "aq");
if (error) {
device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
goto fail;
}
adapter->linkvec = rx_vectors;
return (0);
fail:
iflib_irq_free(ctx, &adapter->irq);
rx_que = adapter->rx_queues;
for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
iflib_irq_free(ctx, &rx_que->que_irq);
return (error);
}
static void
igc_configure_queues(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
struct igc_rx_queue *rx_que;
struct igc_tx_queue *tx_que;
u32 ivar = 0, newitr = 0;
/* First turn on RSS capability */
IGC_WRITE_REG(hw, IGC_GPIE,
IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME | IGC_GPIE_PBA |
IGC_GPIE_NSICR);
/* Turn on MSI-X */
/* RX entries */
for (int i = 0; i < adapter->rx_num_queues; i++) {
u32 index = i >> 1;
ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
rx_que = &adapter->rx_queues[i];
if (i & 1) {
ivar &= 0xFF00FFFF;
ivar |= (rx_que->msix | IGC_IVAR_VALID) << 16;
} else {
ivar &= 0xFFFFFF00;
ivar |= rx_que->msix | IGC_IVAR_VALID;
}
IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
}
/* TX entries */
for (int i = 0; i < adapter->tx_num_queues; i++) {
u32 index = i >> 1;
ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
tx_que = &adapter->tx_queues[i];
if (i & 1) {
ivar &= 0x00FFFFFF;
ivar |= (tx_que->msix | IGC_IVAR_VALID) << 24;
} else {
ivar &= 0xFFFF00FF;
ivar |= (tx_que->msix | IGC_IVAR_VALID) << 8;
}
IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
adapter->que_mask |= tx_que->eims;
}
/* And for the link interrupt */
ivar = (adapter->linkvec | IGC_IVAR_VALID) << 8;
adapter->link_mask = 1 << adapter->linkvec;
IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
/* Set the starting interrupt rate */
if (igc_max_interrupt_rate > 0)
newitr = (4000000 / igc_max_interrupt_rate) & 0x7FFC;
newitr |= IGC_EITR_CNT_IGNR;
for (int i = 0; i < adapter->rx_num_queues; i++) {
rx_que = &adapter->rx_queues[i];
IGC_WRITE_REG(hw, IGC_EITR(rx_que->msix), newitr);
}
return;
}
static void
igc_free_pci_resources(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct igc_rx_queue *que = adapter->rx_queues;
device_t dev = iflib_get_dev(ctx);
/* Release all MSI-X queue resources */
if (adapter->intr_type == IFLIB_INTR_MSIX)
iflib_irq_free(ctx, &adapter->irq);
for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
iflib_irq_free(ctx, &que->que_irq);
}
if (adapter->memory != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(adapter->memory), adapter->memory);
adapter->memory = NULL;
}
if (adapter->flash != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(adapter->flash), adapter->flash);
adapter->flash = NULL;
}
if (adapter->ioport != NULL) {
bus_release_resource(dev, SYS_RES_IOPORT,
rman_get_rid(adapter->ioport), adapter->ioport);
adapter->ioport = NULL;
}
}
/* Set up MSI or MSI-X */
static int
igc_setup_msix(if_ctx_t ctx)
{
return (0);
}
/*********************************************************************
*
* Initialize the DMA Coalescing feature
*
**********************************************************************/
static void
igc_init_dmac(struct igc_adapter *adapter, u32 pba)
{
device_t dev = adapter->dev;
struct igc_hw *hw = &adapter->hw;
u32 dmac, reg = ~IGC_DMACR_DMAC_EN;
u16 hwm;
u16 max_frame_size;
int status;
max_frame_size = adapter->shared->isc_max_frame_size;
if (adapter->dmac == 0) { /* Disabling it */
IGC_WRITE_REG(hw, IGC_DMACR, reg);
return;
} else
device_printf(dev, "DMA Coalescing enabled\n");
/* Set starting threshold */
IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
hwm = 64 * pba - max_frame_size / 16;
if (hwm < 64 * (pba - 6))
hwm = 64 * (pba - 6);
reg = IGC_READ_REG(hw, IGC_FCRTC);
reg &= ~IGC_FCRTC_RTH_COAL_MASK;
reg |= ((hwm << IGC_FCRTC_RTH_COAL_SHIFT)
& IGC_FCRTC_RTH_COAL_MASK);
IGC_WRITE_REG(hw, IGC_FCRTC, reg);
dmac = pba - max_frame_size / 512;
if (dmac < pba - 10)
dmac = pba - 10;
reg = IGC_READ_REG(hw, IGC_DMACR);
reg &= ~IGC_DMACR_DMACTHR_MASK;
reg |= ((dmac << IGC_DMACR_DMACTHR_SHIFT)
& IGC_DMACR_DMACTHR_MASK);
/* transition to L0x or L1 if available..*/
reg |= (IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK);
/* Check if status is 2.5Gb backplane connection
* before configuration of watchdog timer, which is
* in msec values in 12.8usec intervals
* watchdog timer= msec values in 32usec intervals
* for non 2.5Gb connection
*/
status = IGC_READ_REG(hw, IGC_STATUS);
if ((status & IGC_STATUS_2P5_SKU) &&
(!(status & IGC_STATUS_2P5_SKU_OVER)))
reg |= ((adapter->dmac * 5) >> 6);
else
reg |= (adapter->dmac >> 5);
IGC_WRITE_REG(hw, IGC_DMACR, reg);
IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
/* Set the interval before transition */
reg = IGC_READ_REG(hw, IGC_DMCTLX);
reg |= IGC_DMCTLX_DCFLUSH_DIS;
/*
** in 2.5Gb connection, TTLX unit is 0.4 usec
** which is 0x4*2 = 0xA. But delay is still 4 usec
*/
status = IGC_READ_REG(hw, IGC_STATUS);
if ((status & IGC_STATUS_2P5_SKU) &&
(!(status & IGC_STATUS_2P5_SKU_OVER)))
reg |= 0xA;
else
reg |= 0x4;
IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
/* free space in tx packet buffer to wake from DMA coal */
IGC_WRITE_REG(hw, IGC_DMCTXTH, (IGC_TXPBSIZE -
(2 * max_frame_size)) >> 6);
/* make low power state decision controlled by DMA coal */
reg = IGC_READ_REG(hw, IGC_PCIEMISC);
reg &= ~IGC_PCIEMISC_LX_DECISION;
IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
}
/*********************************************************************
*
* Initialize the hardware to a configuration as specified by the
* adapter structure.
*
**********************************************************************/
static void
igc_reset(if_ctx_t ctx)
{
device_t dev = iflib_get_dev(ctx);
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct igc_hw *hw = &adapter->hw;
u32 rx_buffer_size;
u32 pba;
INIT_DEBUGOUT("igc_reset: begin");
/* Let the firmware know the OS is in control */
igc_get_hw_control(adapter);
/*
* Packet Buffer Allocation (PBA)
* Writing PBA sets the receive portion of the buffer
* the remainder is used for the transmit buffer.
*/
pba = IGC_PBA_34K;
INIT_DEBUGOUT1("igc_reset: pba=%dK",pba);
/*
* These parameters control the automatic generation (Tx) and
* response (Rx) to Ethernet PAUSE frames.
* - High water mark should allow for at least two frames to be
* received after sending an XOFF.
* - Low water mark works best when it is very near the high water mark.
* This allows the receiver to restart by sending XON when it has
* drained a bit. Here we use an arbitrary value of 1500 which will
* restart after one full frame is pulled from the buffer. There
* could be several smaller frames in the buffer and if so they will
* not trigger the XON until their total number reduces the buffer
* by 1500.
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
*/
rx_buffer_size = (pba & 0xffff) << 10;
hw->fc.high_water = rx_buffer_size -
roundup2(adapter->hw.mac.max_frame_size, 1024);
/* 16-byte granularity */
hw->fc.low_water = hw->fc.high_water - 16;
if (adapter->fc) /* locally set flow control value? */
hw->fc.requested_mode = adapter->fc;
else
hw->fc.requested_mode = igc_fc_full;
hw->fc.pause_time = IGC_FC_PAUSE_TIME;
hw->fc.send_xon = true;
/* Issue a global reset */
igc_reset_hw(hw);
IGC_WRITE_REG(hw, IGC_WUC, 0);
/* and a re-init */
if (igc_init_hw(hw) < 0) {
device_printf(dev, "Hardware Initialization Failed\n");
return;
}
/* Setup DMA Coalescing */
igc_init_dmac(adapter, pba);
IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
igc_get_phy_info(hw);
igc_check_for_link(hw);
}
/*
* Initialise the RSS mapping for NICs that support multiple transmit/
* receive rings.
*/
#define RSSKEYLEN 10
static void
igc_initialize_rss_mapping(struct igc_adapter *adapter)
{
struct igc_hw *hw = &adapter->hw;
int i;
int queue_id;
u32 reta;
u32 rss_key[RSSKEYLEN], mrqc, shift = 0;
/*
* The redirection table controls which destination
* queue each bucket redirects traffic to.
* Each DWORD represents four queues, with the LSB
* being the first queue in the DWORD.
*
* This just allocates buckets to queues using round-robin
* allocation.
*
* NOTE: It Just Happens to line up with the default
* RSS allocation method.
*/
/* Warning FM follows */
reta = 0;
for (i = 0; i < 128; i++) {
#ifdef RSS
queue_id = rss_get_indirection_to_bucket(i);
/*
* If we have more queues than buckets, we'll
* end up mapping buckets to a subset of the
* queues.
*
* If we have more buckets than queues, we'll
* end up instead assigning multiple buckets
* to queues.
*
* Both are suboptimal, but we need to handle
* the case so we don't go out of bounds
* indexing arrays and such.
*/
queue_id = queue_id % adapter->rx_num_queues;
#else
queue_id = (i % adapter->rx_num_queues);
#endif
/* Adjust if required */
queue_id = queue_id << shift;
/*
* The low 8 bits are for hash value (n+0);
* The next 8 bits are for hash value (n+1), etc.
*/
reta = reta >> 8;
reta = reta | ( ((uint32_t) queue_id) << 24);
if ((i & 3) == 3) {
IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
reta = 0;
}
}
/* Now fill in hash table */
/*
* MRQC: Multiple Receive Queues Command
* Set queuing to RSS control, number depends on the device.
*/
mrqc = IGC_MRQC_ENABLE_RSS_4Q;
#ifdef RSS
/* XXX ew typecasting */
rss_getkey((uint8_t *) &rss_key);
#else
arc4rand(&rss_key, sizeof(rss_key), 0);
#endif
for (i = 0; i < RSSKEYLEN; i++)
IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
/*
* Configure the RSS fields to hash upon.
*/
mrqc |= (IGC_MRQC_RSS_FIELD_IPV4 |
IGC_MRQC_RSS_FIELD_IPV4_TCP);
mrqc |= (IGC_MRQC_RSS_FIELD_IPV6 |
IGC_MRQC_RSS_FIELD_IPV6_TCP);
mrqc |=( IGC_MRQC_RSS_FIELD_IPV4_UDP |
IGC_MRQC_RSS_FIELD_IPV6_UDP);
mrqc |=( IGC_MRQC_RSS_FIELD_IPV6_UDP_EX |
IGC_MRQC_RSS_FIELD_IPV6_TCP_EX);
IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
}
/*********************************************************************
*
* Setup networking device structure and register interface media.
*
**********************************************************************/
static int
igc_setup_interface(if_ctx_t ctx)
{
if_t ifp = iflib_get_ifp(ctx);
struct igc_adapter *adapter = iflib_get_softc(ctx);
if_softc_ctx_t scctx = adapter->shared;
INIT_DEBUGOUT("igc_setup_interface: begin");
/* Single Queue */
if (adapter->tx_num_queues == 1) {
if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
if_setsendqready(ifp);
}
/*
* Specify the media types supported by this adapter and register
* callbacks to update media and link information
*/
ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
ifmedia_add(adapter->media, IFM_ETHER | IFM_2500_T, 0, NULL);
ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
return (0);
}
static int
igc_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
if_softc_ctx_t scctx = adapter->shared;
int error = IGC_SUCCESS;
struct igc_tx_queue *que;
int i, j;
MPASS(adapter->tx_num_queues > 0);
MPASS(adapter->tx_num_queues == ntxqsets);
/* First allocate the top level queue structs */
if (!(adapter->tx_queues =
(struct igc_tx_queue *) malloc(sizeof(struct igc_tx_queue) *
adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
return(ENOMEM);
}
for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
/* Set up some basics */
struct tx_ring *txr = &que->txr;
txr->adapter = que->adapter = adapter;
que->me = txr->me = i;
/* Allocate report status array */
if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
error = ENOMEM;
goto fail;
}
for (j = 0; j < scctx->isc_ntxd[0]; j++)
txr->tx_rsq[j] = QIDX_INVALID;
/* get the virtual and physical address of the hardware queues */
txr->tx_base = (struct igc_tx_desc *)vaddrs[i*ntxqs];
txr->tx_paddr = paddrs[i*ntxqs];
}
if (bootverbose)
device_printf(iflib_get_dev(ctx),
"allocated for %d tx_queues\n", adapter->tx_num_queues);
return (0);
fail:
igc_if_queues_free(ctx);
return (error);
}
static int
igc_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
int error = IGC_SUCCESS;
struct igc_rx_queue *que;
int i;
MPASS(adapter->rx_num_queues > 0);
MPASS(adapter->rx_num_queues == nrxqsets);
/* First allocate the top level queue structs */
if (!(adapter->rx_queues =
(struct igc_rx_queue *) malloc(sizeof(struct igc_rx_queue) *
adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
error = ENOMEM;
goto fail;
}
for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
/* Set up some basics */
struct rx_ring *rxr = &que->rxr;
rxr->adapter = que->adapter = adapter;
rxr->que = que;
que->me = rxr->me = i;
/* get the virtual and physical address of the hardware queues */
rxr->rx_base = (union igc_rx_desc_extended *)vaddrs[i*nrxqs];
rxr->rx_paddr = paddrs[i*nrxqs];
}
if (bootverbose)
device_printf(iflib_get_dev(ctx),
"allocated for %d rx_queues\n", adapter->rx_num_queues);
return (0);
fail:
igc_if_queues_free(ctx);
return (error);
}
static void
igc_if_queues_free(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct igc_tx_queue *tx_que = adapter->tx_queues;
struct igc_rx_queue *rx_que = adapter->rx_queues;
if (tx_que != NULL) {
for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
struct tx_ring *txr = &tx_que->txr;
if (txr->tx_rsq == NULL)
break;
free(txr->tx_rsq, M_DEVBUF);
txr->tx_rsq = NULL;
}
free(adapter->tx_queues, M_DEVBUF);
adapter->tx_queues = NULL;
}
if (rx_que != NULL) {
free(adapter->rx_queues, M_DEVBUF);
adapter->rx_queues = NULL;
}
igc_release_hw_control(adapter);
if (adapter->mta != NULL) {
free(adapter->mta, M_DEVBUF);
}
}
/*********************************************************************
*
* Enable transmit unit.
*
**********************************************************************/
static void
igc_initialize_transmit_unit(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
if_softc_ctx_t scctx = adapter->shared;
struct igc_tx_queue *que;
struct tx_ring *txr;
struct igc_hw *hw = &adapter->hw;
u32 tctl, txdctl = 0;
INIT_DEBUGOUT("igc_initialize_transmit_unit: begin");
for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
u64 bus_addr;
caddr_t offp, endp;
que = &adapter->tx_queues[i];
txr = &que->txr;
bus_addr = txr->tx_paddr;
/* Clear checksum offload context. */
offp = (caddr_t)&txr->csum_flags;
endp = (caddr_t)(txr + 1);
bzero(offp, endp - offp);
/* Base and Len of TX Ring */
IGC_WRITE_REG(hw, IGC_TDLEN(i),
scctx->isc_ntxd[0] * sizeof(struct igc_tx_desc));
IGC_WRITE_REG(hw, IGC_TDBAH(i),
(u32)(bus_addr >> 32));
IGC_WRITE_REG(hw, IGC_TDBAL(i),
(u32)bus_addr);
/* Init the HEAD/TAIL indices */
IGC_WRITE_REG(hw, IGC_TDT(i), 0);
IGC_WRITE_REG(hw, IGC_TDH(i), 0);
HW_DEBUGOUT2("Base = %x, Length = %x\n",
IGC_READ_REG(&adapter->hw, IGC_TDBAL(i)),
IGC_READ_REG(&adapter->hw, IGC_TDLEN(i)));
txdctl = 0; /* clear txdctl */
txdctl |= 0x1f; /* PTHRESH */
txdctl |= 1 << 8; /* HTHRESH */
txdctl |= 1 << 16;/* WTHRESH */
txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
txdctl |= IGC_TXDCTL_GRAN;
txdctl |= 1 << 25; /* LWTHRESH */
IGC_WRITE_REG(hw, IGC_TXDCTL(i), txdctl);
}
/* Program the Transmit Control Register */
tctl = IGC_READ_REG(&adapter->hw, IGC_TCTL);
tctl &= ~IGC_TCTL_CT;
tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
/* This write will effectively turn on the transmit unit. */
IGC_WRITE_REG(&adapter->hw, IGC_TCTL, tctl);
}
/*********************************************************************
*
* Enable receive unit.
*
**********************************************************************/
#define BSIZEPKT_ROUNDUP ((1<<IGC_SRRCTL_BSIZEPKT_SHIFT)-1)
static void
igc_initialize_receive_unit(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
if_softc_ctx_t scctx = adapter->shared;
if_t ifp = iflib_get_ifp(ctx);
struct igc_hw *hw = &adapter->hw;
struct igc_rx_queue *que;
int i;
u32 psize, rctl, rxcsum, srrctl = 0;
INIT_DEBUGOUT("igc_initialize_receive_units: begin");
/*
* Make sure receives are disabled while setting
* up the descriptor ring
*/
rctl = IGC_READ_REG(hw, IGC_RCTL);
IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
/* Setup the Receive Control Register */
rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
rctl |= IGC_RCTL_EN | IGC_RCTL_BAM |
IGC_RCTL_LBM_NO | IGC_RCTL_RDMTS_HALF |
(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
/* Do not store bad packets */
rctl &= ~IGC_RCTL_SBP;
/* Enable Long Packet receive */
if (if_getmtu(ifp) > ETHERMTU)
rctl |= IGC_RCTL_LPE;
else
rctl &= ~IGC_RCTL_LPE;
/* Strip the CRC */
if (!igc_disable_crc_stripping)
rctl |= IGC_RCTL_SECRC;
/*
* Set the interrupt throttling rate. Value is calculated
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
*/
IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
rxcsum |= IGC_RXCSUM_CRCOFL;
if (adapter->tx_num_queues > 1)
rxcsum |= IGC_RXCSUM_PCSD;
else
rxcsum |= IGC_RXCSUM_IPPCSE;
} else {
if (adapter->tx_num_queues > 1)
rxcsum |= IGC_RXCSUM_PCSD;
else
rxcsum &= ~IGC_RXCSUM_TUOFL;
}
IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
if (adapter->rx_num_queues > 1)
igc_initialize_rss_mapping(adapter);
if (if_getmtu(ifp) > ETHERMTU) {
psize = scctx->isc_max_frame_size;
/* are we on a vlan? */
if (if_vlantrunkinuse(ifp))
psize += VLAN_TAG_SIZE;
IGC_WRITE_REG(&adapter->hw, IGC_RLPML, psize);
}
/* Set maximum packet buffer len */
srrctl |= (adapter->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
IGC_SRRCTL_BSIZEPKT_SHIFT;
/* srrctl above overrides this but set the register to a sane value */
rctl |= IGC_RCTL_SZ_2048;
/*
* If TX flow control is disabled and there's >1 queue defined,
* enable DROP.
*
* This drops frames rather than hanging the RX MAC for all queues.
*/
if ((adapter->rx_num_queues > 1) &&
(adapter->fc == igc_fc_none ||
adapter->fc == igc_fc_rx_pause)) {
srrctl |= IGC_SRRCTL_DROP_EN;
}
/* Setup the Base and Length of the Rx Descriptor Rings */
for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
struct rx_ring *rxr = &que->rxr;
u64 bus_addr = rxr->rx_paddr;
u32 rxdctl;
#ifdef notyet
/* Configure for header split? -- ignore for now */
rxr->hdr_split = igc_header_split;
#else
srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
#endif
IGC_WRITE_REG(hw, IGC_RDLEN(i),
scctx->isc_nrxd[0] * sizeof(struct igc_rx_desc));
IGC_WRITE_REG(hw, IGC_RDBAH(i),
(uint32_t)(bus_addr >> 32));
IGC_WRITE_REG(hw, IGC_RDBAL(i),
(uint32_t)bus_addr);
IGC_WRITE_REG(hw, IGC_SRRCTL(i), srrctl);
/* Setup the Head and Tail Descriptor Pointers */
IGC_WRITE_REG(hw, IGC_RDH(i), 0);
IGC_WRITE_REG(hw, IGC_RDT(i), 0);
/* Enable this Queue */
rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(i));
rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
rxdctl &= 0xFFF00000;
rxdctl |= IGC_RX_PTHRESH;
rxdctl |= IGC_RX_HTHRESH << 8;
rxdctl |= IGC_RX_WTHRESH << 16;
IGC_WRITE_REG(hw, IGC_RXDCTL(i), rxdctl);
}
/* Make sure VLAN Filters are off */
rctl &= ~IGC_RCTL_VFE;
/* Write out the settings */
IGC_WRITE_REG(hw, IGC_RCTL, rctl);
return;
}
static void
igc_setup_vlan_hw_support(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct igc_hw *hw = &adapter->hw;
struct ifnet *ifp = iflib_get_ifp(ctx);
u32 reg;
/* igc hardware doesn't seem to implement VFTA for HWFILTER */
if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
!igc_disable_crc_stripping) {
reg = IGC_READ_REG(hw, IGC_CTRL);
reg |= IGC_CTRL_VME;
IGC_WRITE_REG(hw, IGC_CTRL, reg);
} else {
reg = IGC_READ_REG(hw, IGC_CTRL);
reg &= ~IGC_CTRL_VME;
IGC_WRITE_REG(hw, IGC_CTRL, reg);
}
}
static void
igc_if_intr_enable(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct igc_hw *hw = &adapter->hw;
u32 mask;
if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
mask = (adapter->que_mask | adapter->link_mask);
IGC_WRITE_REG(hw, IGC_EIAC, mask);
IGC_WRITE_REG(hw, IGC_EIAM, mask);
IGC_WRITE_REG(hw, IGC_EIMS, mask);
IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
} else
IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
IGC_WRITE_FLUSH(hw);
}
static void
igc_if_intr_disable(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
struct igc_hw *hw = &adapter->hw;
if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
IGC_WRITE_REG(hw, IGC_EIAC, 0);
}
IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
IGC_WRITE_FLUSH(hw);
}
/*
* igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means
* that the driver is loaded. For AMT version type f/w
* this means that the network i/f is open.
*/
static void
igc_get_hw_control(struct igc_adapter *adapter)
{
u32 ctrl_ext;
if (adapter->vf_ifp)
return;
ctrl_ext = IGC_READ_REG(&adapter->hw, IGC_CTRL_EXT);
IGC_WRITE_REG(&adapter->hw, IGC_CTRL_EXT,
ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
}
/*
* igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is no longer loaded. For AMT versions of the
* f/w this means that the network i/f is closed.
*/
static void
igc_release_hw_control(struct igc_adapter *adapter)
{
u32 ctrl_ext;
ctrl_ext = IGC_READ_REG(&adapter->hw, IGC_CTRL_EXT);
IGC_WRITE_REG(&adapter->hw, IGC_CTRL_EXT,
ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
return;
}
static int
igc_is_valid_ether_addr(u8 *addr)
{
char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
return (false);
}
return (true);
}
/*
** Parse the interface capabilities with regard
** to both system management and wake-on-lan for
** later use.
*/
static void
igc_get_wakeup(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
u16 eeprom_data = 0, apme_mask;
apme_mask = IGC_WUC_APME;
eeprom_data = IGC_READ_REG(&adapter->hw, IGC_WUC);
if (eeprom_data & apme_mask)
adapter->wol = IGC_WUFC_LNKC;
}
/*
* Enable PCI Wake On Lan capability
*/
static void
igc_enable_wakeup(if_ctx_t ctx)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
device_t dev = iflib_get_dev(ctx);
if_t ifp = iflib_get_ifp(ctx);
int error = 0;
u32 pmc, ctrl, rctl;
u16 status;
if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
return;
/*
* Determine type of Wakeup: note that wol
* is set with all bits on by default.
*/
if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
adapter->wol &= ~IGC_WUFC_MAG;
if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
adapter->wol &= ~IGC_WUFC_EX;
if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
adapter->wol &= ~IGC_WUFC_MC;
else {
rctl = IGC_READ_REG(&adapter->hw, IGC_RCTL);
rctl |= IGC_RCTL_MPE;
IGC_WRITE_REG(&adapter->hw, IGC_RCTL, rctl);
}
if (!(adapter->wol & (IGC_WUFC_EX | IGC_WUFC_MAG | IGC_WUFC_MC)))
goto pme;
/* Advertise the wakeup capability */
ctrl = IGC_READ_REG(&adapter->hw, IGC_CTRL);
ctrl |= IGC_CTRL_ADVD3WUC;
IGC_WRITE_REG(&adapter->hw, IGC_CTRL, ctrl);
/* Enable wakeup by the MAC */
IGC_WRITE_REG(&adapter->hw, IGC_WUC, IGC_WUC_PME_EN);
IGC_WRITE_REG(&adapter->hw, IGC_WUFC, adapter->wol);
pme:
status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
return;
}
/**********************************************************************
*
* Update the board statistics counters.
*
**********************************************************************/
static void
igc_update_stats_counters(struct igc_adapter *adapter)
{
u64 prev_xoffrxc = adapter->stats.xoffrxc;
adapter->stats.crcerrs += IGC_READ_REG(&adapter->hw, IGC_CRCERRS);
adapter->stats.mpc += IGC_READ_REG(&adapter->hw, IGC_MPC);
adapter->stats.scc += IGC_READ_REG(&adapter->hw, IGC_SCC);
adapter->stats.ecol += IGC_READ_REG(&adapter->hw, IGC_ECOL);
adapter->stats.mcc += IGC_READ_REG(&adapter->hw, IGC_MCC);
adapter->stats.latecol += IGC_READ_REG(&adapter->hw, IGC_LATECOL);
adapter->stats.colc += IGC_READ_REG(&adapter->hw, IGC_COLC);
adapter->stats.colc += IGC_READ_REG(&adapter->hw, IGC_RERC);
adapter->stats.dc += IGC_READ_REG(&adapter->hw, IGC_DC);
adapter->stats.rlec += IGC_READ_REG(&adapter->hw, IGC_RLEC);
adapter->stats.xonrxc += IGC_READ_REG(&adapter->hw, IGC_XONRXC);
adapter->stats.xontxc += IGC_READ_REG(&adapter->hw, IGC_XONTXC);
adapter->stats.xoffrxc += IGC_READ_REG(&adapter->hw, IGC_XOFFRXC);
/*
* For watchdog management we need to know if we have been
* paused during the last interval, so capture that here.
*/
if (adapter->stats.xoffrxc != prev_xoffrxc)
adapter->shared->isc_pause_frames = 1;
adapter->stats.xofftxc += IGC_READ_REG(&adapter->hw, IGC_XOFFTXC);
adapter->stats.fcruc += IGC_READ_REG(&adapter->hw, IGC_FCRUC);
adapter->stats.prc64 += IGC_READ_REG(&adapter->hw, IGC_PRC64);
adapter->stats.prc127 += IGC_READ_REG(&adapter->hw, IGC_PRC127);
adapter->stats.prc255 += IGC_READ_REG(&adapter->hw, IGC_PRC255);
adapter->stats.prc511 += IGC_READ_REG(&adapter->hw, IGC_PRC511);
adapter->stats.prc1023 += IGC_READ_REG(&adapter->hw, IGC_PRC1023);
adapter->stats.prc1522 += IGC_READ_REG(&adapter->hw, IGC_PRC1522);
adapter->stats.tlpic += IGC_READ_REG(&adapter->hw, IGC_TLPIC);
adapter->stats.rlpic += IGC_READ_REG(&adapter->hw, IGC_RLPIC);
adapter->stats.gprc += IGC_READ_REG(&adapter->hw, IGC_GPRC);
adapter->stats.bprc += IGC_READ_REG(&adapter->hw, IGC_BPRC);
adapter->stats.mprc += IGC_READ_REG(&adapter->hw, IGC_MPRC);
adapter->stats.gptc += IGC_READ_REG(&adapter->hw, IGC_GPTC);
/* For the 64-bit byte counters the low dword must be read first. */
/* Both registers clear on the read of the high dword */
adapter->stats.gorc += IGC_READ_REG(&adapter->hw, IGC_GORCL) +
((u64)IGC_READ_REG(&adapter->hw, IGC_GORCH) << 32);
adapter->stats.gotc += IGC_READ_REG(&adapter->hw, IGC_GOTCL) +
((u64)IGC_READ_REG(&adapter->hw, IGC_GOTCH) << 32);
adapter->stats.rnbc += IGC_READ_REG(&adapter->hw, IGC_RNBC);
adapter->stats.ruc += IGC_READ_REG(&adapter->hw, IGC_RUC);
adapter->stats.rfc += IGC_READ_REG(&adapter->hw, IGC_RFC);
adapter->stats.roc += IGC_READ_REG(&adapter->hw, IGC_ROC);
adapter->stats.rjc += IGC_READ_REG(&adapter->hw, IGC_RJC);
adapter->stats.tor += IGC_READ_REG(&adapter->hw, IGC_TORH);
adapter->stats.tot += IGC_READ_REG(&adapter->hw, IGC_TOTH);
adapter->stats.tpr += IGC_READ_REG(&adapter->hw, IGC_TPR);
adapter->stats.tpt += IGC_READ_REG(&adapter->hw, IGC_TPT);
adapter->stats.ptc64 += IGC_READ_REG(&adapter->hw, IGC_PTC64);
adapter->stats.ptc127 += IGC_READ_REG(&adapter->hw, IGC_PTC127);
adapter->stats.ptc255 += IGC_READ_REG(&adapter->hw, IGC_PTC255);
adapter->stats.ptc511 += IGC_READ_REG(&adapter->hw, IGC_PTC511);
adapter->stats.ptc1023 += IGC_READ_REG(&adapter->hw, IGC_PTC1023);
adapter->stats.ptc1522 += IGC_READ_REG(&adapter->hw, IGC_PTC1522);
adapter->stats.mptc += IGC_READ_REG(&adapter->hw, IGC_MPTC);
adapter->stats.bptc += IGC_READ_REG(&adapter->hw, IGC_BPTC);
/* Interrupt Counts */
adapter->stats.iac += IGC_READ_REG(&adapter->hw, IGC_IAC);
adapter->stats.rxdmtc += IGC_READ_REG(&adapter->hw, IGC_RXDMTC);
adapter->stats.algnerrc += IGC_READ_REG(&adapter->hw, IGC_ALGNERRC);
adapter->stats.tncrs += IGC_READ_REG(&adapter->hw, IGC_TNCRS);
adapter->stats.htdpmc += IGC_READ_REG(&adapter->hw, IGC_HTDPMC);
adapter->stats.tsctc += IGC_READ_REG(&adapter->hw, IGC_TSCTC);
}
static uint64_t
igc_if_get_counter(if_ctx_t ctx, ift_counter cnt)
{
struct igc_adapter *adapter = iflib_get_softc(ctx);
if_t ifp = iflib_get_ifp(ctx);
switch (cnt) {
case IFCOUNTER_COLLISIONS:
return (adapter->stats.colc);
case IFCOUNTER_IERRORS:
return (adapter->dropped_pkts + adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.mpc + adapter->stats.htdpmc);
case IFCOUNTER_OERRORS:
return (adapter->stats.ecol + adapter->stats.latecol +
adapter->watchdog_events);
default:
return (if_get_counter_default(ifp, cnt));
}
}
/* igc_if_needs_restart - Tell iflib when the driver needs to be reinitialized
* @ctx: iflib context
* @event: event code to check
*
* Defaults to returning false for unknown events.
*
* @returns true if iflib needs to reinit the interface
*/
static bool
igc_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
{
switch (event) {
case IFLIB_RESTART_VLAN_CONFIG:
default:
return (false);
}
}
/* Export a single 32-bit register via a read-only sysctl. */
static int
igc_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
{
struct igc_adapter *adapter;
u_int val;
adapter = oidp->oid_arg1;
val = IGC_READ_REG(&adapter->hw, oidp->oid_arg2);
return (sysctl_handle_int(oidp, &val, 0, req));
}
/*
* Add sysctl variables, one per statistic, to the system.
*/
static void
igc_add_hw_stats(struct igc_adapter *adapter)
{
device_t dev = iflib_get_dev(adapter->ctx);
struct igc_tx_queue *tx_que = adapter->tx_queues;
struct igc_rx_queue *rx_que = adapter->rx_queues;
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
struct igc_hw_stats *stats = &adapter->stats;
struct sysctl_oid *stat_node, *queue_node, *int_node;
struct sysctl_oid_list *stat_list, *queue_list, *int_list;
#define QUEUE_NAME_LEN 32
char namebuf[QUEUE_NAME_LEN];
/* Driver Statistics */
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
CTLFLAG_RD, &adapter->dropped_pkts,
"Driver dropped packets");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
CTLFLAG_RD, &adapter->link_irq,
"Link MSI-X IRQ Handled");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
CTLFLAG_RD, &adapter->rx_overruns,
"RX overruns");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
CTLFLAG_RD, &adapter->watchdog_events,
"Watchdog timeouts");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
adapter, IGC_CTRL, igc_sysctl_reg_handler, "IU",
"Device Control Register");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
adapter, IGC_RCTL, igc_sysctl_reg_handler, "IU",
"Receiver Control Register");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
"Flow Control High Watermark");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
"Flow Control Low Watermark");
for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
struct tx_ring *txr = &tx_que->txr;
snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
IGC_TDH(txr->me), igc_sysctl_reg_handler, "IU",
"Transmit Descriptor Head");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
IGC_TDT(txr->me), igc_sysctl_reg_handler, "IU",
"Transmit Descriptor Tail");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
CTLFLAG_RD, &txr->tx_irq,
"Queue MSI-X Transmit Interrupts");
}
for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
struct rx_ring *rxr = &rx_que->rxr;
snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
IGC_RDH(rxr->me), igc_sysctl_reg_handler, "IU",
"Receive Descriptor Head");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
IGC_RDT(rxr->me), igc_sysctl_reg_handler, "IU",
"Receive Descriptor Tail");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
CTLFLAG_RD, &rxr->rx_irq,
"Queue MSI-X Receive Interrupts");
}
/* MAC stats get their own sub node */
stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
stat_list = SYSCTL_CHILDREN(stat_node);
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
CTLFLAG_RD, &stats->ecol,
"Excessive collisions");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
CTLFLAG_RD, &stats->scc,
"Single collisions");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
CTLFLAG_RD, &stats->mcc,
"Multiple collisions");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
CTLFLAG_RD, &stats->latecol,
"Late collisions");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
CTLFLAG_RD, &stats->colc,
"Collision Count");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
CTLFLAG_RD, &adapter->stats.symerrs,
"Symbol Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
CTLFLAG_RD, &adapter->stats.sec,
"Sequence Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
CTLFLAG_RD, &adapter->stats.dc,
"Defer Count");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
CTLFLAG_RD, &adapter->stats.mpc,
"Missed Packets");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
CTLFLAG_RD, &adapter->stats.rnbc,
"Receive No Buffers");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
CTLFLAG_RD, &adapter->stats.ruc,
"Receive Undersize");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
CTLFLAG_RD, &adapter->stats.rfc,
"Fragmented Packets Received ");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
CTLFLAG_RD, &adapter->stats.roc,
"Oversized Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
CTLFLAG_RD, &adapter->stats.rjc,
"Recevied Jabber");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
CTLFLAG_RD, &adapter->stats.rxerrc,
"Receive Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
CTLFLAG_RD, &adapter->stats.crcerrs,
"CRC errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
CTLFLAG_RD, &adapter->stats.algnerrc,
"Alignment Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
CTLFLAG_RD, &adapter->stats.xonrxc,
"XON Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
CTLFLAG_RD, &adapter->stats.xontxc,
"XON Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
CTLFLAG_RD, &adapter->stats.xoffrxc,
"XOFF Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
CTLFLAG_RD, &adapter->stats.xofftxc,
"XOFF Transmitted");
/* Packet Reception Stats */
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
CTLFLAG_RD, &adapter->stats.tpr,
"Total Packets Received ");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
CTLFLAG_RD, &adapter->stats.gprc,
"Good Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
CTLFLAG_RD, &adapter->stats.bprc,
"Broadcast Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
CTLFLAG_RD, &adapter->stats.mprc,
"Multicast Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
CTLFLAG_RD, &adapter->stats.prc64,
"64 byte frames received ");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
CTLFLAG_RD, &adapter->stats.prc127,
"65-127 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
CTLFLAG_RD, &adapter->stats.prc255,
"128-255 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
CTLFLAG_RD, &adapter->stats.prc511,
"256-511 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
CTLFLAG_RD, &adapter->stats.prc1023,
"512-1023 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
CTLFLAG_RD, &adapter->stats.prc1522,
"1023-1522 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
CTLFLAG_RD, &adapter->stats.gorc,
"Good Octets Received");
/* Packet Transmission Stats */
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
CTLFLAG_RD, &adapter->stats.gotc,
"Good Octets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
CTLFLAG_RD, &adapter->stats.tpt,
"Total Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
CTLFLAG_RD, &adapter->stats.gptc,
"Good Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
CTLFLAG_RD, &adapter->stats.bptc,
"Broadcast Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
CTLFLAG_RD, &adapter->stats.mptc,
"Multicast Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
CTLFLAG_RD, &adapter->stats.ptc64,
"64 byte frames transmitted ");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
CTLFLAG_RD, &adapter->stats.ptc127,
"65-127 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
CTLFLAG_RD, &adapter->stats.ptc255,
"128-255 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
CTLFLAG_RD, &adapter->stats.ptc511,
"256-511 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
CTLFLAG_RD, &adapter->stats.ptc1023,
"512-1023 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
CTLFLAG_RD, &adapter->stats.ptc1522,
"1024-1522 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
CTLFLAG_RD, &adapter->stats.tsctc,
"TSO Contexts Transmitted");
/* Interrupt Stats */
int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
int_list = SYSCTL_CHILDREN(int_node);
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
CTLFLAG_RD, &adapter->stats.iac,
"Interrupt Assertion Count");
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
CTLFLAG_RD, &adapter->stats.rxdmtc,
"Rx Desc Min Thresh Count");
}
/**********************************************************************
*
* This routine provides a way to dump out the adapter eeprom,
* often a useful debug/service tool. This only dumps the first
* 32 words, stuff that matters is in that extent.
*
**********************************************************************/
static int
igc_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
{
struct igc_adapter *adapter = (struct igc_adapter *)arg1;
int error;
int result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
/*
* This value will cause a hex dump of the
* first 32 16-bit words of the EEPROM to
* the screen.
*/
if (result == 1)
igc_print_nvm_info(adapter);
return (error);
}
static void
igc_print_nvm_info(struct igc_adapter *adapter)
{
u16 eeprom_data;
int i, j, row = 0;
/* Its a bit crude, but it gets the job done */
printf("\nInterface EEPROM Dump:\n");
printf("Offset\n0x0000 ");
for (i = 0, j = 0; i < 32; i++, j++) {
if (j == 8) { /* Make the offset block */
j = 0; ++row;
printf("\n0x00%x0 ",row);
}
igc_read_nvm(&adapter->hw, i, 1, &eeprom_data);
printf("%04x ", eeprom_data);
}
printf("\n");
}
static int
igc_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
{
struct igc_int_delay_info *info;
struct igc_adapter *adapter;
u32 regval;
int error, usecs, ticks;
info = (struct igc_int_delay_info *) arg1;
usecs = info->value;
error = sysctl_handle_int(oidp, &usecs, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (usecs < 0 || usecs > IGC_TICKS_TO_USECS(65535))
return (EINVAL);
info->value = usecs;
ticks = IGC_USECS_TO_TICKS(usecs);
if (info->offset == IGC_ITR) /* units are 256ns here */
ticks *= 4;
adapter = info->adapter;
regval = IGC_READ_OFFSET(&adapter->hw, info->offset);
regval = (regval & ~0xffff) | (ticks & 0xffff);
/* Handle a few special cases. */
switch (info->offset) {
case IGC_RDTR:
break;
case IGC_TIDV:
if (ticks == 0) {
adapter->txd_cmd &= ~IGC_TXD_CMD_IDE;
/* Don't write 0 into the TIDV register. */
regval++;
} else
adapter->txd_cmd |= IGC_TXD_CMD_IDE;
break;
}
IGC_WRITE_OFFSET(&adapter->hw, info->offset, regval);
return (0);
}
static void
igc_add_int_delay_sysctl(struct igc_adapter *adapter, const char *name,
const char *description, struct igc_int_delay_info *info,
int offset, int value)
{
info->adapter = adapter;
info->offset = offset;
info->value = value;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
info, 0, igc_sysctl_int_delay, "I", description);
}
/*
* Set flow control using sysctl:
* Flow control values:
* 0 - off
* 1 - rx pause
* 2 - tx pause
* 3 - full
*/
static int
igc_set_flowcntl(SYSCTL_HANDLER_ARGS)
{
int error;
static int input = 3; /* default is full */
struct igc_adapter *adapter = (struct igc_adapter *) arg1;
error = sysctl_handle_int(oidp, &input, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
if (input == adapter->fc) /* no change? */
return (error);
switch (input) {
case igc_fc_rx_pause:
case igc_fc_tx_pause:
case igc_fc_full:
case igc_fc_none:
adapter->hw.fc.requested_mode = input;
adapter->fc = input;
break;
default:
/* Do nothing */
return (error);
}
adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
igc_force_mac_fc(&adapter->hw);
return (error);
}
/*
* Manage Energy Efficient Ethernet:
* Control values:
* 0/1 - enabled/disabled
*/
static int
igc_sysctl_eee(SYSCTL_HANDLER_ARGS)
{
struct igc_adapter *adapter = (struct igc_adapter *) arg1;
int error, value;
value = adapter->hw.dev_spec._i225.eee_disable;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
adapter->hw.dev_spec._i225.eee_disable = (value != 0);
igc_if_init(adapter->ctx);
return (0);
}
static int
igc_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
{
struct igc_adapter *adapter;
int error;
int result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
adapter = (struct igc_adapter *) arg1;
igc_print_debug_info(adapter);
}
return (error);
}
static int
igc_get_rs(SYSCTL_HANDLER_ARGS)
{
struct igc_adapter *adapter = (struct igc_adapter *) arg1;
int error;
int result;
result = 0;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr || result != 1)
return (error);
igc_dump_rs(adapter);
return (error);
}
static void
igc_if_debug(if_ctx_t ctx)
{
igc_dump_rs(iflib_get_softc(ctx));
}
/*
* This routine is meant to be fluid, add whatever is
* needed for debugging a problem. -jfv
*/
static void
igc_print_debug_info(struct igc_adapter *adapter)
{
device_t dev = iflib_get_dev(adapter->ctx);
if_t ifp = iflib_get_ifp(adapter->ctx);
struct tx_ring *txr = &adapter->tx_queues->txr;
struct rx_ring *rxr = &adapter->rx_queues->rxr;
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
printf("Interface is RUNNING ");
else
printf("Interface is NOT RUNNING\n");
if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
printf("and INACTIVE\n");
else
printf("and ACTIVE\n");
for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
device_printf(dev, "TX Queue %d ------\n", i);
device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
IGC_READ_REG(&adapter->hw, IGC_TDH(i)),
IGC_READ_REG(&adapter->hw, IGC_TDT(i)));
}
for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
device_printf(dev, "RX Queue %d ------\n", j);
device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
IGC_READ_REG(&adapter->hw, IGC_RDH(j)),
IGC_READ_REG(&adapter->hw, IGC_RDT(j)));
}
}