freebsd-src/sys/dev/ice/if_ice_iflib.c
Eric Joyner 9e54973fc3
ice(4): Update to 1.39.13-k
- Adds mirror interface functionality
- Remove unused virtchnl headers

Signed-off-by: Eric Joyner <erj@FreeBSD.org>

MFC-with:	768329961d
MFC after:	3 days
Sponsored by:	Intel Corporation
Tested by:	jeffrey.e.pieper@intel.com
Differential Revision:	https://reviews.freebsd.org/D44004
2024-04-18 16:21:22 -07:00

4415 lines
127 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause */
/* Copyright (c) 2024, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file if_ice_iflib.c
* @brief iflib driver implementation
*
* Contains the main entry point for the iflib driver implementation. It
* implements the various ifdi driver methods, and sets up the module and
* driver values to load an iflib driver.
*/
#include "ice_iflib.h"
#include "ice_drv_info.h"
#include "ice_switch.h"
#include "ice_sched.h"
#include <sys/module.h>
#include <sys/sockio.h>
#include <sys/smp.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
/*
* Device method prototypes
*/
static void *ice_register(device_t);
static int ice_if_attach_pre(if_ctx_t);
static int ice_attach_pre_recovery_mode(struct ice_softc *sc);
static int ice_if_attach_post(if_ctx_t);
static void ice_attach_post_recovery_mode(struct ice_softc *sc);
static int ice_if_detach(if_ctx_t);
static int ice_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
static int ice_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nqs, int nqsets);
static int ice_if_msix_intr_assign(if_ctx_t ctx, int msix);
static void ice_if_queues_free(if_ctx_t ctx);
static int ice_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
static void ice_if_intr_enable(if_ctx_t ctx);
static void ice_if_intr_disable(if_ctx_t ctx);
static int ice_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
static int ice_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
static int ice_if_promisc_set(if_ctx_t ctx, int flags);
static void ice_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr);
static int ice_if_media_change(if_ctx_t ctx);
static void ice_if_init(if_ctx_t ctx);
static void ice_if_timer(if_ctx_t ctx, uint16_t qid);
static void ice_if_update_admin_status(if_ctx_t ctx);
static void ice_if_multi_set(if_ctx_t ctx);
static void ice_if_vlan_register(if_ctx_t ctx, u16 vtag);
static void ice_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
static void ice_if_stop(if_ctx_t ctx);
static uint64_t ice_if_get_counter(if_ctx_t ctx, ift_counter counter);
static int ice_if_priv_ioctl(if_ctx_t ctx, u_long command, caddr_t data);
static int ice_if_i2c_req(if_ctx_t ctx, struct ifi2creq *req);
static int ice_if_suspend(if_ctx_t ctx);
static int ice_if_resume(if_ctx_t ctx);
static bool ice_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
static int ice_setup_mirror_vsi(struct ice_mirr_if *mif);
static int ice_wire_mirror_intrs(struct ice_mirr_if *mif);
static void ice_free_irqvs_subif(struct ice_mirr_if *mif);
static void *ice_subif_register(device_t);
static void ice_subif_setup_scctx(struct ice_mirr_if *mif);
static int ice_subif_rebuild(struct ice_softc *sc);
static int ice_subif_rebuild_vsi_qmap(struct ice_softc *sc);
/* Iflib API */
static int ice_subif_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs,
uint64_t *paddrs, int ntxqs, int ntxqsets);
static int ice_subif_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs,
uint64_t *paddrs, int nrxqs, int nrxqsets);
static int ice_subif_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
static int ice_subif_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
static void ice_subif_if_intr_enable(if_ctx_t ctx);
static int ice_subif_if_msix_intr_assign(if_ctx_t ctx, int msix);
static void ice_subif_if_init(if_ctx_t ctx);
static void ice_subif_if_stop(if_ctx_t ctx);
static void ice_subif_if_queues_free(if_ctx_t ctx);
static int ice_subif_if_attach_pre(if_ctx_t);
static int ice_subif_if_attach_post(if_ctx_t);
static void ice_subif_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr);
static int ice_subif_if_promisc_set(if_ctx_t ctx, int flags);
static int ice_msix_que(void *arg);
static int ice_msix_admin(void *arg);
/*
* Helper function prototypes
*/
static int ice_pci_mapping(struct ice_softc *sc);
static void ice_free_pci_mapping(struct ice_softc *sc);
static void ice_update_link_status(struct ice_softc *sc, bool update_media);
static void ice_init_device_features(struct ice_softc *sc);
static void ice_init_tx_tracking(struct ice_vsi *vsi);
static void ice_handle_reset_event(struct ice_softc *sc);
static void ice_handle_pf_reset_request(struct ice_softc *sc);
static void ice_prepare_for_reset(struct ice_softc *sc);
static int ice_rebuild_pf_vsi_qmap(struct ice_softc *sc);
static void ice_rebuild(struct ice_softc *sc);
static void ice_rebuild_recovery_mode(struct ice_softc *sc);
static void ice_free_irqvs(struct ice_softc *sc);
static void ice_update_rx_mbuf_sz(struct ice_softc *sc);
static void ice_poll_for_media_avail(struct ice_softc *sc);
static void ice_setup_scctx(struct ice_softc *sc);
static int ice_allocate_msix(struct ice_softc *sc);
static void ice_admin_timer(void *arg);
static void ice_transition_recovery_mode(struct ice_softc *sc);
static void ice_transition_safe_mode(struct ice_softc *sc);
static void ice_set_default_promisc_mask(ice_bitmap_t *promisc_mask);
/*
* Device Interface Declaration
*/
/**
* @var ice_methods
* @brief ice driver method entry points
*
* List of device methods implementing the generic device interface used by
* the device stack to interact with the ice driver. Since this is an iflib
* driver, most of the methods point to the generic iflib implementation.
*/
static device_method_t ice_methods[] = {
/* Device interface */
DEVMETHOD(device_register, ice_register),
DEVMETHOD(device_probe, iflib_device_probe_vendor),
DEVMETHOD(device_attach, iflib_device_attach),
DEVMETHOD(device_detach, iflib_device_detach),
DEVMETHOD(device_shutdown, iflib_device_shutdown),
DEVMETHOD(device_suspend, iflib_device_suspend),
DEVMETHOD(device_resume, iflib_device_resume),
DEVMETHOD_END
};
/**
* @var ice_iflib_methods
* @brief iflib method entry points
*
* List of device methods used by the iflib stack to interact with this
* driver. These are the real main entry points used to interact with this
* driver.
*/
static device_method_t ice_iflib_methods[] = {
DEVMETHOD(ifdi_attach_pre, ice_if_attach_pre),
DEVMETHOD(ifdi_attach_post, ice_if_attach_post),
DEVMETHOD(ifdi_detach, ice_if_detach),
DEVMETHOD(ifdi_tx_queues_alloc, ice_if_tx_queues_alloc),
DEVMETHOD(ifdi_rx_queues_alloc, ice_if_rx_queues_alloc),
DEVMETHOD(ifdi_msix_intr_assign, ice_if_msix_intr_assign),
DEVMETHOD(ifdi_queues_free, ice_if_queues_free),
DEVMETHOD(ifdi_mtu_set, ice_if_mtu_set),
DEVMETHOD(ifdi_intr_enable, ice_if_intr_enable),
DEVMETHOD(ifdi_intr_disable, ice_if_intr_disable),
DEVMETHOD(ifdi_rx_queue_intr_enable, ice_if_rx_queue_intr_enable),
DEVMETHOD(ifdi_tx_queue_intr_enable, ice_if_tx_queue_intr_enable),
DEVMETHOD(ifdi_promisc_set, ice_if_promisc_set),
DEVMETHOD(ifdi_media_status, ice_if_media_status),
DEVMETHOD(ifdi_media_change, ice_if_media_change),
DEVMETHOD(ifdi_init, ice_if_init),
DEVMETHOD(ifdi_stop, ice_if_stop),
DEVMETHOD(ifdi_timer, ice_if_timer),
DEVMETHOD(ifdi_update_admin_status, ice_if_update_admin_status),
DEVMETHOD(ifdi_multi_set, ice_if_multi_set),
DEVMETHOD(ifdi_vlan_register, ice_if_vlan_register),
DEVMETHOD(ifdi_vlan_unregister, ice_if_vlan_unregister),
DEVMETHOD(ifdi_get_counter, ice_if_get_counter),
DEVMETHOD(ifdi_priv_ioctl, ice_if_priv_ioctl),
DEVMETHOD(ifdi_i2c_req, ice_if_i2c_req),
DEVMETHOD(ifdi_suspend, ice_if_suspend),
DEVMETHOD(ifdi_resume, ice_if_resume),
DEVMETHOD(ifdi_needs_restart, ice_if_needs_restart),
DEVMETHOD_END
};
/**
* @var ice_driver
* @brief driver structure for the generic device stack
*
* driver_t definition used to setup the generic device methods.
*/
static driver_t ice_driver = {
.name = "ice",
.methods = ice_methods,
.size = sizeof(struct ice_softc),
};
/**
* @var ice_iflib_driver
* @brief driver structure for the iflib stack
*
* driver_t definition used to setup the iflib device methods.
*/
static driver_t ice_iflib_driver = {
.name = "ice",
.methods = ice_iflib_methods,
.size = sizeof(struct ice_softc),
};
extern struct if_txrx ice_txrx;
extern struct if_txrx ice_recovery_txrx;
/**
* @var ice_sctx
* @brief ice driver shared context
*
* Structure defining shared values (context) that is used by all instances of
* the device. Primarily used to setup details about how the iflib stack
* should treat this driver. Also defines the default, minimum, and maximum
* number of descriptors in each ring.
*/
static struct if_shared_ctx ice_sctx = {
.isc_magic = IFLIB_MAGIC,
.isc_q_align = PAGE_SIZE,
.isc_tx_maxsize = ICE_MAX_FRAME_SIZE,
/* We could technically set this as high as ICE_MAX_DMA_SEG_SIZE, but
* that doesn't make sense since that would be larger than the maximum
* size of a single packet.
*/
.isc_tx_maxsegsize = ICE_MAX_FRAME_SIZE,
/* XXX: This is only used by iflib to ensure that
* scctx->isc_tx_tso_size_max + the VLAN header is a valid size.
*/
.isc_tso_maxsize = ICE_TSO_SIZE + sizeof(struct ether_vlan_header),
/* XXX: This is used by iflib to set the number of segments in the TSO
* DMA tag. However, scctx->isc_tx_tso_segsize_max is used to set the
* related ifnet parameter.
*/
.isc_tso_maxsegsize = ICE_MAX_DMA_SEG_SIZE,
.isc_rx_maxsize = ICE_MAX_FRAME_SIZE,
.isc_rx_nsegments = ICE_MAX_RX_SEGS,
.isc_rx_maxsegsize = ICE_MAX_FRAME_SIZE,
.isc_nfl = 1,
.isc_ntxqs = 1,
.isc_nrxqs = 1,
.isc_admin_intrcnt = 1,
.isc_vendor_info = ice_vendor_info_array,
.isc_driver_version = __DECONST(char *, ice_driver_version),
.isc_driver = &ice_iflib_driver,
/*
* IFLIB_NEED_SCRATCH ensures that mbufs have scratch space available
* for hardware checksum offload
*
* IFLIB_TSO_INIT_IP ensures that the TSO packets have zeroed out the
* IP sum field, required by our hardware to calculate valid TSO
* checksums.
*
* IFLIB_ADMIN_ALWAYS_RUN ensures that the administrative task runs
* even when the interface is down.
*
* IFLIB_SKIP_MSIX allows the driver to handle allocating MSI-X
* vectors manually instead of relying on iflib code to do this.
*/
.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP |
IFLIB_ADMIN_ALWAYS_RUN | IFLIB_SKIP_MSIX,
.isc_nrxd_min = {ICE_MIN_DESC_COUNT},
.isc_ntxd_min = {ICE_MIN_DESC_COUNT},
.isc_nrxd_max = {ICE_IFLIB_MAX_DESC_COUNT},
.isc_ntxd_max = {ICE_IFLIB_MAX_DESC_COUNT},
.isc_nrxd_default = {ICE_DEFAULT_DESC_COUNT},
.isc_ntxd_default = {ICE_DEFAULT_DESC_COUNT},
};
DRIVER_MODULE(ice, pci, ice_driver, ice_module_event_handler, NULL);
MODULE_VERSION(ice, 1);
MODULE_DEPEND(ice, pci, 1, 1, 1);
MODULE_DEPEND(ice, ether, 1, 1, 1);
MODULE_DEPEND(ice, iflib, 1, 1, 1);
IFLIB_PNP_INFO(pci, ice, ice_vendor_info_array);
/* Static driver-wide sysctls */
#include "ice_iflib_sysctls.h"
/**
* ice_pci_mapping - Map PCI BAR memory
* @sc: device private softc
*
* Map PCI BAR 0 for device operation.
*/
static int
ice_pci_mapping(struct ice_softc *sc)
{
int rc;
/* Map BAR0 */
rc = ice_map_bar(sc->dev, &sc->bar0, 0);
if (rc)
return rc;
return 0;
}
/**
* ice_free_pci_mapping - Release PCI BAR memory
* @sc: device private softc
*
* Release PCI BARs which were previously mapped by ice_pci_mapping().
*/
static void
ice_free_pci_mapping(struct ice_softc *sc)
{
/* Free BAR0 */
ice_free_bar(sc->dev, &sc->bar0);
}
/*
* Device methods
*/
/**
* ice_register - register device method callback
* @dev: the device being registered
*
* Returns a pointer to the shared context structure, which is used by iflib.
*/
static void *
ice_register(device_t dev __unused)
{
return &ice_sctx;
} /* ice_register */
/**
* ice_setup_scctx - Setup the iflib softc context structure
* @sc: the device private structure
*
* Setup the parameters in if_softc_ctx_t structure used by the iflib stack
* when loading.
*/
static void
ice_setup_scctx(struct ice_softc *sc)
{
if_softc_ctx_t scctx = sc->scctx;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
bool safe_mode, recovery_mode;
safe_mode = ice_is_bit_set(sc->feat_en, ICE_FEATURE_SAFE_MODE);
recovery_mode = ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE);
/*
* If the driver loads in Safe mode or Recovery mode, limit iflib to
* a single queue pair.
*/
if (safe_mode || recovery_mode) {
scctx->isc_ntxqsets = scctx->isc_nrxqsets = 1;
scctx->isc_ntxqsets_max = 1;
scctx->isc_nrxqsets_max = 1;
} else {
/*
* iflib initially sets the isc_ntxqsets and isc_nrxqsets to
* the values of the override sysctls. Cache these initial
* values so that the driver can be aware of what the iflib
* sysctl value is when setting up MSI-X vectors.
*/
sc->ifc_sysctl_ntxqs = scctx->isc_ntxqsets;
sc->ifc_sysctl_nrxqs = scctx->isc_nrxqsets;
if (scctx->isc_ntxqsets == 0)
scctx->isc_ntxqsets = hw->func_caps.common_cap.rss_table_size;
if (scctx->isc_nrxqsets == 0)
scctx->isc_nrxqsets = hw->func_caps.common_cap.rss_table_size;
scctx->isc_ntxqsets_max = hw->func_caps.common_cap.num_txq;
scctx->isc_nrxqsets_max = hw->func_caps.common_cap.num_rxq;
/*
* Sanity check that the iflib sysctl values are within the
* maximum supported range.
*/
if (sc->ifc_sysctl_ntxqs > scctx->isc_ntxqsets_max)
sc->ifc_sysctl_ntxqs = scctx->isc_ntxqsets_max;
if (sc->ifc_sysctl_nrxqs > scctx->isc_nrxqsets_max)
sc->ifc_sysctl_nrxqs = scctx->isc_nrxqsets_max;
}
scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]
* sizeof(struct ice_tx_desc), DBA_ALIGN);
scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0]
* sizeof(union ice_32b_rx_flex_desc), DBA_ALIGN);
scctx->isc_tx_nsegments = ICE_MAX_TX_SEGS;
scctx->isc_tx_tso_segments_max = ICE_MAX_TSO_SEGS;
scctx->isc_tx_tso_size_max = ICE_TSO_SIZE;
scctx->isc_tx_tso_segsize_max = ICE_MAX_DMA_SEG_SIZE;
scctx->isc_msix_bar = pci_msix_table_bar(dev);
scctx->isc_rss_table_size = hw->func_caps.common_cap.rss_table_size;
/*
* If the driver loads in recovery mode, disable Tx/Rx functionality
*/
if (recovery_mode)
scctx->isc_txrx = &ice_recovery_txrx;
else
scctx->isc_txrx = &ice_txrx;
/*
* If the driver loads in Safe mode or Recovery mode, disable
* advanced features including hardware offloads.
*/
if (safe_mode || recovery_mode) {
scctx->isc_capenable = ICE_SAFE_CAPS;
scctx->isc_tx_csum_flags = 0;
} else {
scctx->isc_capenable = ICE_FULL_CAPS;
scctx->isc_tx_csum_flags = ICE_CSUM_OFFLOAD;
}
scctx->isc_capabilities = scctx->isc_capenable;
} /* ice_setup_scctx */
/**
* ice_if_attach_pre - Early device attach logic
* @ctx: the iflib context structure
*
* Called by iflib during the attach process. Earliest main driver entry
* point which performs necessary hardware and driver initialization. Called
* before the Tx and Rx queues are allocated.
*/
static int
ice_if_attach_pre(if_ctx_t ctx)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
enum ice_fw_modes fw_mode;
enum ice_status status;
if_softc_ctx_t scctx;
struct ice_hw *hw;
device_t dev;
int err;
device_printf(iflib_get_dev(ctx), "Loading the iflib ice driver\n");
ice_set_state(&sc->state, ICE_STATE_ATTACHING);
sc->ctx = ctx;
sc->media = iflib_get_media(ctx);
sc->sctx = iflib_get_sctx(ctx);
sc->iflib_ctx_lock = iflib_ctx_lock_get(ctx);
dev = sc->dev = iflib_get_dev(ctx);
scctx = sc->scctx = iflib_get_softc_ctx(ctx);
hw = &sc->hw;
hw->back = sc;
snprintf(sc->admin_mtx_name, sizeof(sc->admin_mtx_name),
"%s:admin", device_get_nameunit(dev));
mtx_init(&sc->admin_mtx, sc->admin_mtx_name, NULL, MTX_DEF);
callout_init_mtx(&sc->admin_timer, &sc->admin_mtx, 0);
ASSERT_CTX_LOCKED(sc);
if (ice_pci_mapping(sc)) {
err = (ENXIO);
goto destroy_admin_timer;
}
/* Save off the PCI information */
ice_save_pci_info(hw, dev);
/* create tunables as early as possible */
ice_add_device_tunables(sc);
/* Setup ControlQ lengths */
ice_set_ctrlq_len(hw);
reinit_hw:
fw_mode = ice_get_fw_mode(hw);
if (fw_mode == ICE_FW_MODE_REC) {
device_printf(dev, "Firmware recovery mode detected. Limiting functionality. Refer to Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n");
err = ice_attach_pre_recovery_mode(sc);
if (err)
goto free_pci_mapping;
return (0);
}
/* Initialize the hw data structure */
status = ice_init_hw(hw);
if (status) {
if (status == ICE_ERR_FW_API_VER) {
/* Enter recovery mode, so that the driver remains
* loaded. This way, if the system administrator
* cannot update the driver, they may still attempt to
* downgrade the NVM.
*/
err = ice_attach_pre_recovery_mode(sc);
if (err)
goto free_pci_mapping;
return (0);
} else {
err = EIO;
device_printf(dev, "Unable to initialize hw, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
goto free_pci_mapping;
}
ice_init_device_features(sc);
/* Keep flag set by default */
ice_set_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN);
/* Notify firmware of the device driver version */
err = ice_send_version(sc);
if (err)
goto deinit_hw;
/*
* Success indicates a change was made that requires a reinitialization
* of the hardware
*/
err = ice_load_pkg_file(sc);
if (err == ICE_SUCCESS) {
ice_deinit_hw(hw);
goto reinit_hw;
}
err = ice_init_link_events(sc);
if (err) {
device_printf(dev, "ice_init_link_events failed: %s\n",
ice_err_str(err));
goto deinit_hw;
}
/* Initialize VLAN mode in FW; if dual VLAN mode is supported by the package
* and firmware, this will force them to use single VLAN mode.
*/
status = ice_set_vlan_mode(hw);
if (status) {
err = EIO;
device_printf(dev, "Unable to initialize VLAN mode, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
goto deinit_hw;
}
ice_print_nvm_version(sc);
/* Setup the MAC address */
iflib_set_mac(ctx, hw->port_info->mac.lan_addr);
/* Setup the iflib softc context structure */
ice_setup_scctx(sc);
/* Initialize the Tx queue manager */
err = ice_resmgr_init(&sc->tx_qmgr, hw->func_caps.common_cap.num_txq);
if (err) {
device_printf(dev, "Unable to initialize Tx queue manager: %s\n",
ice_err_str(err));
goto deinit_hw;
}
/* Initialize the Rx queue manager */
err = ice_resmgr_init(&sc->rx_qmgr, hw->func_caps.common_cap.num_rxq);
if (err) {
device_printf(dev, "Unable to initialize Rx queue manager: %s\n",
ice_err_str(err));
goto free_tx_qmgr;
}
/* Initialize the PF device interrupt resource manager */
err = ice_alloc_intr_tracking(sc);
if (err)
/* Errors are already printed */
goto free_rx_qmgr;
/* Determine maximum number of VSIs we'll prepare for */
sc->num_available_vsi = min(ICE_MAX_VSI_AVAILABLE,
hw->func_caps.guar_num_vsi);
if (!sc->num_available_vsi) {
err = EIO;
device_printf(dev, "No VSIs allocated to host\n");
goto free_intr_tracking;
}
/* Allocate storage for the VSI pointers */
sc->all_vsi = (struct ice_vsi **)
malloc(sizeof(struct ice_vsi *) * sc->num_available_vsi,
M_ICE, M_WAITOK | M_ZERO);
if (!sc->all_vsi) {
err = ENOMEM;
device_printf(dev, "Unable to allocate VSI array\n");
goto free_intr_tracking;
}
/*
* Prepare the statically allocated primary PF VSI in the softc
* structure. Other VSIs will be dynamically allocated as needed.
*/
ice_setup_pf_vsi(sc);
err = ice_alloc_vsi_qmap(&sc->pf_vsi, scctx->isc_ntxqsets_max,
scctx->isc_nrxqsets_max);
if (err) {
device_printf(dev, "Unable to allocate VSI Queue maps\n");
goto free_main_vsi;
}
/* Allocate MSI-X vectors (due to isc_flags IFLIB_SKIP_MSIX) */
err = ice_allocate_msix(sc);
if (err)
goto free_main_vsi;
return 0;
free_main_vsi:
/* ice_release_vsi will free the queue maps if they were allocated */
ice_release_vsi(&sc->pf_vsi);
free(sc->all_vsi, M_ICE);
sc->all_vsi = NULL;
free_intr_tracking:
ice_free_intr_tracking(sc);
free_rx_qmgr:
ice_resmgr_destroy(&sc->rx_qmgr);
free_tx_qmgr:
ice_resmgr_destroy(&sc->tx_qmgr);
deinit_hw:
ice_deinit_hw(hw);
free_pci_mapping:
ice_free_pci_mapping(sc);
destroy_admin_timer:
mtx_lock(&sc->admin_mtx);
callout_stop(&sc->admin_timer);
mtx_unlock(&sc->admin_mtx);
mtx_destroy(&sc->admin_mtx);
return err;
} /* ice_if_attach_pre */
/**
* ice_attach_pre_recovery_mode - Limited driver attach_pre for FW recovery
* @sc: the device private softc
*
* Loads the device driver in limited Firmware Recovery mode, intended to
* allow users to update the firmware to attempt to recover the device.
*
* @remark We may enter recovery mode in case either (a) the firmware is
* detected to be in an invalid state and must be re-programmed, or (b) the
* driver detects that the loaded firmware has a non-compatible API version
* that the driver cannot operate with.
*/
static int
ice_attach_pre_recovery_mode(struct ice_softc *sc)
{
ice_set_state(&sc->state, ICE_STATE_RECOVERY_MODE);
/* Setup the iflib softc context */
ice_setup_scctx(sc);
/* Setup the PF VSI back pointer */
sc->pf_vsi.sc = sc;
/*
* We still need to allocate MSI-X vectors since we need one vector to
* run the administrative admin interrupt
*/
return ice_allocate_msix(sc);
}
/**
* ice_update_link_status - notify OS of link state change
* @sc: device private softc structure
* @update_media: true if we should update media even if link didn't change
*
* Called to notify iflib core of link status changes. Should be called once
* during attach_post, and whenever link status changes during runtime.
*
* This call only updates the currently supported media types if the link
* status changed, or if update_media is set to true.
*/
static void
ice_update_link_status(struct ice_softc *sc, bool update_media)
{
struct ice_hw *hw = &sc->hw;
enum ice_status status;
/* Never report link up when in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
/* Report link status to iflib only once each time it changes */
if (!ice_testandset_state(&sc->state, ICE_STATE_LINK_STATUS_REPORTED)) {
if (sc->link_up) { /* link is up */
uint64_t baudrate = ice_aq_speed_to_rate(sc->hw.port_info);
if (!(hw->port_info->phy.link_info_old.link_info & ICE_AQ_LINK_UP))
ice_set_default_local_lldp_mib(sc);
iflib_link_state_change(sc->ctx, LINK_STATE_UP, baudrate);
ice_rdma_link_change(sc, LINK_STATE_UP, baudrate);
ice_link_up_msg(sc);
} else { /* link is down */
iflib_link_state_change(sc->ctx, LINK_STATE_DOWN, 0);
ice_rdma_link_change(sc, LINK_STATE_DOWN, 0);
}
update_media = true;
}
/* Update the supported media types */
if (update_media && !ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) {
status = ice_add_media_types(sc, sc->media);
if (status)
device_printf(sc->dev, "Error adding device media types: %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
}
/**
* ice_if_attach_post - Late device attach logic
* @ctx: the iflib context structure
*
* Called by iflib to finish up attaching the device. Performs any attach
* logic which must wait until after the Tx and Rx queues have been
* allocated.
*/
static int
ice_if_attach_post(if_ctx_t ctx)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
if_t ifp = iflib_get_ifp(ctx);
enum ice_status status;
int err;
ASSERT_CTX_LOCKED(sc);
/* We don't yet support loading if MSI-X is not supported */
if (sc->scctx->isc_intr != IFLIB_INTR_MSIX) {
device_printf(sc->dev, "The ice driver does not support loading without MSI-X\n");
return (ENOTSUP);
}
/* The ifnet structure hasn't yet been initialized when the attach_pre
* handler is called, so wait until attach_post to setup the
* isc_max_frame_size.
*/
sc->ifp = ifp;
sc->scctx->isc_max_frame_size = if_getmtu(ifp) +
ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
/*
* If we are in recovery mode, only perform a limited subset of
* initialization to support NVM recovery.
*/
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) {
ice_attach_post_recovery_mode(sc);
return (0);
}
sc->pf_vsi.max_frame_size = sc->scctx->isc_max_frame_size;
err = ice_initialize_vsi(&sc->pf_vsi);
if (err) {
device_printf(sc->dev, "Unable to initialize Main VSI: %s\n",
ice_err_str(err));
return err;
}
/* Enable FW health event reporting */
ice_init_health_events(sc);
/* Configure the main PF VSI for RSS */
err = ice_config_rss(&sc->pf_vsi);
if (err) {
device_printf(sc->dev,
"Unable to configure RSS for the main VSI, err %s\n",
ice_err_str(err));
return err;
}
/* Configure switch to drop transmitted LLDP and PAUSE frames */
err = ice_cfg_pf_ethertype_filters(sc);
if (err)
return err;
ice_get_and_print_bus_info(sc);
ice_set_link_management_mode(sc);
ice_init_saved_phy_cfg(sc);
ice_cfg_pba_num(sc);
/* Set a default value for PFC mode on attach since the FW state is unknown
* before sysctl tunables are executed and it can't be queried. This fixes an
* issue when loading the driver with the FW LLDP agent enabled but the FW
* was previously in DSCP PFC mode.
*/
status = ice_aq_set_pfc_mode(&sc->hw, ICE_AQC_PFC_VLAN_BASED_PFC, NULL);
if (status != ICE_SUCCESS)
device_printf(sc->dev, "Setting pfc mode failed, status %s\n", ice_status_str(status));
ice_add_device_sysctls(sc);
/* Get DCBX/LLDP state and start DCBX agent */
ice_init_dcb_setup(sc);
/* Setup link configuration parameters */
ice_init_link_configuration(sc);
ice_update_link_status(sc, true);
/* Configure interrupt causes for the administrative interrupt */
ice_configure_misc_interrupts(sc);
/* Enable ITR 0 right away, so that we can handle admin interrupts */
ice_enable_intr(&sc->hw, sc->irqvs[0].me);
err = ice_rdma_pf_attach(sc);
if (err)
return (err);
/* Start the admin timer */
mtx_lock(&sc->admin_mtx);
callout_reset(&sc->admin_timer, hz/2, ice_admin_timer, sc);
mtx_unlock(&sc->admin_mtx);
if (ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) &&
!ice_test_state(&sc->state, ICE_STATE_NO_MEDIA))
ice_set_state(&sc->state, ICE_STATE_FIRST_INIT_LINK);
ice_clear_state(&sc->state, ICE_STATE_ATTACHING);
return 0;
} /* ice_if_attach_post */
/**
* ice_attach_post_recovery_mode - Limited driver attach_post for FW recovery
* @sc: the device private softc
*
* Performs minimal work to prepare the driver to recover an NVM in case the
* firmware is in recovery mode.
*/
static void
ice_attach_post_recovery_mode(struct ice_softc *sc)
{
/* Configure interrupt causes for the administrative interrupt */
ice_configure_misc_interrupts(sc);
/* Enable ITR 0 right away, so that we can handle admin interrupts */
ice_enable_intr(&sc->hw, sc->irqvs[0].me);
/* Start the admin timer */
mtx_lock(&sc->admin_mtx);
callout_reset(&sc->admin_timer, hz/2, ice_admin_timer, sc);
mtx_unlock(&sc->admin_mtx);
ice_clear_state(&sc->state, ICE_STATE_ATTACHING);
}
/**
* ice_free_irqvs - Free IRQ vector memory
* @sc: the device private softc structure
*
* Free IRQ vector memory allocated during ice_if_msix_intr_assign.
*/
static void
ice_free_irqvs(struct ice_softc *sc)
{
struct ice_vsi *vsi = &sc->pf_vsi;
if_ctx_t ctx = sc->ctx;
int i;
/* If the irqvs array is NULL, then there are no vectors to free */
if (sc->irqvs == NULL)
return;
/* Free the IRQ vectors */
for (i = 0; i < sc->num_irq_vectors; i++)
iflib_irq_free(ctx, &sc->irqvs[i].irq);
/* Clear the irqv pointers */
for (i = 0; i < vsi->num_rx_queues; i++)
vsi->rx_queues[i].irqv = NULL;
for (i = 0; i < vsi->num_tx_queues; i++)
vsi->tx_queues[i].irqv = NULL;
/* Release the vector array memory */
free(sc->irqvs, M_ICE);
sc->irqvs = NULL;
sc->num_irq_vectors = 0;
}
/**
* ice_if_detach - Device driver detach logic
* @ctx: iflib context structure
*
* Perform device shutdown logic to detach the device driver.
*
* Note that there is no guarantee of the ordering of ice_if_queues_free() and
* ice_if_detach(). It is possible for the functions to be called in either
* order, and they must not assume to have a strict ordering.
*/
static int
ice_if_detach(if_ctx_t ctx)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ice_vsi *vsi = &sc->pf_vsi;
enum ice_status status;
int i;
ASSERT_CTX_LOCKED(sc);
/* Indicate that we're detaching */
ice_set_state(&sc->state, ICE_STATE_DETACHING);
/* Stop the admin timer */
mtx_lock(&sc->admin_mtx);
callout_stop(&sc->admin_timer);
mtx_unlock(&sc->admin_mtx);
mtx_destroy(&sc->admin_mtx);
/* Remove additional interfaces if they exist */
if (sc->mirr_if)
ice_destroy_mirror_interface(sc);
ice_rdma_pf_detach(sc);
/* Free allocated media types */
ifmedia_removeall(sc->media);
/* Free the Tx and Rx sysctl contexts, and assign NULL to the node
* pointers. Note, the calls here and those in ice_if_queues_free()
* are *BOTH* necessary, as we cannot guarantee which path will be
* run first
*/
ice_vsi_del_txqs_ctx(vsi);
ice_vsi_del_rxqs_ctx(vsi);
/* Release MSI-X resources */
ice_free_irqvs(sc);
for (i = 0; i < sc->num_available_vsi; i++) {
if (sc->all_vsi[i])
ice_release_vsi(sc->all_vsi[i]);
}
if (sc->all_vsi) {
free(sc->all_vsi, M_ICE);
sc->all_vsi = NULL;
}
/* Release MSI-X memory */
pci_release_msi(sc->dev);
if (sc->msix_table != NULL) {
bus_release_resource(sc->dev, SYS_RES_MEMORY,
rman_get_rid(sc->msix_table),
sc->msix_table);
sc->msix_table = NULL;
}
ice_free_intr_tracking(sc);
/* Destroy the queue managers */
ice_resmgr_destroy(&sc->tx_qmgr);
ice_resmgr_destroy(&sc->rx_qmgr);
if (!ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
ice_deinit_hw(&sc->hw);
IFLIB_CTX_UNLOCK(sc);
status = ice_reset(&sc->hw, ICE_RESET_PFR);
IFLIB_CTX_LOCK(sc);
if (status) {
device_printf(sc->dev, "device PF reset failed, err %s\n",
ice_status_str(status));
}
ice_free_pci_mapping(sc);
return 0;
} /* ice_if_detach */
/**
* ice_if_tx_queues_alloc - Allocate Tx queue memory
* @ctx: iflib context structure
* @vaddrs: virtual addresses for the queue memory
* @paddrs: physical addresses for the queue memory
* @ntxqs: the number of Tx queues per set (should always be 1)
* @ntxqsets: the number of Tx queue sets to allocate
*
* Called by iflib to allocate Tx queues for the device. Allocates driver
* memory to track each queue, the status arrays used for descriptor
* status reporting, and Tx queue sysctls.
*/
static int
ice_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
int __invariant_only ntxqs, int ntxqsets)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_tx_queue *txq;
int err, i, j;
MPASS(ntxqs == 1);
MPASS(sc->scctx->isc_ntxd[0] <= ICE_MAX_DESC_COUNT);
ASSERT_CTX_LOCKED(sc);
/* Do not bother allocating queues if we're in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (0);
/* Allocate queue structure memory */
if (!(vsi->tx_queues =
(struct ice_tx_queue *) malloc(sizeof(struct ice_tx_queue) * ntxqsets, M_ICE, M_NOWAIT | M_ZERO))) {
device_printf(sc->dev, "Unable to allocate Tx queue memory\n");
return (ENOMEM);
}
/* Allocate report status arrays */
for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) {
if (!(txq->tx_rsq =
(uint16_t *) malloc(sizeof(uint16_t) * sc->scctx->isc_ntxd[0], M_ICE, M_NOWAIT))) {
device_printf(sc->dev, "Unable to allocate tx_rsq memory\n");
err = ENOMEM;
goto free_tx_queues;
}
/* Initialize report status array */
for (j = 0; j < sc->scctx->isc_ntxd[0]; j++)
txq->tx_rsq[j] = QIDX_INVALID;
}
/* Assign queues from PF space to the main VSI */
err = ice_resmgr_assign_contiguous(&sc->tx_qmgr, vsi->tx_qmap, ntxqsets);
if (err) {
device_printf(sc->dev, "Unable to assign PF queues: %s\n",
ice_err_str(err));
goto free_tx_queues;
}
vsi->qmap_type = ICE_RESMGR_ALLOC_CONTIGUOUS;
/* Add Tx queue sysctls context */
ice_vsi_add_txqs_ctx(vsi);
for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) {
/* q_handle == me when only one TC */
txq->me = txq->q_handle = i;
txq->vsi = vsi;
/* store the queue size for easier access */
txq->desc_count = sc->scctx->isc_ntxd[0];
/* get the virtual and physical address of the hardware queues */
txq->tail = QTX_COMM_DBELL(vsi->tx_qmap[i]);
txq->tx_base = (struct ice_tx_desc *)vaddrs[i];
txq->tx_paddr = paddrs[i];
ice_add_txq_sysctls(txq);
}
vsi->num_tx_queues = ntxqsets;
return (0);
free_tx_queues:
for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) {
if (txq->tx_rsq != NULL) {
free(txq->tx_rsq, M_ICE);
txq->tx_rsq = NULL;
}
}
free(vsi->tx_queues, M_ICE);
vsi->tx_queues = NULL;
return err;
}
/**
* ice_if_rx_queues_alloc - Allocate Rx queue memory
* @ctx: iflib context structure
* @vaddrs: virtual addresses for the queue memory
* @paddrs: physical addresses for the queue memory
* @nrxqs: number of Rx queues per set (should always be 1)
* @nrxqsets: number of Rx queue sets to allocate
*
* Called by iflib to allocate Rx queues for the device. Allocates driver
* memory to track each queue, as well as sets up the Rx queue sysctls.
*/
static int
ice_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
int __invariant_only nrxqs, int nrxqsets)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_rx_queue *rxq;
int err, i;
MPASS(nrxqs == 1);
MPASS(sc->scctx->isc_nrxd[0] <= ICE_MAX_DESC_COUNT);
ASSERT_CTX_LOCKED(sc);
/* Do not bother allocating queues if we're in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (0);
/* Allocate queue structure memory */
if (!(vsi->rx_queues =
(struct ice_rx_queue *) malloc(sizeof(struct ice_rx_queue) * nrxqsets, M_ICE, M_NOWAIT | M_ZERO))) {
device_printf(sc->dev, "Unable to allocate Rx queue memory\n");
return (ENOMEM);
}
/* Assign queues from PF space to the main VSI */
err = ice_resmgr_assign_contiguous(&sc->rx_qmgr, vsi->rx_qmap, nrxqsets);
if (err) {
device_printf(sc->dev, "Unable to assign PF queues: %s\n",
ice_err_str(err));
goto free_rx_queues;
}
vsi->qmap_type = ICE_RESMGR_ALLOC_CONTIGUOUS;
/* Add Rx queue sysctls context */
ice_vsi_add_rxqs_ctx(vsi);
for (i = 0, rxq = vsi->rx_queues; i < nrxqsets; i++, rxq++) {
rxq->me = i;
rxq->vsi = vsi;
/* store the queue size for easier access */
rxq->desc_count = sc->scctx->isc_nrxd[0];
/* get the virtual and physical address of the hardware queues */
rxq->tail = QRX_TAIL(vsi->rx_qmap[i]);
rxq->rx_base = (union ice_32b_rx_flex_desc *)vaddrs[i];
rxq->rx_paddr = paddrs[i];
ice_add_rxq_sysctls(rxq);
}
vsi->num_rx_queues = nrxqsets;
return (0);
free_rx_queues:
free(vsi->rx_queues, M_ICE);
vsi->rx_queues = NULL;
return err;
}
/**
* ice_if_queues_free - Free queue memory
* @ctx: the iflib context structure
*
* Free queue memory allocated by ice_if_tx_queues_alloc() and
* ice_if_rx_queues_alloc().
*
* There is no guarantee that ice_if_queues_free() and ice_if_detach() will be
* called in the same order. It's possible for ice_if_queues_free() to be
* called prior to ice_if_detach(), and vice versa.
*
* For this reason, the main VSI is a static member of the ice_softc, which is
* not free'd until after iflib finishes calling both of these functions.
*
* Thus, care must be taken in how we manage the memory being freed by this
* function, and in what tasks it can and must perform.
*/
static void
ice_if_queues_free(if_ctx_t ctx)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_tx_queue *txq;
int i;
/* Free the Tx and Rx sysctl contexts, and assign NULL to the node
* pointers. Note, the calls here and those in ice_if_detach()
* are *BOTH* necessary, as we cannot guarantee which path will be
* run first
*/
ice_vsi_del_txqs_ctx(vsi);
ice_vsi_del_rxqs_ctx(vsi);
/* Release MSI-X IRQ vectors, if not yet released in ice_if_detach */
ice_free_irqvs(sc);
if (vsi->tx_queues != NULL) {
/* free the tx_rsq arrays */
for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++) {
if (txq->tx_rsq != NULL) {
free(txq->tx_rsq, M_ICE);
txq->tx_rsq = NULL;
}
}
free(vsi->tx_queues, M_ICE);
vsi->tx_queues = NULL;
vsi->num_tx_queues = 0;
}
if (vsi->rx_queues != NULL) {
free(vsi->rx_queues, M_ICE);
vsi->rx_queues = NULL;
vsi->num_rx_queues = 0;
}
}
/**
* ice_msix_que - Fast interrupt handler for MSI-X receive queues
* @arg: The Rx queue memory
*
* Interrupt filter function for iflib MSI-X interrupts. Called by iflib when
* an MSI-X interrupt for a given queue is triggered. Currently this just asks
* iflib to schedule the main Rx thread.
*/
static int
ice_msix_que(void *arg)
{
struct ice_rx_queue __unused *rxq = (struct ice_rx_queue *)arg;
/* TODO: dynamic ITR algorithm?? */
return (FILTER_SCHEDULE_THREAD);
}
/**
* ice_msix_admin - Fast interrupt handler for MSI-X admin interrupt
* @arg: pointer to device softc memory
*
* Called by iflib when an administrative interrupt occurs. Should perform any
* fast logic for handling the interrupt cause, and then indicate whether the
* admin task needs to be queued.
*/
static int
ice_msix_admin(void *arg)
{
struct ice_softc *sc = (struct ice_softc *)arg;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
u32 oicr;
/* There is no safe way to modify the enabled miscellaneous causes of
* the OICR vector at runtime, as doing so would be prone to race
* conditions. Reading PFINT_OICR will unmask the associated interrupt
* causes and allow future interrupts to occur. The admin interrupt
* vector will not be re-enabled until after we exit this function,
* but any delayed tasks must be resilient against possible "late
* arrival" interrupts that occur while we're already handling the
* task. This is done by using state bits and serializing these
* delayed tasks via the admin status task function.
*/
oicr = rd32(hw, PFINT_OICR);
/* Processing multiple controlq interrupts on a single vector does not
* provide an indication of which controlq triggered the interrupt.
* We might try reading the INTEVENT bit of the respective PFINT_*_CTL
* registers. However, the INTEVENT bit is not guaranteed to be set as
* it gets automatically cleared when the hardware acknowledges the
* interrupt.
*
* This means we don't really have a good indication of whether or
* which controlq triggered this interrupt. We'll just notify the
* admin task that it should check all the controlqs.
*/
ice_set_state(&sc->state, ICE_STATE_CONTROLQ_EVENT_PENDING);
if (oicr & PFINT_OICR_VFLR_M) {
ice_set_state(&sc->state, ICE_STATE_VFLR_PENDING);
}
if (oicr & PFINT_OICR_MAL_DETECT_M) {
ice_set_state(&sc->state, ICE_STATE_MDD_PENDING);
}
if (oicr & PFINT_OICR_GRST_M) {
u32 reset;
reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
GLGEN_RSTAT_RESET_TYPE_S;
if (reset == ICE_RESET_CORER)
sc->soft_stats.corer_count++;
else if (reset == ICE_RESET_GLOBR)
sc->soft_stats.globr_count++;
else
sc->soft_stats.empr_count++;
/* There are a couple of bits at play for handling resets.
* First, the ICE_STATE_RESET_OICR_RECV bit is used to
* indicate that the driver has received an OICR with a reset
* bit active, indicating that a CORER/GLOBR/EMPR is about to
* happen. Second, we set hw->reset_ongoing to indicate that
* the hardware is in reset. We will set this back to false as
* soon as the driver has determined that the hardware is out
* of reset.
*
* If the driver wishes to trigger a request, it can set one of
* the ICE_STATE_RESET_*_REQ bits, which will trigger the
* correct type of reset.
*/
if (!ice_testandset_state(&sc->state, ICE_STATE_RESET_OICR_RECV)) {
hw->reset_ongoing = true;
/*
* During the NVM update process, there is a driver reset and link
* goes down and then up. The below if-statement prevents a second
* link flap from occurring in ice_if_init().
*/
if (if_getflags(sc->ifp) & IFF_UP)
ice_set_state(&sc->state, ICE_STATE_FIRST_INIT_LINK);
}
}
if (oicr & PFINT_OICR_ECC_ERR_M) {
device_printf(dev, "ECC Error detected!\n");
ice_set_state(&sc->state, ICE_STATE_RESET_PFR_REQ);
}
if (oicr & (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M)) {
if (oicr & PFINT_OICR_HMC_ERR_M)
/* Log the HMC errors */
ice_log_hmc_error(hw, dev);
ice_rdma_notify_pe_intr(sc, oicr);
}
if (oicr & PFINT_OICR_PCI_EXCEPTION_M) {
device_printf(dev, "PCI Exception detected!\n");
ice_set_state(&sc->state, ICE_STATE_RESET_PFR_REQ);
}
return (FILTER_SCHEDULE_THREAD);
}
/**
* ice_allocate_msix - Allocate MSI-X vectors for the interface
* @sc: the device private softc
*
* Map the MSI-X bar, and then request MSI-X vectors in a two-stage process.
*
* First, determine a suitable total number of vectors based on the number
* of CPUs, RSS buckets, the administrative vector, and other demands such as
* RDMA.
*
* Request the desired amount of vectors, and see how many we obtain. If we
* don't obtain as many as desired, reduce the demands by lowering the number
* of requested queues or reducing the demand from other features such as
* RDMA.
*
* @remark This function is required because the driver sets the
* IFLIB_SKIP_MSIX flag indicating that the driver will manage MSI-X vectors
* manually.
*
* @remark This driver will only use MSI-X vectors. If this is not possible,
* neither MSI or legacy interrupts will be tried.
*
* @remark if it exists, os_imgr is initialized here for keeping track of
* the assignments of extra MSIX vectors.
*
* @post on success this function must set the following scctx parameters:
* isc_vectors, isc_nrxqsets, isc_ntxqsets, and isc_intr.
*
* @returns zero on success or an error code on failure.
*/
static int
ice_allocate_msix(struct ice_softc *sc)
{
bool iflib_override_queue_count = false;
if_softc_ctx_t scctx = sc->scctx;
device_t dev = sc->dev;
cpuset_t cpus;
int bar, queues, vectors, requested;
int err = 0;
int rdma;
/* Allocate the MSI-X bar */
bar = scctx->isc_msix_bar;
sc->msix_table = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar, RF_ACTIVE);
if (!sc->msix_table) {
device_printf(dev, "Unable to map MSI-X table\n");
return (ENOMEM);
}
/* Check if the iflib queue count sysctls have been set */
if (sc->ifc_sysctl_ntxqs || sc->ifc_sysctl_nrxqs)
iflib_override_queue_count = true;
err = bus_get_cpus(dev, INTR_CPUS, sizeof(cpus), &cpus);
if (err) {
device_printf(dev, "%s: Unable to fetch the CPU list: %s\n",
__func__, ice_err_str(err));
CPU_COPY(&all_cpus, &cpus);
}
/* Attempt to mimic behavior of iflib_msix_init */
if (iflib_override_queue_count) {
/*
* If the override sysctls have been set, limit the queues to
* the number of logical CPUs.
*/
queues = mp_ncpus;
} else {
/*
* Otherwise, limit the queue count to the CPUs associated
* with the NUMA node the device is associated with.
*/
queues = CPU_COUNT(&cpus);
}
/* Clamp to the number of RSS buckets */
queues = imin(queues, rss_getnumbuckets());
/*
* Clamp the number of queue pairs to the minimum of the requested Tx
* and Rx queues.
*/
queues = imin(queues, sc->ifc_sysctl_ntxqs ?: scctx->isc_ntxqsets);
queues = imin(queues, sc->ifc_sysctl_nrxqs ?: scctx->isc_nrxqsets);
if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_RDMA)) {
/*
* Choose a number of RDMA vectors based on the number of CPUs
* up to a maximum
*/
rdma = min(CPU_COUNT(&cpus), ICE_RDMA_MAX_MSIX);
/* Further limit by the user configurable tunable */
rdma = min(rdma, ice_rdma_max_msix);
} else {
rdma = 0;
}
/*
* Determine the number of vectors to request. Note that we also need
* to allocate one vector for administrative tasks.
*/
requested = rdma + queues + 1;
/* Add extra vectors requested by the user for later subinterface
* creation.
*/
if_ctx_t ctx = sc->ctx;
u32 extra_vectors = iflib_get_extra_msix_vectors_sysctl(ctx);
requested += extra_vectors;
vectors = requested;
err = pci_alloc_msix(dev, &vectors);
if (err) {
device_printf(dev, "Failed to allocate %d MSI-X vectors, err %s\n",
vectors, ice_err_str(err));
goto err_free_msix_table;
}
/* If we don't receive enough vectors, reduce demands */
if (vectors < requested) {
int diff = requested - vectors;
device_printf(dev, "Requested %d MSI-X vectors, but got only %d\n",
requested, vectors);
diff += extra_vectors;
extra_vectors = 0;
/*
* The OS didn't grant us the requested number of vectors.
* Check to see if we can reduce demands by limiting the
* number of vectors allocated to certain features.
*/
if (rdma >= diff) {
/* Reduce the number of RDMA vectors we reserve */
rdma -= diff;
diff = 0;
} else {
/* Disable RDMA and reduce the difference */
ice_clear_bit(ICE_FEATURE_RDMA, sc->feat_cap);
diff -= rdma;
rdma = 0;
}
/*
* If we still have a difference, we need to reduce the number
* of queue pairs.
*
* However, we still need at least one vector for the admin
* interrupt and one queue pair.
*/
if (queues <= diff) {
device_printf(dev, "Unable to allocate sufficient MSI-X vectors\n");
err = (ERANGE);
goto err_pci_release_msi;
}
queues -= diff;
}
device_printf(dev, "Using %d Tx and Rx queues\n", queues);
if (rdma)
device_printf(dev, "Reserving %d MSI-X interrupts for iRDMA\n",
rdma);
device_printf(dev, "Using MSI-X interrupts with %d vectors\n",
vectors);
/* Split resulting vectors back into requested splits */
scctx->isc_vectors = vectors;
scctx->isc_nrxqsets = queues;
scctx->isc_ntxqsets = queues;
scctx->isc_intr = IFLIB_INTR_MSIX;
sc->irdma_vectors = rdma;
/* Interrupt allocation tracking isn't required in recovery mode,
* since neither RDMA nor VFs are enabled.
*/
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (0);
/* Keep track of which interrupt indices are being used for what */
sc->lan_vectors = vectors - rdma;
sc->lan_vectors -= extra_vectors;
err = ice_resmgr_assign_contiguous(&sc->dev_imgr, sc->pf_imap, sc->lan_vectors);
if (err) {
device_printf(dev, "Unable to assign PF interrupt mapping: %s\n",
ice_err_str(err));
goto err_pci_release_msi;
}
err = ice_resmgr_assign_contiguous(&sc->dev_imgr, sc->rdma_imap, rdma);
if (err) {
device_printf(dev, "Unable to assign PF RDMA interrupt mapping: %s\n",
ice_err_str(err));
goto err_release_pf_imap;
}
sc->extra_vectors = extra_vectors;
/* Setup another resource manager to track the assignments of extra OS
* vectors. These OS interrupt allocations don't need to be contiguous,
* unlike the ones that come from the device.
*/
err = ice_resmgr_init(&sc->os_imgr, sc->extra_vectors);
if (err) {
device_printf(dev, "Unable to initialize OS extra interrupt manager: %s\n",
ice_err_str(err));
ice_resmgr_release_map(&sc->dev_imgr, sc->rdma_imap,
rdma);
goto err_release_pf_imap;
}
return (0);
err_release_pf_imap:
ice_resmgr_release_map(&sc->dev_imgr, sc->pf_imap,
sc->lan_vectors);
err_pci_release_msi:
pci_release_msi(dev);
err_free_msix_table:
if (sc->msix_table != NULL) {
bus_release_resource(sc->dev, SYS_RES_MEMORY,
rman_get_rid(sc->msix_table),
sc->msix_table);
sc->msix_table = NULL;
}
return (err);
}
/**
* ice_if_msix_intr_assign - Assign MSI-X interrupt vectors to queues
* @ctx: the iflib context structure
* @msix: the number of vectors we were assigned
*
* Called by iflib to assign MSI-X vectors to queues. Currently requires that
* we get at least the same number of vectors as we have queues, and that we
* always have the same number of Tx and Rx queues.
*
* Tx queues use a softirq instead of using their own hardware interrupt.
*/
static int
ice_if_msix_intr_assign(if_ctx_t ctx, int msix)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ice_vsi *vsi = &sc->pf_vsi;
int err, i, vector;
ASSERT_CTX_LOCKED(sc);
if (vsi->num_rx_queues != vsi->num_tx_queues) {
device_printf(sc->dev,
"iflib requested %d Tx queues, and %d Rx queues, but the driver isn't able to support a differing number of Tx and Rx queues\n",
vsi->num_tx_queues, vsi->num_rx_queues);
return (EOPNOTSUPP);
}
if (msix < (vsi->num_rx_queues + 1)) {
device_printf(sc->dev,
"Not enough MSI-X vectors to assign one vector to each queue pair\n");
return (EOPNOTSUPP);
}
/* Save the number of vectors for future use */
sc->num_irq_vectors = vsi->num_rx_queues + 1;
/* Allocate space to store the IRQ vector data */
if (!(sc->irqvs =
(struct ice_irq_vector *) malloc(sizeof(struct ice_irq_vector) * (sc->num_irq_vectors),
M_ICE, M_NOWAIT))) {
device_printf(sc->dev,
"Unable to allocate irqv memory\n");
return (ENOMEM);
}
/* Administrative interrupt events will use vector 0 */
err = iflib_irq_alloc_generic(ctx, &sc->irqvs[0].irq, 1, IFLIB_INTR_ADMIN,
ice_msix_admin, sc, 0, "admin");
if (err) {
device_printf(sc->dev,
"Failed to register Admin queue handler: %s\n",
ice_err_str(err));
goto free_irqvs;
}
sc->irqvs[0].me = 0;
/* Do not allocate queue interrupts when in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (0);
int rid;
for (i = 0, vector = 1; i < vsi->num_rx_queues; i++, vector++) {
struct ice_rx_queue *rxq = &vsi->rx_queues[i];
struct ice_tx_queue *txq = &vsi->tx_queues[i];
char irq_name[16];
rid = vector + 1;
snprintf(irq_name, sizeof(irq_name), "rxq%d", i);
err = iflib_irq_alloc_generic(ctx, &sc->irqvs[vector].irq, rid,
IFLIB_INTR_RXTX, ice_msix_que,
rxq, rxq->me, irq_name);
if (err) {
device_printf(sc->dev,
"Failed to allocate q int %d err: %s\n",
i, ice_err_str(err));
vector--;
i--;
goto fail;
}
sc->irqvs[vector].me = vector;
rxq->irqv = &sc->irqvs[vector];
bzero(irq_name, sizeof(irq_name));
snprintf(irq_name, sizeof(irq_name), "txq%d", i);
iflib_softirq_alloc_generic(ctx, &sc->irqvs[vector].irq,
IFLIB_INTR_TX, txq,
txq->me, irq_name);
txq->irqv = &sc->irqvs[vector];
}
/* For future interrupt assignments */
sc->last_rid = rid + sc->irdma_vectors;
return (0);
fail:
for (; i >= 0; i--, vector--)
iflib_irq_free(ctx, &sc->irqvs[vector].irq);
iflib_irq_free(ctx, &sc->irqvs[0].irq);
free_irqvs:
free(sc->irqvs, M_ICE);
sc->irqvs = NULL;
return err;
}
/**
* ice_if_mtu_set - Set the device MTU
* @ctx: iflib context structure
* @mtu: the MTU requested
*
* Called by iflib to configure the device's Maximum Transmission Unit (MTU).
*
* @pre assumes the caller holds the iflib CTX lock
*/
static int
ice_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
ASSERT_CTX_LOCKED(sc);
/* Do not support configuration when in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (ENOSYS);
if (mtu < ICE_MIN_MTU || mtu > ICE_MAX_MTU)
return (EINVAL);
sc->scctx->isc_max_frame_size = mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
sc->pf_vsi.max_frame_size = sc->scctx->isc_max_frame_size;
return (0);
}
/**
* ice_if_intr_enable - Enable device interrupts
* @ctx: iflib context structure
*
* Called by iflib to request enabling device interrupts.
*/
static void
ice_if_intr_enable(if_ctx_t ctx)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_hw *hw = &sc->hw;
ASSERT_CTX_LOCKED(sc);
/* Enable ITR 0 */
ice_enable_intr(hw, sc->irqvs[0].me);
/* Do not enable queue interrupts in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
/* Enable all queue interrupts */
for (int i = 0; i < vsi->num_rx_queues; i++)
ice_enable_intr(hw, vsi->rx_queues[i].irqv->me);
}
/**
* ice_if_intr_disable - Disable device interrupts
* @ctx: iflib context structure
*
* Called by iflib to request disabling device interrupts.
*/
static void
ice_if_intr_disable(if_ctx_t ctx)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ice_hw *hw = &sc->hw;
unsigned int i;
ASSERT_CTX_LOCKED(sc);
/* IFDI_INTR_DISABLE may be called prior to interrupts actually being
* assigned to queues. Instead of assuming that the interrupt
* assignment in the rx_queues structure is valid, just disable all
* possible interrupts
*
* Note that we choose not to disable ITR 0 because this handles the
* AdminQ interrupts, and we want to keep processing these even when
* the interface is offline.
*/
for (i = 1; i < hw->func_caps.common_cap.num_msix_vectors; i++)
ice_disable_intr(hw, i);
}
/**
* ice_if_rx_queue_intr_enable - Enable a specific Rx queue interrupt
* @ctx: iflib context structure
* @rxqid: the Rx queue to enable
*
* Enable a specific Rx queue interrupt.
*
* This function is not protected by the iflib CTX lock.
*/
static int
ice_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_hw *hw = &sc->hw;
/* Do not enable queue interrupts in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (ENOSYS);
ice_enable_intr(hw, vsi->rx_queues[rxqid].irqv->me);
return (0);
}
/**
* ice_if_tx_queue_intr_enable - Enable a specific Tx queue interrupt
* @ctx: iflib context structure
* @txqid: the Tx queue to enable
*
* Enable a specific Tx queue interrupt.
*
* This function is not protected by the iflib CTX lock.
*/
static int
ice_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_hw *hw = &sc->hw;
/* Do not enable queue interrupts in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (ENOSYS);
ice_enable_intr(hw, vsi->tx_queues[txqid].irqv->me);
return (0);
}
/**
* ice_set_default_promisc_mask - Set default config for promisc settings
* @promisc_mask: bitmask to setup
*
* The ice_(set|clear)_vsi_promisc() function expects a mask of promiscuous
* modes to operate on. The mask used in here is the default one for the
* driver, where promiscuous is enabled/disabled for all types of
* non-VLAN-tagged/VLAN 0 traffic.
*/
static void
ice_set_default_promisc_mask(ice_bitmap_t *promisc_mask)
{
ice_zero_bitmap(promisc_mask, ICE_PROMISC_MAX);
ice_set_bit(ICE_PROMISC_UCAST_TX, promisc_mask);
ice_set_bit(ICE_PROMISC_UCAST_RX, promisc_mask);
ice_set_bit(ICE_PROMISC_MCAST_TX, promisc_mask);
ice_set_bit(ICE_PROMISC_MCAST_RX, promisc_mask);
}
/**
* ice_if_promisc_set - Set device promiscuous mode
* @ctx: iflib context structure
* @flags: promiscuous flags to configure
*
* Called by iflib to configure device promiscuous mode.
*
* @remark Calls to this function will always overwrite the previous setting
*/
static int
ice_if_promisc_set(if_ctx_t ctx, int flags)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
bool promisc_enable = flags & IFF_PROMISC;
bool multi_enable = flags & IFF_ALLMULTI;
ice_declare_bitmap(promisc_mask, ICE_PROMISC_MAX);
/* Do not support configuration when in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (ENOSYS);
ice_set_default_promisc_mask(promisc_mask);
if (multi_enable)
return (EOPNOTSUPP);
if (promisc_enable) {
status = ice_set_vsi_promisc(hw, sc->pf_vsi.idx,
promisc_mask, 0);
if (status && status != ICE_ERR_ALREADY_EXISTS) {
device_printf(dev,
"Failed to enable promiscuous mode for PF VSI, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
} else {
status = ice_clear_vsi_promisc(hw, sc->pf_vsi.idx,
promisc_mask, 0);
if (status) {
device_printf(dev,
"Failed to disable promiscuous mode for PF VSI, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
}
return (0);
}
/**
* ice_if_media_change - Change device media
* @ctx: device ctx structure
*
* Called by iflib when a media change is requested. This operation is not
* supported by the hardware, so we just return an error code.
*/
static int
ice_if_media_change(if_ctx_t ctx)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
device_printf(sc->dev, "Media change is not supported.\n");
return (ENODEV);
}
/**
* ice_if_media_status - Report current device media
* @ctx: iflib context structure
* @ifmr: ifmedia request structure to update
*
* Updates the provided ifmr with current device media status, including link
* status and media type.
*/
static void
ice_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ice_link_status *li = &sc->hw.port_info->phy.link_info;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
/* Never report link up or media types when in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
if (!sc->link_up)
return;
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_FDX;
if (li->phy_type_low)
ifmr->ifm_active |= ice_get_phy_type_low(li->phy_type_low);
else if (li->phy_type_high)
ifmr->ifm_active |= ice_get_phy_type_high(li->phy_type_high);
else
ifmr->ifm_active |= IFM_UNKNOWN;
/* Report flow control status as well */
if (li->an_info & ICE_AQ_LINK_PAUSE_TX)
ifmr->ifm_active |= IFM_ETH_TXPAUSE;
if (li->an_info & ICE_AQ_LINK_PAUSE_RX)
ifmr->ifm_active |= IFM_ETH_RXPAUSE;
}
/**
* ice_init_tx_tracking - Initialize Tx queue software tracking values
* @vsi: the VSI to initialize
*
* Initialize Tx queue software tracking values, including the Report Status
* queue, and related software tracking values.
*/
static void
ice_init_tx_tracking(struct ice_vsi *vsi)
{
struct ice_tx_queue *txq;
size_t j;
int i;
for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++) {
txq->tx_rs_cidx = txq->tx_rs_pidx = 0;
/* Initialize the last processed descriptor to be the end of
* the ring, rather than the start, so that we avoid an
* off-by-one error in ice_ift_txd_credits_update for the
* first packet.
*/
txq->tx_cidx_processed = txq->desc_count - 1;
for (j = 0; j < txq->desc_count; j++)
txq->tx_rsq[j] = QIDX_INVALID;
}
}
/**
* ice_update_rx_mbuf_sz - Update the Rx buffer size for all queues
* @sc: the device softc
*
* Called to update the Rx queue mbuf_sz parameter for configuring the receive
* buffer sizes when programming hardware.
*/
static void
ice_update_rx_mbuf_sz(struct ice_softc *sc)
{
uint32_t mbuf_sz = iflib_get_rx_mbuf_sz(sc->ctx);
struct ice_vsi *vsi = &sc->pf_vsi;
MPASS(mbuf_sz <= UINT16_MAX);
vsi->mbuf_sz = mbuf_sz;
}
/**
* ice_if_init - Initialize the device
* @ctx: iflib ctx structure
*
* Called by iflib to bring the device up, i.e. ifconfig ice0 up. Initializes
* device filters and prepares the Tx and Rx engines.
*
* @pre assumes the caller holds the iflib CTX lock
*/
static void
ice_if_init(if_ctx_t ctx)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
device_t dev = sc->dev;
int err;
ASSERT_CTX_LOCKED(sc);
/*
* We've seen an issue with 11.3/12.1 where sideband routines are
* called after detach is called. This would call routines after
* if_stop, causing issues with the teardown process. This has
* seemingly been fixed in STABLE snapshots, but it seems like a
* good idea to have this guard here regardless.
*/
if (ice_driver_is_detaching(sc))
return;
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED)) {
device_printf(sc->dev, "request to start interface cannot be completed as the device failed to reset\n");
return;
}
if (ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) {
device_printf(sc->dev, "request to start interface while device is prepared for impending reset\n");
return;
}
ice_update_rx_mbuf_sz(sc);
/* Update the MAC address... User might use a LAA */
err = ice_update_laa_mac(sc);
if (err) {
device_printf(dev,
"LAA address change failed, err %s\n",
ice_err_str(err));
return;
}
/* Initialize software Tx tracking values */
ice_init_tx_tracking(&sc->pf_vsi);
err = ice_cfg_vsi_for_tx(&sc->pf_vsi);
if (err) {
device_printf(dev,
"Unable to configure the main VSI for Tx: %s\n",
ice_err_str(err));
return;
}
err = ice_cfg_vsi_for_rx(&sc->pf_vsi);
if (err) {
device_printf(dev,
"Unable to configure the main VSI for Rx: %s\n",
ice_err_str(err));
goto err_cleanup_tx;
}
err = ice_control_all_rx_queues(&sc->pf_vsi, true);
if (err) {
device_printf(dev,
"Unable to enable Rx rings for transmit: %s\n",
ice_err_str(err));
goto err_cleanup_tx;
}
err = ice_cfg_pf_default_mac_filters(sc);
if (err) {
device_printf(dev,
"Unable to configure default MAC filters: %s\n",
ice_err_str(err));
goto err_stop_rx;
}
/* We use software interrupts for Tx, so we only program the hardware
* interrupts for Rx.
*/
ice_configure_all_rxq_interrupts(&sc->pf_vsi);
ice_configure_rx_itr(&sc->pf_vsi);
/* Configure promiscuous mode */
ice_if_promisc_set(ctx, if_getflags(sc->ifp));
if (!ice_testandclear_state(&sc->state, ICE_STATE_FIRST_INIT_LINK))
if (!sc->link_up && ((if_getflags(sc->ifp) & IFF_UP) ||
ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN)))
ice_set_link(sc, true);
ice_rdma_pf_init(sc);
ice_set_state(&sc->state, ICE_STATE_DRIVER_INITIALIZED);
if (sc->mirr_if && ice_testandclear_state(&mif->state, ICE_STATE_SUBIF_NEEDS_REINIT)) {
ice_clear_state(&mif->state, ICE_STATE_DRIVER_INITIALIZED);
iflib_request_reset(sc->mirr_if->subctx);
iflib_admin_intr_deferred(sc->mirr_if->subctx);
}
return;
err_stop_rx:
ice_control_all_rx_queues(&sc->pf_vsi, false);
err_cleanup_tx:
ice_vsi_disable_tx(&sc->pf_vsi);
}
/**
* ice_poll_for_media_avail - Re-enable link if media is detected
* @sc: device private structure
*
* Intended to be called from the driver's timer function, this function
* sends the Get Link Status AQ command and re-enables HW link if the
* command says that media is available.
*
* If the driver doesn't have the "NO_MEDIA" state set, then this does nothing,
* since media removal events are supposed to be sent to the driver through
* a link status event.
*/
static void
ice_poll_for_media_avail(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
struct ice_port_info *pi = hw->port_info;
if (ice_test_state(&sc->state, ICE_STATE_NO_MEDIA)) {
pi->phy.get_link_info = true;
ice_get_link_status(pi, &sc->link_up);
if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
enum ice_status status;
/* Re-enable link and re-apply user link settings */
if (ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) ||
(if_getflags(sc->ifp) & IFF_UP)) {
ice_apply_saved_phy_cfg(sc, ICE_APPLY_LS_FEC_FC);
/* Update the OS about changes in media capability */
status = ice_add_media_types(sc, sc->media);
if (status)
device_printf(sc->dev,
"Error adding device media types: %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
ice_clear_state(&sc->state, ICE_STATE_NO_MEDIA);
}
}
}
/**
* ice_if_timer - called by iflib periodically
* @ctx: iflib ctx structure
* @qid: the queue this timer was called for
*
* This callback is triggered by iflib periodically. We use it to update the
* hw statistics.
*
* @remark this function is not protected by the iflib CTX lock.
*/
static void
ice_if_timer(if_ctx_t ctx, uint16_t qid)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
uint64_t prev_link_xoff_rx = sc->stats.cur.link_xoff_rx;
if (qid != 0)
return;
/* Do not attempt to update stats when in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
/* Update device statistics */
ice_update_pf_stats(sc);
/*
* For proper watchdog management, the iflib stack needs to know if
* we've been paused during the last interval. Check if the
* link_xoff_rx stat changed, and set the isc_pause_frames, if so.
*/
if (sc->stats.cur.link_xoff_rx != prev_link_xoff_rx)
sc->scctx->isc_pause_frames = 1;
/* Update the primary VSI stats */
ice_update_vsi_hw_stats(&sc->pf_vsi);
/* Update mirror VSI stats */
if (sc->mirr_if && sc->mirr_if->if_attached)
ice_update_vsi_hw_stats(sc->mirr_if->vsi);
}
/**
* ice_admin_timer - called periodically to trigger the admin task
* @arg: callout(9) argument pointing to the device private softc structure
*
* Timer function used as part of a callout(9) timer that will periodically
* trigger the admin task, even when the interface is down.
*
* @remark this function is not called by iflib and is not protected by the
* iflib CTX lock.
*
* @remark because this is a callout function, it cannot sleep and should not
* attempt taking the iflib CTX lock.
*/
static void
ice_admin_timer(void *arg)
{
struct ice_softc *sc = (struct ice_softc *)arg;
/*
* There is a point where callout routines are no longer
* cancelable. So there exists a window of time where the
* driver enters detach() and tries to cancel the callout, but the
* callout routine has passed the cancellation point. The detach()
* routine is unaware of this and tries to free resources that the
* callout routine needs. So we check for the detach state flag to
* at least shrink the window of opportunity.
*/
if (ice_driver_is_detaching(sc))
return;
/* Fire off the admin task */
iflib_admin_intr_deferred(sc->ctx);
/* Reschedule the admin timer */
callout_schedule(&sc->admin_timer, hz/2);
}
/**
* ice_transition_recovery_mode - Transition to recovery mode
* @sc: the device private softc
*
* Called when the driver detects that the firmware has entered recovery mode
* at run time.
*/
static void
ice_transition_recovery_mode(struct ice_softc *sc)
{
struct ice_vsi *vsi = &sc->pf_vsi;
int i;
device_printf(sc->dev, "Firmware recovery mode detected. Limiting functionality. Refer to Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n");
/* Tell the stack that the link has gone down */
iflib_link_state_change(sc->ctx, LINK_STATE_DOWN, 0);
/* Request that the device be re-initialized */
ice_request_stack_reinit(sc);
ice_rdma_pf_detach(sc);
ice_clear_bit(ICE_FEATURE_RDMA, sc->feat_cap);
ice_clear_bit(ICE_FEATURE_SRIOV, sc->feat_en);
ice_clear_bit(ICE_FEATURE_SRIOV, sc->feat_cap);
ice_vsi_del_txqs_ctx(vsi);
ice_vsi_del_rxqs_ctx(vsi);
for (i = 0; i < sc->num_available_vsi; i++) {
if (sc->all_vsi[i])
ice_release_vsi(sc->all_vsi[i]);
}
sc->num_available_vsi = 0;
if (sc->all_vsi) {
free(sc->all_vsi, M_ICE);
sc->all_vsi = NULL;
}
/* Destroy the interrupt manager */
ice_resmgr_destroy(&sc->dev_imgr);
/* Destroy the queue managers */
ice_resmgr_destroy(&sc->tx_qmgr);
ice_resmgr_destroy(&sc->rx_qmgr);
ice_deinit_hw(&sc->hw);
}
/**
* ice_transition_safe_mode - Transition to safe mode
* @sc: the device private softc
*
* Called when the driver attempts to reload the DDP package during a device
* reset, and the new download fails. If so, we must transition to safe mode
* at run time.
*
* @remark although safe mode normally allocates only a single queue, we can't
* change the number of queues dynamically when using iflib. Due to this, we
* do not attempt to reduce the number of queues.
*/
static void
ice_transition_safe_mode(struct ice_softc *sc)
{
/* Indicate that we are in Safe mode */
ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_cap);
ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_en);
ice_rdma_pf_detach(sc);
ice_clear_bit(ICE_FEATURE_RDMA, sc->feat_cap);
ice_clear_bit(ICE_FEATURE_SRIOV, sc->feat_en);
ice_clear_bit(ICE_FEATURE_SRIOV, sc->feat_cap);
ice_clear_bit(ICE_FEATURE_RSS, sc->feat_cap);
ice_clear_bit(ICE_FEATURE_RSS, sc->feat_en);
}
/**
* ice_if_update_admin_status - update admin status
* @ctx: iflib ctx structure
*
* Called by iflib to update the admin status. For our purposes, this means
* check the adminq, and update the link status. It's ultimately triggered by
* our admin interrupt, or by the ice_if_timer periodically.
*
* @pre assumes the caller holds the iflib CTX lock
*/
static void
ice_if_update_admin_status(if_ctx_t ctx)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
enum ice_fw_modes fw_mode;
bool reschedule = false;
u16 pending = 0;
ASSERT_CTX_LOCKED(sc);
/* Check if the firmware entered recovery mode at run time */
fw_mode = ice_get_fw_mode(&sc->hw);
if (fw_mode == ICE_FW_MODE_REC) {
if (!ice_testandset_state(&sc->state, ICE_STATE_RECOVERY_MODE)) {
/* If we just entered recovery mode, log a warning to
* the system administrator and deinit driver state
* that is no longer functional.
*/
ice_transition_recovery_mode(sc);
}
} else if (fw_mode == ICE_FW_MODE_ROLLBACK) {
if (!ice_testandset_state(&sc->state, ICE_STATE_ROLLBACK_MODE)) {
/* Rollback mode isn't fatal, but we don't want to
* repeatedly post a message about it.
*/
ice_print_rollback_msg(&sc->hw);
}
}
/* Handle global reset events */
ice_handle_reset_event(sc);
/* Handle PF reset requests */
ice_handle_pf_reset_request(sc);
/* Handle MDD events */
ice_handle_mdd_event(sc);
if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED) ||
ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET) ||
ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) {
/*
* If we know the control queues are disabled, skip processing
* the control queues entirely.
*/
;
} else if (ice_testandclear_state(&sc->state, ICE_STATE_CONTROLQ_EVENT_PENDING)) {
ice_process_ctrlq(sc, ICE_CTL_Q_ADMIN, &pending);
if (pending > 0)
reschedule = true;
ice_process_ctrlq(sc, ICE_CTL_Q_MAILBOX, &pending);
if (pending > 0)
reschedule = true;
}
/* Poll for link up */
ice_poll_for_media_avail(sc);
/* Check and update link status */
ice_update_link_status(sc, false);
/*
* If there are still messages to process, we need to reschedule
* ourselves. Otherwise, we can just re-enable the interrupt. We'll be
* woken up at the next interrupt or timer event.
*/
if (reschedule) {
ice_set_state(&sc->state, ICE_STATE_CONTROLQ_EVENT_PENDING);
iflib_admin_intr_deferred(ctx);
} else {
ice_enable_intr(&sc->hw, sc->irqvs[0].me);
}
}
/**
* ice_prepare_for_reset - Prepare device for an impending reset
* @sc: The device private softc
*
* Prepare the driver for an impending reset, shutting down VSIs, clearing the
* scheduler setup, and shutting down controlqs. Uses the
* ICE_STATE_PREPARED_FOR_RESET to indicate whether we've already prepared the
* driver for reset or not.
*/
static void
ice_prepare_for_reset(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
/* If we're already prepared, there's nothing to do */
if (ice_testandset_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET))
return;
log(LOG_INFO, "%s: preparing to reset device logic\n", if_name(sc->ifp));
/* In recovery mode, hardware is not initialized */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
/* inform the RDMA client */
ice_rdma_notify_reset(sc);
/* stop the RDMA client */
ice_rdma_pf_stop(sc);
/* Release the main PF VSI queue mappings */
ice_resmgr_release_map(&sc->tx_qmgr, sc->pf_vsi.tx_qmap,
sc->pf_vsi.num_tx_queues);
ice_resmgr_release_map(&sc->rx_qmgr, sc->pf_vsi.rx_qmap,
sc->pf_vsi.num_rx_queues);
if (sc->mirr_if) {
ice_resmgr_release_map(&sc->tx_qmgr, sc->mirr_if->vsi->tx_qmap,
sc->mirr_if->num_irq_vectors);
ice_resmgr_release_map(&sc->rx_qmgr, sc->mirr_if->vsi->rx_qmap,
sc->mirr_if->num_irq_vectors);
}
ice_clear_hw_tbls(hw);
if (hw->port_info)
ice_sched_cleanup_all(hw);
ice_shutdown_all_ctrlq(hw, false);
}
/**
* ice_rebuild_pf_vsi_qmap - Rebuild the main PF VSI queue mapping
* @sc: the device softc pointer
*
* Loops over the Tx and Rx queues for the main PF VSI and reassigns the queue
* mapping after a reset occurred.
*/
static int
ice_rebuild_pf_vsi_qmap(struct ice_softc *sc)
{
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_tx_queue *txq;
struct ice_rx_queue *rxq;
int err, i;
/* Re-assign Tx queues from PF space to the main VSI */
err = ice_resmgr_assign_contiguous(&sc->tx_qmgr, vsi->tx_qmap,
vsi->num_tx_queues);
if (err) {
device_printf(sc->dev, "Unable to re-assign PF Tx queues: %s\n",
ice_err_str(err));
return (err);
}
/* Re-assign Rx queues from PF space to this VSI */
err = ice_resmgr_assign_contiguous(&sc->rx_qmgr, vsi->rx_qmap,
vsi->num_rx_queues);
if (err) {
device_printf(sc->dev, "Unable to re-assign PF Rx queues: %s\n",
ice_err_str(err));
goto err_release_tx_queues;
}
vsi->qmap_type = ICE_RESMGR_ALLOC_CONTIGUOUS;
/* Re-assign Tx queue tail pointers */
for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++)
txq->tail = QTX_COMM_DBELL(vsi->tx_qmap[i]);
/* Re-assign Rx queue tail pointers */
for (i = 0, rxq = vsi->rx_queues; i < vsi->num_rx_queues; i++, rxq++)
rxq->tail = QRX_TAIL(vsi->rx_qmap[i]);
return (0);
err_release_tx_queues:
ice_resmgr_release_map(&sc->tx_qmgr, sc->pf_vsi.tx_qmap,
sc->pf_vsi.num_tx_queues);
return (err);
}
/* determine if the iflib context is active */
#define CTX_ACTIVE(ctx) ((if_getdrvflags(iflib_get_ifp(ctx)) & IFF_DRV_RUNNING))
/**
* ice_rebuild_recovery_mode - Rebuild driver state while in recovery mode
* @sc: The device private softc
*
* Handle a driver rebuild while in recovery mode. This will only rebuild the
* limited functionality supported while in recovery mode.
*/
static void
ice_rebuild_recovery_mode(struct ice_softc *sc)
{
device_t dev = sc->dev;
/* enable PCIe bus master */
pci_enable_busmaster(dev);
/* Configure interrupt causes for the administrative interrupt */
ice_configure_misc_interrupts(sc);
/* Enable ITR 0 right away, so that we can handle admin interrupts */
ice_enable_intr(&sc->hw, sc->irqvs[0].me);
/* Now that the rebuild is finished, we're no longer prepared to reset */
ice_clear_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET);
log(LOG_INFO, "%s: device rebuild successful\n", if_name(sc->ifp));
/* In order to completely restore device functionality, the iflib core
* needs to be reset. We need to request an iflib reset. Additionally,
* because the state of IFC_DO_RESET is cached within task_fn_admin in
* the iflib core, we also want re-run the admin task so that iflib
* resets immediately instead of waiting for the next interrupt.
*/
ice_request_stack_reinit(sc);
return;
}
/**
* ice_rebuild - Rebuild driver state post reset
* @sc: The device private softc
*
* Restore driver state after a reset occurred. Restart the controlqs, setup
* the hardware port, and re-enable the VSIs.
*/
static void
ice_rebuild(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_ddp_state pkg_state;
enum ice_status status;
int err;
sc->rebuild_ticks = ticks;
/* If we're rebuilding, then a reset has succeeded. */
ice_clear_state(&sc->state, ICE_STATE_RESET_FAILED);
/*
* If the firmware is in recovery mode, only restore the limited
* functionality supported by recovery mode.
*/
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) {
ice_rebuild_recovery_mode(sc);
return;
}
/* enable PCIe bus master */
pci_enable_busmaster(dev);
status = ice_init_all_ctrlq(hw);
if (status) {
device_printf(dev, "failed to re-init controlqs, err %s\n",
ice_status_str(status));
goto err_shutdown_ctrlq;
}
/* Query the allocated resources for Tx scheduler */
status = ice_sched_query_res_alloc(hw);
if (status) {
device_printf(dev,
"Failed to query scheduler resources, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
goto err_shutdown_ctrlq;
}
/* Re-enable FW logging. Keep going even if this fails */
status = ice_fwlog_set(hw, &hw->fwlog_cfg);
if (!status) {
/*
* We should have the most updated cached copy of the
* configuration, regardless of whether we're rebuilding
* or not. So we'll simply check to see if logging was
* enabled pre-rebuild.
*/
if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_IS_REGISTERED) {
status = ice_fwlog_register(hw);
if (status)
device_printf(dev, "failed to re-register fw logging, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
} else
device_printf(dev, "failed to rebuild fw logging configuration, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
err = ice_send_version(sc);
if (err)
goto err_shutdown_ctrlq;
err = ice_init_link_events(sc);
if (err) {
device_printf(dev, "ice_init_link_events failed: %s\n",
ice_err_str(err));
goto err_shutdown_ctrlq;
}
status = ice_clear_pf_cfg(hw);
if (status) {
device_printf(dev, "failed to clear PF configuration, err %s\n",
ice_status_str(status));
goto err_shutdown_ctrlq;
}
ice_clean_all_vsi_rss_cfg(sc);
ice_clear_pxe_mode(hw);
status = ice_get_caps(hw);
if (status) {
device_printf(dev, "failed to get capabilities, err %s\n",
ice_status_str(status));
goto err_shutdown_ctrlq;
}
status = ice_sched_init_port(hw->port_info);
if (status) {
device_printf(dev, "failed to initialize port, err %s\n",
ice_status_str(status));
goto err_sched_cleanup;
}
/* If we previously loaded the package, it needs to be reloaded now */
if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_SAFE_MODE)) {
pkg_state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
if (!ice_is_init_pkg_successful(pkg_state)) {
ice_log_pkg_init(sc, pkg_state);
ice_transition_safe_mode(sc);
}
}
ice_reset_pf_stats(sc);
err = ice_rebuild_pf_vsi_qmap(sc);
if (err) {
device_printf(sc->dev, "Unable to re-assign main VSI queues, err %s\n",
ice_err_str(err));
goto err_sched_cleanup;
}
err = ice_initialize_vsi(&sc->pf_vsi);
if (err) {
device_printf(sc->dev, "Unable to re-initialize Main VSI, err %s\n",
ice_err_str(err));
goto err_release_queue_allocations;
}
/* Replay all VSI configuration */
err = ice_replay_all_vsi_cfg(sc);
if (err)
goto err_deinit_pf_vsi;
/* Re-enable FW health event reporting */
ice_init_health_events(sc);
/* Reconfigure the main PF VSI for RSS */
err = ice_config_rss(&sc->pf_vsi);
if (err) {
device_printf(sc->dev,
"Unable to reconfigure RSS for the main VSI, err %s\n",
ice_err_str(err));
goto err_deinit_pf_vsi;
}
if (hw->port_info->qos_cfg.is_sw_lldp)
ice_add_rx_lldp_filter(sc);
/* Refresh link status */
ice_clear_state(&sc->state, ICE_STATE_LINK_STATUS_REPORTED);
sc->hw.port_info->phy.get_link_info = true;
ice_get_link_status(sc->hw.port_info, &sc->link_up);
ice_update_link_status(sc, true);
/* RDMA interface will be restarted by the stack re-init */
/* Configure interrupt causes for the administrative interrupt */
ice_configure_misc_interrupts(sc);
/* Enable ITR 0 right away, so that we can handle admin interrupts */
ice_enable_intr(&sc->hw, sc->irqvs[0].me);
/* Now that the rebuild is finished, we're no longer prepared to reset */
ice_clear_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET);
/* Reconfigure the subinterface */
if (sc->mirr_if) {
err = ice_subif_rebuild(sc);
if (err)
goto err_deinit_pf_vsi;
}
log(LOG_INFO, "%s: device rebuild successful\n", sc->ifp->if_xname);
/* In order to completely restore device functionality, the iflib core
* needs to be reset. We need to request an iflib reset. Additionally,
* because the state of IFC_DO_RESET is cached within task_fn_admin in
* the iflib core, we also want re-run the admin task so that iflib
* resets immediately instead of waiting for the next interrupt.
* If LLDP is enabled we need to reconfig DCB to properly reinit all TC
* queues, not only 0. It contains ice_request_stack_reinit as well.
*/
if (hw->port_info->qos_cfg.is_sw_lldp)
ice_request_stack_reinit(sc);
else
ice_do_dcb_reconfig(sc, false);
return;
err_deinit_pf_vsi:
ice_deinit_vsi(&sc->pf_vsi);
err_release_queue_allocations:
ice_resmgr_release_map(&sc->tx_qmgr, sc->pf_vsi.tx_qmap,
sc->pf_vsi.num_tx_queues);
ice_resmgr_release_map(&sc->rx_qmgr, sc->pf_vsi.rx_qmap,
sc->pf_vsi.num_rx_queues);
err_sched_cleanup:
ice_sched_cleanup_all(hw);
err_shutdown_ctrlq:
ice_shutdown_all_ctrlq(hw, false);
ice_clear_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET);
ice_set_state(&sc->state, ICE_STATE_RESET_FAILED);
device_printf(dev, "Driver rebuild failed, please reload the device driver\n");
}
/**
* ice_handle_reset_event - Handle reset events triggered by OICR
* @sc: The device private softc
*
* Handle reset events triggered by an OICR notification. This includes CORER,
* GLOBR, and EMPR resets triggered by software on this or any other PF or by
* firmware.
*
* @pre assumes the iflib context lock is held, and will unlock it while
* waiting for the hardware to finish reset.
*/
static void
ice_handle_reset_event(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
enum ice_status status;
device_t dev = sc->dev;
/* When a CORER, GLOBR, or EMPR is about to happen, the hardware will
* trigger an OICR interrupt. Our OICR handler will determine when
* this occurs and set the ICE_STATE_RESET_OICR_RECV bit as
* appropriate.
*/
if (!ice_testandclear_state(&sc->state, ICE_STATE_RESET_OICR_RECV))
return;
ice_prepare_for_reset(sc);
/*
* Release the iflib context lock and wait for the device to finish
* resetting.
*/
IFLIB_CTX_UNLOCK(sc);
status = ice_check_reset(hw);
IFLIB_CTX_LOCK(sc);
if (status) {
device_printf(dev, "Device never came out of reset, err %s\n",
ice_status_str(status));
ice_set_state(&sc->state, ICE_STATE_RESET_FAILED);
return;
}
/* We're done with the reset, so we can rebuild driver state */
sc->hw.reset_ongoing = false;
ice_rebuild(sc);
/* In the unlikely event that a PF reset request occurs at the same
* time as a global reset, clear the request now. This avoids
* resetting a second time right after we reset due to a global event.
*/
if (ice_testandclear_state(&sc->state, ICE_STATE_RESET_PFR_REQ))
device_printf(dev, "Ignoring PFR request that occurred while a reset was ongoing\n");
}
/**
* ice_handle_pf_reset_request - Initiate PF reset requested by software
* @sc: The device private softc
*
* Initiate a PF reset requested by software. We handle this in the admin task
* so that only one thread actually handles driver preparation and cleanup,
* rather than having multiple threads possibly attempt to run this code
* simultaneously.
*
* @pre assumes the iflib context lock is held and will unlock it while
* waiting for the PF reset to complete.
*/
static void
ice_handle_pf_reset_request(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
enum ice_status status;
/* Check for PF reset requests */
if (!ice_testandclear_state(&sc->state, ICE_STATE_RESET_PFR_REQ))
return;
/* Make sure we're prepared for reset */
ice_prepare_for_reset(sc);
/*
* Release the iflib context lock and wait for the device to finish
* resetting.
*/
IFLIB_CTX_UNLOCK(sc);
status = ice_reset(hw, ICE_RESET_PFR);
IFLIB_CTX_LOCK(sc);
if (status) {
device_printf(sc->dev, "device PF reset failed, err %s\n",
ice_status_str(status));
ice_set_state(&sc->state, ICE_STATE_RESET_FAILED);
return;
}
sc->soft_stats.pfr_count++;
ice_rebuild(sc);
}
/**
* ice_init_device_features - Init device driver features
* @sc: driver softc structure
*
* @pre assumes that the function capabilities bits have been set up by
* ice_init_hw().
*/
static void
ice_init_device_features(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
/* Set capabilities that all devices support */
ice_set_bit(ICE_FEATURE_SRIOV, sc->feat_cap);
ice_set_bit(ICE_FEATURE_RSS, sc->feat_cap);
ice_set_bit(ICE_FEATURE_RDMA, sc->feat_cap);
ice_set_bit(ICE_FEATURE_LENIENT_LINK_MODE, sc->feat_cap);
ice_set_bit(ICE_FEATURE_LINK_MGMT_VER_1, sc->feat_cap);
ice_set_bit(ICE_FEATURE_LINK_MGMT_VER_2, sc->feat_cap);
ice_set_bit(ICE_FEATURE_HEALTH_STATUS, sc->feat_cap);
ice_set_bit(ICE_FEATURE_FW_LOGGING, sc->feat_cap);
ice_set_bit(ICE_FEATURE_HAS_PBA, sc->feat_cap);
ice_set_bit(ICE_FEATURE_DCB, sc->feat_cap);
ice_set_bit(ICE_FEATURE_TX_BALANCE, sc->feat_cap);
/* Disable features due to hardware limitations... */
if (!hw->func_caps.common_cap.rss_table_size)
ice_clear_bit(ICE_FEATURE_RSS, sc->feat_cap);
if (!hw->func_caps.common_cap.iwarp || !ice_enable_irdma)
ice_clear_bit(ICE_FEATURE_RDMA, sc->feat_cap);
if (!hw->func_caps.common_cap.dcb)
ice_clear_bit(ICE_FEATURE_DCB, sc->feat_cap);
/* Disable features due to firmware limitations... */
if (!ice_is_fw_health_report_supported(hw))
ice_clear_bit(ICE_FEATURE_HEALTH_STATUS, sc->feat_cap);
if (!ice_fwlog_supported(hw))
ice_clear_bit(ICE_FEATURE_FW_LOGGING, sc->feat_cap);
if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_IS_REGISTERED) {
if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_FW_LOGGING))
ice_set_bit(ICE_FEATURE_FW_LOGGING, sc->feat_en);
else
ice_fwlog_unregister(hw);
}
/* Disable capabilities not supported by the OS */
ice_disable_unsupported_features(sc->feat_cap);
/* RSS is always enabled for iflib */
if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_RSS))
ice_set_bit(ICE_FEATURE_RSS, sc->feat_en);
/* Disable features based on sysctl settings */
if (!ice_tx_balance_en)
ice_clear_bit(ICE_FEATURE_TX_BALANCE, sc->feat_cap);
if (hw->dev_caps.supported_sensors & ICE_SENSOR_SUPPORT_E810_INT_TEMP) {
ice_set_bit(ICE_FEATURE_TEMP_SENSOR, sc->feat_cap);
ice_set_bit(ICE_FEATURE_TEMP_SENSOR, sc->feat_en);
}
}
/**
* ice_if_multi_set - Callback to update Multicast filters in HW
* @ctx: iflib ctx structure
*
* Called by iflib in response to SIOCDELMULTI and SIOCADDMULTI. Must search
* the if_multiaddrs list and determine which filters have been added or
* removed from the list, and update HW programming to reflect the new list.
*
* @pre assumes the caller holds the iflib CTX lock
*/
static void
ice_if_multi_set(if_ctx_t ctx)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
int err;
ASSERT_CTX_LOCKED(sc);
/* Do not handle multicast configuration in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
err = ice_sync_multicast_filters(sc);
if (err) {
device_printf(sc->dev,
"Failed to synchronize multicast filter list: %s\n",
ice_err_str(err));
return;
}
}
/**
* ice_if_vlan_register - Register a VLAN with the hardware
* @ctx: iflib ctx pointer
* @vtag: VLAN to add
*
* Programs the main PF VSI with a hardware filter for the given VLAN.
*
* @pre assumes the caller holds the iflib CTX lock
*/
static void
ice_if_vlan_register(if_ctx_t ctx, u16 vtag)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
enum ice_status status;
ASSERT_CTX_LOCKED(sc);
/* Do not handle VLAN configuration in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
status = ice_add_vlan_hw_filter(&sc->pf_vsi, vtag);
if (status) {
device_printf(sc->dev,
"Failure adding VLAN %d to main VSI, err %s aq_err %s\n",
vtag, ice_status_str(status),
ice_aq_str(sc->hw.adminq.sq_last_status));
}
}
/**
* ice_if_vlan_unregister - Remove a VLAN filter from the hardware
* @ctx: iflib ctx pointer
* @vtag: VLAN to add
*
* Removes the previously programmed VLAN filter from the main PF VSI.
*
* @pre assumes the caller holds the iflib CTX lock
*/
static void
ice_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
enum ice_status status;
ASSERT_CTX_LOCKED(sc);
/* Do not handle VLAN configuration in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
status = ice_remove_vlan_hw_filter(&sc->pf_vsi, vtag);
if (status) {
device_printf(sc->dev,
"Failure removing VLAN %d from main VSI, err %s aq_err %s\n",
vtag, ice_status_str(status),
ice_aq_str(sc->hw.adminq.sq_last_status));
}
}
/**
* ice_if_stop - Stop the device
* @ctx: iflib context structure
*
* Called by iflib to stop the device and bring it down. (i.e. ifconfig ice0
* down)
*
* @pre assumes the caller holds the iflib CTX lock
*/
static void
ice_if_stop(if_ctx_t ctx)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
ASSERT_CTX_LOCKED(sc);
/*
* The iflib core may call IFDI_STOP prior to the first call to
* IFDI_INIT. This will cause us to attempt to remove MAC filters we
* don't have, and disable Tx queues which aren't yet configured.
* Although it is likely these extra operations are harmless, they do
* cause spurious warning messages to be displayed, which may confuse
* users.
*
* To avoid these messages, we use a state bit indicating if we've
* been initialized. It will be set when ice_if_init is called, and
* cleared here in ice_if_stop.
*/
if (!ice_testandclear_state(&sc->state, ICE_STATE_DRIVER_INITIALIZED))
return;
if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED)) {
device_printf(sc->dev, "request to stop interface cannot be completed as the device failed to reset\n");
return;
}
if (ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) {
device_printf(sc->dev, "request to stop interface while device is prepared for impending reset\n");
return;
}
ice_rdma_pf_stop(sc);
/* Remove the MAC filters, stop Tx, and stop Rx. We don't check the
* return of these functions because there's nothing we can really do
* if they fail, and the functions already print error messages.
* Just try to shut down as much as we can.
*/
ice_rm_pf_default_mac_filters(sc);
/* Dissociate the Tx and Rx queues from the interrupts */
ice_flush_txq_interrupts(&sc->pf_vsi);
ice_flush_rxq_interrupts(&sc->pf_vsi);
/* Disable the Tx and Rx queues */
ice_vsi_disable_tx(&sc->pf_vsi);
ice_control_all_rx_queues(&sc->pf_vsi, false);
if (!ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) &&
!(if_getflags(sc->ifp) & IFF_UP) && sc->link_up)
ice_set_link(sc, false);
if (sc->mirr_if && ice_test_state(&mif->state, ICE_STATE_SUBIF_NEEDS_REINIT)) {
ice_subif_if_stop(sc->mirr_if->subctx);
device_printf(sc->dev, "The subinterface also comes down and up after reset\n");
}
}
/**
* ice_if_get_counter - Get current value of an ifnet statistic
* @ctx: iflib context pointer
* @counter: ifnet counter to read
*
* Reads the current value of an ifnet counter for the device.
*
* This function is not protected by the iflib CTX lock.
*/
static uint64_t
ice_if_get_counter(if_ctx_t ctx, ift_counter counter)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
/* Return the counter for the main PF VSI */
return ice_get_ifnet_counter(&sc->pf_vsi, counter);
}
/**
* ice_request_stack_reinit - Request that iflib re-initialize
* @sc: the device private softc
*
* Request that the device be brought down and up, to re-initialize. For
* example, this may be called when a device reset occurs, or when Tx and Rx
* queues need to be re-initialized.
*
* This is required because the iflib state is outside the driver, and must be
* re-initialized if we need to resart Tx and Rx queues.
*/
void
ice_request_stack_reinit(struct ice_softc *sc)
{
if (CTX_ACTIVE(sc->ctx)) {
iflib_request_reset(sc->ctx);
iflib_admin_intr_deferred(sc->ctx);
}
}
/**
* ice_driver_is_detaching - Check if the driver is detaching/unloading
* @sc: device private softc
*
* Returns true if the driver is detaching, false otherwise.
*
* @remark on newer kernels, take advantage of iflib_in_detach in order to
* report detachment correctly as early as possible.
*
* @remark this function is used by various code paths that want to avoid
* running if the driver is about to be removed. This includes sysctls and
* other driver access points. Note that it does not fully resolve
* detach-based race conditions as it is possible for a thread to race with
* iflib_in_detach.
*/
bool
ice_driver_is_detaching(struct ice_softc *sc)
{
return (ice_test_state(&sc->state, ICE_STATE_DETACHING) ||
iflib_in_detach(sc->ctx));
}
/**
* ice_if_priv_ioctl - Device private ioctl handler
* @ctx: iflib context pointer
* @command: The ioctl command issued
* @data: ioctl specific data
*
* iflib callback for handling custom driver specific ioctls.
*
* @pre Assumes that the iflib context lock is held.
*/
static int
ice_if_priv_ioctl(if_ctx_t ctx, u_long command, caddr_t data)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
struct ifdrv *ifd;
device_t dev = sc->dev;
if (data == NULL)
return (EINVAL);
ASSERT_CTX_LOCKED(sc);
/* Make sure the command type is valid */
switch (command) {
case SIOCSDRVSPEC:
case SIOCGDRVSPEC:
/* Accepted commands */
break;
case SIOCGPRIVATE_0:
/*
* Although we do not support this ioctl command, it's
* expected that iflib will forward it to the IFDI_PRIV_IOCTL
* handler. Do not print a message in this case
*/
return (ENOTSUP);
default:
/*
* If we get a different command for this function, it's
* definitely unexpected, so log a message indicating what
* command we got for debugging purposes.
*/
device_printf(dev, "%s: unexpected ioctl command %08lx\n",
__func__, command);
return (EINVAL);
}
ifd = (struct ifdrv *)data;
switch (ifd->ifd_cmd) {
case ICE_NVM_ACCESS:
return ice_handle_nvm_access_ioctl(sc, ifd);
case ICE_DEBUG_DUMP:
return ice_handle_debug_dump_ioctl(sc, ifd);
default:
return EINVAL;
}
}
/**
* ice_if_i2c_req - I2C request handler for iflib
* @ctx: iflib context pointer
* @req: The I2C parameters to use
*
* Read from the port's I2C eeprom using the parameters from the ioctl.
*
* @remark The iflib-only part is pretty simple.
*/
static int
ice_if_i2c_req(if_ctx_t ctx, struct ifi2creq *req)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
return ice_handle_i2c_req(sc, req);
}
/**
* ice_if_suspend - PCI device suspend handler for iflib
* @ctx: iflib context pointer
*
* Deinitializes the driver and clears HW resources in preparation for
* suspend or an FLR.
*
* @returns 0; this return value is ignored
*/
static int
ice_if_suspend(if_ctx_t ctx)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
/* At least a PFR is always going to happen after this;
* either via FLR or during the D3->D0 transition.
*/
ice_clear_state(&sc->state, ICE_STATE_RESET_PFR_REQ);
ice_prepare_for_reset(sc);
return (0);
}
/**
* ice_if_resume - PCI device resume handler for iflib
* @ctx: iflib context pointer
*
* Reinitializes the driver and the HW after PCI resume or after
* an FLR. An init is performed by iflib after this function is finished.
*
* @returns 0; this return value is ignored
*/
static int
ice_if_resume(if_ctx_t ctx)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
ice_rebuild(sc);
return (0);
}
/**
* ice_if_needs_restart - Tell iflib when the driver needs to be reinitialized
* @ctx: iflib context pointer
* @event: event code to check
*
* Defaults to returning true for unknown events.
*
* @returns true if iflib needs to reinit the interface
*/
static bool
ice_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event)
{
struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx);
switch (event) {
case IFLIB_RESTART_VLAN_CONFIG:
if (!ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) &&
!(if_getflags(sc->ifp) & IFF_UP))
return false;
default:
return true;
}
}
extern struct if_txrx ice_subif_txrx;
/**
* @var ice_subif_methods
* @brief ice driver method entry points
*/
static device_method_t ice_subif_methods[] = {
/* Device interface */
DEVMETHOD(device_register, ice_subif_register),
DEVMETHOD_END
};
/**
* @var ice_subif_driver
* @brief driver structure for the device API
*/
static driver_t ice_subif_driver = {
.name = "ice_subif",
.methods = ice_subif_methods,
.size = sizeof(struct ice_mirr_if),
};
static device_method_t ice_iflib_subif_methods[] = {
DEVMETHOD(ifdi_attach_pre, ice_subif_if_attach_pre),
DEVMETHOD(ifdi_attach_post, ice_subif_if_attach_post),
DEVMETHOD(ifdi_tx_queues_alloc, ice_subif_if_tx_queues_alloc),
DEVMETHOD(ifdi_rx_queues_alloc, ice_subif_if_rx_queues_alloc),
DEVMETHOD(ifdi_msix_intr_assign, ice_subif_if_msix_intr_assign),
DEVMETHOD(ifdi_intr_enable, ice_subif_if_intr_enable),
DEVMETHOD(ifdi_rx_queue_intr_enable, ice_subif_if_rx_queue_intr_enable),
DEVMETHOD(ifdi_tx_queue_intr_enable, ice_subif_if_tx_queue_intr_enable),
DEVMETHOD(ifdi_init, ice_subif_if_init),
DEVMETHOD(ifdi_stop, ice_subif_if_stop),
DEVMETHOD(ifdi_queues_free, ice_subif_if_queues_free),
DEVMETHOD(ifdi_media_status, ice_subif_if_media_status),
DEVMETHOD(ifdi_promisc_set, ice_subif_if_promisc_set),
};
/**
* @var ice_iflib_subif_driver
* @brief driver structure for the iflib stack
*
* driver_t definition used to setup the iflib device methods.
*/
static driver_t ice_iflib_subif_driver = {
.name = "ice_subif",
.methods = ice_iflib_subif_methods,
.size = sizeof(struct ice_mirr_if),
};
/**
* @var ice_subif_sctx
* @brief ice driver shared context
*
* Similar to the existing ice_sctx, this structure has these differences:
* - isc_admin_intrcnt is set to 0
* - Uses subif iflib driver methods
* - Flagged as a VF for iflib
*/
static struct if_shared_ctx ice_subif_sctx = {
.isc_magic = IFLIB_MAGIC,
.isc_q_align = PAGE_SIZE,
.isc_tx_maxsize = ICE_MAX_FRAME_SIZE,
.isc_tx_maxsegsize = ICE_MAX_FRAME_SIZE,
.isc_tso_maxsize = ICE_TSO_SIZE + sizeof(struct ether_vlan_header),
.isc_tso_maxsegsize = ICE_MAX_DMA_SEG_SIZE,
.isc_rx_maxsize = ICE_MAX_FRAME_SIZE,
.isc_rx_nsegments = ICE_MAX_RX_SEGS,
.isc_rx_maxsegsize = ICE_MAX_FRAME_SIZE,
.isc_nfl = 1,
.isc_ntxqs = 1,
.isc_nrxqs = 1,
.isc_admin_intrcnt = 0,
.isc_vendor_info = ice_vendor_info_array,
.isc_driver_version = __DECONST(char *, ice_driver_version),
.isc_driver = &ice_iflib_subif_driver,
.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP |
IFLIB_ADMIN_ALWAYS_RUN | IFLIB_SKIP_MSIX |
IFLIB_IS_VF,
.isc_nrxd_min = {ICE_MIN_DESC_COUNT},
.isc_ntxd_min = {ICE_MIN_DESC_COUNT},
.isc_nrxd_max = {ICE_IFLIB_MAX_DESC_COUNT},
.isc_ntxd_max = {ICE_IFLIB_MAX_DESC_COUNT},
.isc_nrxd_default = {ICE_DEFAULT_DESC_COUNT},
.isc_ntxd_default = {ICE_DEFAULT_DESC_COUNT},
};
static void *
ice_subif_register(device_t dev __unused)
{
return (&ice_subif_sctx);
}
static void
ice_subif_setup_scctx(struct ice_mirr_if *mif)
{
if_softc_ctx_t scctx = mif->subscctx;
scctx->isc_txrx = &ice_subif_txrx;
scctx->isc_capenable = ICE_FULL_CAPS;
scctx->isc_tx_csum_flags = ICE_CSUM_OFFLOAD;
scctx->isc_ntxqsets = 4;
scctx->isc_nrxqsets = 4;
scctx->isc_vectors = scctx->isc_nrxqsets;
scctx->isc_ntxqsets_max = 256;
scctx->isc_nrxqsets_max = 256;
scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]
* sizeof(struct ice_tx_desc), DBA_ALIGN);
scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0]
* sizeof(union ice_32b_rx_flex_desc), DBA_ALIGN);
scctx->isc_tx_nsegments = ICE_MAX_TX_SEGS;
scctx->isc_tx_tso_segments_max = ICE_MAX_TSO_SEGS;
scctx->isc_tx_tso_size_max = ICE_TSO_SIZE;
scctx->isc_tx_tso_segsize_max = ICE_MAX_DMA_SEG_SIZE;
}
static int
ice_subif_if_attach_pre(if_ctx_t ctx)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
device_t dev = iflib_get_dev(ctx);
mif->subctx = ctx;
mif->subdev = dev;
mif->subscctx = iflib_get_softc_ctx(ctx);
/* Setup the iflib softc context structure */
ice_subif_setup_scctx(mif);
return (0);
}
static int
ice_subif_if_attach_post(if_ctx_t ctx __unused)
{
return (0);
}
/**
* ice_destroy_mirror_interface - destroy mirror interface
* @sc: driver private data
*
* Destroys all resources associated with the mirroring interface.
* Will not exit early on failure.
*
* @pre: Mirror interface already exists and is initialized.
*/
void
ice_destroy_mirror_interface(struct ice_softc *sc)
{
struct ice_mirr_if *mif = sc->mirr_if;
struct ice_vsi *vsi = mif->vsi;
bool is_locked = false;
int ret;
is_locked = sx_xlocked(sc->iflib_ctx_lock);
if (is_locked)
IFLIB_CTX_UNLOCK(sc);
if (mif->ifp) {
ret = iflib_device_deregister(mif->subctx);
if (ret) {
device_printf(sc->dev,
"iflib_device_deregister for mirror interface failed: %d\n",
ret);
}
}
bus_topo_lock();
ret = device_delete_child(sc->dev, mif->subdev);
bus_topo_unlock();
if (ret) {
device_printf(sc->dev,
"device_delete_child for mirror interface failed: %d\n",
ret);
}
if (is_locked)
IFLIB_CTX_LOCK(sc);
if (mif->if_imap) {
free(mif->if_imap, M_ICE);
mif->if_imap = NULL;
}
if (mif->os_imap) {
free(mif->os_imap, M_ICE);
mif->os_imap = NULL;
}
/* These are freed via ice_subif_queues_free_subif
* vsi:
* - rx_irqvs
* - tx_queues
* - rx_queues
*/
ice_release_vsi(vsi);
free(mif, M_ICE);
sc->mirr_if = NULL;
}
/**
* ice_setup_mirror_vsi - Initialize mirror VSI
* @mif: driver private data for mirror interface
*
* Allocates a VSI for a mirror interface, and sets that VSI up for use as a
* mirror for the main PF VSI.
*
* Returns 0 on success, or a standard error code on failure.
*/
static int
ice_setup_mirror_vsi(struct ice_mirr_if *mif)
{
struct ice_softc *sc = mif->back;
device_t dev = sc->dev;
struct ice_vsi *vsi;
int ret = 0;
/* vsi is for the new mirror vsi, not the PF's main VSI */
vsi = ice_alloc_vsi(sc, ICE_VSI_VMDQ2);
if (!vsi) {
/* Already prints an error message */
return (ENOMEM);
}
mif->vsi = vsi;
/* Reserve VSI queue allocation from PF queues */
ret = ice_alloc_vsi_qmap(vsi, ICE_DEFAULT_VF_QUEUES, ICE_DEFAULT_VF_QUEUES);
if (ret) {
device_printf(dev, "%s: Unable to allocate mirror VSI queue maps (%d queues): %s\n",
__func__, ICE_DEFAULT_VF_QUEUES, ice_err_str(ret));
goto release_vsi;
}
vsi->num_tx_queues = vsi->num_rx_queues = ICE_DEFAULT_VF_QUEUES;
/* Assign Tx queues from PF space */
ret = ice_resmgr_assign_scattered(&sc->tx_qmgr, vsi->tx_qmap,
vsi->num_tx_queues);
if (ret) {
device_printf(dev, "Unable to assign mirror VSI Tx queues: %s\n",
ice_err_str(ret));
goto release_vsi;
}
/* Assign Rx queues from PF space */
ret = ice_resmgr_assign_scattered(&sc->rx_qmgr, vsi->rx_qmap,
vsi->num_rx_queues);
if (ret) {
device_printf(dev, "Unable to assign mirror VSI Rx queues: %s\n",
ice_err_str(ret));
goto release_vsi;
}
vsi->qmap_type = ICE_RESMGR_ALLOC_SCATTERED;
vsi->max_frame_size = ICE_MAX_FRAME_SIZE;
ret = ice_initialize_vsi(vsi);
if (ret) {
device_printf(dev, "%s: Error in ice_initialize_vsi for mirror VSI: %s\n",
__func__, ice_err_str(ret));
goto release_vsi;
}
/* Setup this VSI for receiving traffic */
ret = ice_config_rss(vsi);
if (ret) {
device_printf(dev,
"Unable to configure RSS for mirror VSI: %s\n",
ice_err_str(ret));
goto release_vsi;
}
/* Set HW rules for mirroring traffic */
vsi->mirror_src_vsi = sc->pf_vsi.idx;
ice_debug(&sc->hw, ICE_DBG_INIT,
"Configuring mirroring from VSI %d to %d\n",
vsi->mirror_src_vsi, vsi->idx);
ice_debug(&sc->hw, ICE_DBG_INIT, "(HW num: VSI %d to %d)\n",
ice_get_hw_vsi_num(&sc->hw, vsi->mirror_src_vsi),
ice_get_hw_vsi_num(&sc->hw, vsi->idx));
ret = ice_setup_vsi_mirroring(vsi);
if (ret) {
device_printf(dev,
"Unable to configure mirroring for VSI: %s\n",
ice_err_str(ret));
goto release_vsi;
}
return (0);
release_vsi:
ice_release_vsi(vsi);
mif->vsi = NULL;
return (ret);
}
/**
* ice_create_mirror_interface - Initialize mirror interface
* @sc: driver private data
*
* Creates and sets up a mirror interface that will mirror traffic from
* the main PF interface. Includes a call to iflib_device_register() in order
* to setup necessary iflib structures for this new interface as well.
*
* If it returns successfully, a new interface will be created and will show
* up in the ifconfig interface list.
*
* Returns 0 on success, or a standard error code on failure.
*/
int
ice_create_mirror_interface(struct ice_softc *sc)
{
device_t dev = sc->dev;
struct ice_mirr_if *mif;
struct ifmedia *media;
struct sbuf *sb;
int ret = 0;
mif = (struct ice_mirr_if *)malloc(sizeof(*mif), M_ICE, M_ZERO | M_NOWAIT);
if (!mif) {
device_printf(dev, "malloc() error allocating mirror interface\n");
return (ENOMEM);
}
/* Set pointers */
sc->mirr_if = mif;
mif->back = sc;
/* Do early setup because these will be called during iflib_device_register():
* - ice_subif_if_tx_queues_alloc
* - ice_subif_if_rx_queues_alloc
*/
ret = ice_setup_mirror_vsi(mif);
if (ret)
goto out;
/* Determine name for new interface:
* (base interface name)(modifier name)(modifier unit number)
* e.g. for ice0 with a new mirror interface (modifier m)
* of index 0, this equals "ice0m0"
*/
sb = sbuf_new_auto();
MPASS(sb != NULL);
sbuf_printf(sb, "%sm", device_get_nameunit(dev));
sbuf_finish(sb);
bus_topo_lock();
mif->subdev = device_add_child(dev, sbuf_data(sb), 0);
bus_topo_unlock();
if (!mif->subdev) {
device_printf(dev, "device_add_child failed for %s0\n", sbuf_data(sb));
sbuf_delete(sb);
free(mif, M_ICE);
sc->mirr_if = NULL;
return (ENOMEM);
}
sbuf_delete(sb);
device_set_driver(mif->subdev, &ice_subif_driver);
/* Use iflib_device_register() directly because the driver already
* has an initialized softc to pass to iflib
*/
ret = iflib_device_register(mif->subdev, mif, &ice_subif_sctx, &mif->subctx);
if (ret)
goto out;
/* Indicate that created interface will be just for monitoring */
mif->ifp = iflib_get_ifp(mif->subctx);
if_setflagbits(mif->ifp, IFF_MONITOR, 0);
/* Use autoselect media by default */
media = iflib_get_media(mif->subctx);
ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(media, IFM_ETHER | IFM_AUTO);
device_printf(dev, "Created dev %s and ifnet %s for mirroring\n",
device_get_nameunit(mif->subdev), if_name(mif->ifp));
ice_add_vsi_sysctls(mif->vsi);
ret = ice_wire_mirror_intrs(mif);
if (ret)
goto out;
mif->if_attached = true;
return (0);
out:
ice_destroy_mirror_interface(sc);
return (ret);
}
/**
* ice_wire_mirror_intrs
* @mif: driver private subinterface structure
*
* Helper function that sets up driver interrupt data and calls
* into iflib in order to setup interrupts in its data structures as well.
*
* Like ice_if_msix_intr_assign, currently requires that we get at least the same
* number of vectors as we have queues, and that we always have the same number
* of Tx and Rx queues. Unlike that function, this calls a special
* iflib_irq_alloc_generic_subif() function for RX interrupts because the
* driver needs to get MSI-X resources from the parent device.
*
* Tx queues use a softirq instead of using their own hardware interrupt so that
* remains unchanged.
*
* Returns 0 on success or an error code from iflib_irq_alloc_generic_subctx()
* on failure.
*/
static int
ice_wire_mirror_intrs(struct ice_mirr_if *mif)
{
struct ice_softc *sc = mif->back;
struct ice_hw *hw = &sc->hw;
struct ice_vsi *vsi = mif->vsi;
device_t dev = mif->subdev;
int err, i, rid;
if_ctx_t ctx = mif->subctx;
ice_debug(hw, ICE_DBG_INIT, "%s: Last rid: %d\n", __func__, sc->last_rid);
rid = sc->last_rid + 1;
for (i = 0; i < vsi->num_rx_queues; i++, rid++) {
struct ice_rx_queue *rxq = &vsi->rx_queues[i];
struct ice_tx_queue *txq = &vsi->tx_queues[i];
char irq_name[16];
// TODO: Change to use dynamic interface number
snprintf(irq_name, sizeof(irq_name), "m0rxq%d", i);
/* First arg is parent device (physical port's) iflib ctx */
err = iflib_irq_alloc_generic_subctx(sc->ctx, ctx,
&mif->rx_irqvs[i].irq, rid, IFLIB_INTR_RXTX, ice_msix_que,
rxq, rxq->me, irq_name);
if (err) {
device_printf(dev,
"Failed to allocate q int %d err: %s\n",
i, ice_err_str(err));
i--;
goto fail;
}
MPASS(rid - 1 > 0);
/* Set vector number used in interrupt enable/disable functions */
mif->rx_irqvs[i].me = rid - 1;
rxq->irqv = &mif->rx_irqvs[i];
bzero(irq_name, sizeof(irq_name));
snprintf(irq_name, sizeof(irq_name), "m0txq%d", i);
iflib_softirq_alloc_generic(ctx, &mif->rx_irqvs[i].irq,
IFLIB_INTR_TX, txq, txq->me, irq_name);
txq->irqv = &mif->rx_irqvs[i];
}
sc->last_rid = rid - 1;
ice_debug(hw, ICE_DBG_INIT, "%s: New last rid: %d\n", __func__,
sc->last_rid);
return (0);
fail:
for (; i >= 0; i--)
iflib_irq_free(ctx, &mif->rx_irqvs[i].irq);
return (err);
}
/**
* ice_subif_rebuild - Rebuild subinterface post reset
* @sc: The device private softc
*
* Restore subinterface state after a reset occurred.
* Restart the VSI and enable the mirroring.
*/
static int
ice_subif_rebuild(struct ice_softc *sc)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(sc->ctx);
struct ice_vsi *vsi = sc->mirr_if->vsi;
int err;
err = ice_subif_rebuild_vsi_qmap(sc);
if (err) {
device_printf(sc->dev, "Unable to re-assign mirror VSI queues, err %s\n",
ice_err_str(err));
return (err);
}
err = ice_initialize_vsi(vsi);
if (err) {
device_printf(sc->dev, "Unable to re-initialize mirror VSI, err %s\n",
ice_err_str(err));
goto err_release_queue_allocations_subif;
}
err = ice_config_rss(vsi);
if (err) {
device_printf(sc->dev,
"Unable to reconfigure RSS for the mirror VSI, err %s\n",
ice_err_str(err));
goto err_deinit_subif_vsi;
}
vsi->mirror_src_vsi = sc->pf_vsi.idx;
err = ice_setup_vsi_mirroring(vsi);
if (err) {
device_printf(sc->dev,
"Unable to configure mirroring for VSI: %s\n",
ice_err_str(err));
goto err_deinit_subif_vsi;
}
ice_set_state(&mif->state, ICE_STATE_SUBIF_NEEDS_REINIT);
return (0);
err_deinit_subif_vsi:
ice_deinit_vsi(vsi);
err_release_queue_allocations_subif:
ice_resmgr_release_map(&sc->tx_qmgr, vsi->tx_qmap,
sc->mirr_if->num_irq_vectors);
ice_resmgr_release_map(&sc->rx_qmgr, vsi->rx_qmap,
sc->mirr_if->num_irq_vectors);
return (err);
}
/**
* ice_subif_rebuild_vsi_qmap - Rebuild the mirror VSI queue mapping
* @sc: the device softc pointer
*
* Loops over the Tx and Rx queues for the mirror VSI and reassigns the queue
* mapping after a reset occurred.
*/
static int
ice_subif_rebuild_vsi_qmap(struct ice_softc *sc)
{
struct ice_vsi *vsi = sc->mirr_if->vsi;
struct ice_tx_queue *txq;
struct ice_rx_queue *rxq;
int err, i;
err = ice_resmgr_assign_scattered(&sc->tx_qmgr, vsi->tx_qmap, sc->mirr_if->num_irq_vectors);
if (err) {
device_printf(sc->dev, "Unable to assign mirror VSI Tx queues: %s\n",
ice_err_str(err));
return (err);
}
err = ice_resmgr_assign_scattered(&sc->rx_qmgr, vsi->rx_qmap, sc->mirr_if->num_irq_vectors);
if (err) {
device_printf(sc->dev, "Unable to assign mirror VSI Rx queues: %s\n",
ice_err_str(err));
goto err_release_tx_queues;
}
vsi->qmap_type = ICE_RESMGR_ALLOC_SCATTERED;
/* Re-assign Tx queue tail pointers */
for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++)
txq->tail = QTX_COMM_DBELL(vsi->tx_qmap[i]);
/* Re-assign Rx queue tail pointers */
for (i = 0, rxq = vsi->rx_queues; i < vsi->num_rx_queues; i++, rxq++)
rxq->tail = QRX_TAIL(vsi->rx_qmap[i]);
return (0);
err_release_tx_queues:
ice_resmgr_release_map(&sc->tx_qmgr, vsi->tx_qmap, vsi->num_tx_queues);
return (err);
}
/**
* ice_subif_if_tx_queues_alloc - Allocate Tx queue memory for subinterfaces
* @ctx: iflib context structure
* @vaddrs: virtual addresses for the queue memory
* @paddrs: physical addresses for the queue memory
* @ntxqs: the number of Tx queues per set (should always be 1)
* @ntxqsets: the number of Tx queue sets to allocate
*
* See ice_if_tx_queues_alloc() description. Similar to that function, but
* for subinterfaces instead.
*/
static int
ice_subif_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
int __invariant_only ntxqs, int ntxqsets)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
struct ice_tx_queue *txq;
device_t dev = mif->subdev;
struct ice_vsi *vsi;
int err, i, j;
MPASS(mif != NULL);
MPASS(ntxqs == 1);
MPASS(mif->subscctx->isc_ntxd[0] <= ICE_MAX_DESC_COUNT);
vsi = mif->vsi;
MPASS(vsi->num_tx_queues == ntxqsets);
/* Allocate queue structure memory */
if (!(vsi->tx_queues =
(struct ice_tx_queue *)malloc(sizeof(struct ice_tx_queue) * ntxqsets, M_ICE, M_NOWAIT | M_ZERO))) {
device_printf(dev, "%s: Unable to allocate Tx queue memory for subfunction\n",
__func__);
return (ENOMEM);
}
/* Allocate report status arrays */
for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) {
if (!(txq->tx_rsq =
(uint16_t *)malloc(sizeof(uint16_t) * mif->subscctx->isc_ntxd[0], M_ICE, M_NOWAIT))) {
device_printf(dev,
"%s: Unable to allocate tx_rsq memory for subfunction\n", __func__);
err = ENOMEM;
goto free_tx_queues;
}
/* Initialize report status array */
for (j = 0; j < mif->subscctx->isc_ntxd[0]; j++)
txq->tx_rsq[j] = QIDX_INVALID;
}
/* Add Tx queue sysctls context */
ice_vsi_add_txqs_ctx(vsi);
for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) {
/* q_handle == me when only one TC */
txq->me = txq->q_handle = i;
txq->vsi = vsi;
/* store the queue size for easier access */
txq->desc_count = mif->subscctx->isc_ntxd[0];
/* get the virtual and physical address of the hardware queues */
txq->tail = QTX_COMM_DBELL(vsi->tx_qmap[i]);
txq->tx_base = (struct ice_tx_desc *)vaddrs[i];
txq->tx_paddr = paddrs[i];
ice_add_txq_sysctls(txq);
}
return (0);
free_tx_queues:
for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) {
if (txq->tx_rsq != NULL) {
free(txq->tx_rsq, M_ICE);
txq->tx_rsq = NULL;
}
}
free(vsi->tx_queues, M_ICE);
vsi->tx_queues = NULL;
return (err);
}
/**
* ice_subif_if_rx_queues_alloc - Allocate Rx queue memory for subinterfaces
* @ctx: iflib context structure
* @vaddrs: virtual addresses for the queue memory
* @paddrs: physical addresses for the queue memory
* @nrxqs: number of Rx queues per set (should always be 1)
* @nrxqsets: number of Rx queue sets to allocate
*
* See ice_if_rx_queues_alloc() for general summary; this is similar to that
* but implemented for subinterfaces.
*/
static int
ice_subif_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
int __invariant_only nrxqs, int nrxqsets)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
struct ice_rx_queue *rxq;
device_t dev = mif->subdev;
struct ice_vsi *vsi;
int i;
MPASS(mif != NULL);
MPASS(nrxqs == 1);
MPASS(mif->subscctx->isc_nrxd[0] <= ICE_MAX_DESC_COUNT);
vsi = mif->vsi;
MPASS(vsi->num_rx_queues == nrxqsets);
/* Allocate queue structure memory */
if (!(vsi->rx_queues =
(struct ice_rx_queue *) malloc(sizeof(struct ice_rx_queue) * nrxqsets, M_ICE, M_NOWAIT | M_ZERO))) {
device_printf(dev, "%s: Unable to allocate Rx queue memory for subfunction\n",
__func__);
return (ENOMEM);
}
/* Add Rx queue sysctls context */
ice_vsi_add_rxqs_ctx(vsi);
for (i = 0, rxq = vsi->rx_queues; i < nrxqsets; i++, rxq++) {
rxq->me = i;
rxq->vsi = vsi;
/* store the queue size for easier access */
rxq->desc_count = mif->subscctx->isc_nrxd[0];
/* get the virtual and physical address of the hardware queues */
rxq->tail = QRX_TAIL(vsi->rx_qmap[i]);
rxq->rx_base = (union ice_32b_rx_flex_desc *)vaddrs[i];
rxq->rx_paddr = paddrs[i];
ice_add_rxq_sysctls(rxq);
}
return (0);
}
/**
* ice_subif_if_msix_intr_assign - Assign MSI-X interrupts to new sub interface
* @ctx: the iflib context structure
* @msix: the number of vectors we were assigned
*
* Allocates and assigns driver private resources for MSI-X interrupt tracking.
*
* @pre OS MSI-X resources have been pre-allocated by parent interface.
*/
static int
ice_subif_if_msix_intr_assign(if_ctx_t ctx, int msix)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
struct ice_softc *sc = mif->back;
struct ice_vsi *vsi = mif->vsi;
device_t dev = mif->subdev;
int ret;
if (vsi->num_rx_queues != vsi->num_tx_queues) {
device_printf(dev,
"iflib requested %d Tx queues, and %d Rx queues, but the driver isn't able to support a differing number of Tx and Rx queues\n",
vsi->num_tx_queues, vsi->num_rx_queues);
return (EOPNOTSUPP);
}
if (msix > sc->extra_vectors) {
device_printf(dev,
"%s: Not enough spare (%d) msix vectors for new sub-interface requested (%d)\n",
__func__, sc->extra_vectors, msix);
return (ENOSPC);
}
device_printf(dev, "%s: Using %d vectors for sub-interface\n", __func__,
msix);
/* Allocate space to store the IRQ vector data */
mif->num_irq_vectors = vsi->num_rx_queues;
mif->rx_irqvs = (struct ice_irq_vector *)
malloc(sizeof(struct ice_irq_vector) * (mif->num_irq_vectors),
M_ICE, M_NOWAIT);
if (!mif->rx_irqvs) {
device_printf(dev,
"Unable to allocate RX irqv memory for mirror's %d vectors\n",
mif->num_irq_vectors);
return (ENOMEM);
}
/* Assign mirror interface interrupts from PF device space */
if (!(mif->if_imap =
(u16 *)malloc(sizeof(u16) * mif->num_irq_vectors,
M_ICE, M_NOWAIT))) {
device_printf(dev, "Unable to allocate mirror intfc if_imap memory\n");
ret = ENOMEM;
goto free_irqvs;
}
ret = ice_resmgr_assign_contiguous(&sc->dev_imgr, mif->if_imap, mif->num_irq_vectors);
if (ret) {
device_printf(dev, "Unable to assign mirror intfc PF device interrupt mapping: %s\n",
ice_err_str(ret));
goto free_if_imap;
}
/* Assign mirror interface interrupts from OS interrupt allocation space */
if (!(mif->os_imap =
(u16 *)malloc(sizeof(u16) * mif->num_irq_vectors,
M_ICE, M_NOWAIT))) {
device_printf(dev, "Unable to allocate mirror intfc os_imap memory\n");
ret = ENOMEM;
goto free_if_imap;
}
ret = ice_resmgr_assign_contiguous(&sc->os_imgr, mif->os_imap, mif->num_irq_vectors);
if (ret) {
device_printf(dev, "Unable to assign mirror intfc OS interrupt mapping: %s\n",
ice_err_str(ret));
goto free_if_imap;
}
return (0);
free_if_imap:
free(mif->if_imap, M_ICE);
mif->if_imap = NULL;
free_irqvs:
free(mif->rx_irqvs, M_ICE);
mif->rx_irqvs = NULL;
return (ret);
}
/**
* ice_subif_if_intr_enable - Enable device interrupts for a subinterface
* @ctx: iflib context structure
*
* Called by iflib to request enabling all interrupts that belong to a
* subinterface.
*/
static void
ice_subif_if_intr_enable(if_ctx_t ctx)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
struct ice_softc *sc = mif->back;
struct ice_vsi *vsi = mif->vsi;
struct ice_hw *hw = &sc->hw;
/* Do not enable queue interrupts in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
/* Enable all queue interrupts */
for (int i = 0; i < vsi->num_rx_queues; i++)
ice_enable_intr(hw, vsi->rx_queues[i].irqv->me);
}
/**
* ice_subif_if_rx_queue_intr_enable - Enable a specific Rx queue interrupt
* @ctx: iflib context structure
* @rxqid: the Rx queue to enable
*
* Enable a specific Rx queue interrupt.
*
* This function is not protected by the iflib CTX lock.
*/
static int
ice_subif_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
struct ice_softc *sc = mif->back;
struct ice_vsi *vsi = mif->vsi;
struct ice_hw *hw = &sc->hw;
/* Do not enable queue interrupts in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (ENOSYS);
ice_enable_intr(hw, vsi->rx_queues[rxqid].irqv->me);
return (0);
}
/**
* ice_subif_if_tx_queue_intr_enable - Enable a specific Tx queue interrupt
* @ctx: iflib context structure
* @txqid: the Tx queue to enable
*
* Enable a specific Tx queue interrupt.
*
* This function is not protected by the iflib CTX lock.
*/
static int
ice_subif_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
struct ice_softc *sc = mif->back;
struct ice_vsi *vsi = mif->vsi;
struct ice_hw *hw = &sc->hw;
/* Do not enable queue interrupts in recovery mode */
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (ENOSYS);
ice_enable_intr(hw, vsi->tx_queues[txqid].irqv->me);
return (0);
}
/**
* ice_subif_if_init - Initialize the subinterface
* @ctx: iflib ctx structure
*
* Called by iflib to bring the device up, i.e. ifconfig ice0m0 up.
* Prepares the Tx and Rx engines and enables interrupts.
*
* @pre assumes the caller holds the iflib CTX lock
*/
static void
ice_subif_if_init(if_ctx_t ctx)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
struct ice_softc *sc = mif->back;
struct ice_vsi *vsi = mif->vsi;
device_t dev = mif->subdev;
int err;
if (ice_driver_is_detaching(sc))
return;
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return;
if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED)) {
device_printf(dev,
"request to start interface cannot be completed as the parent device %s failed to reset\n",
device_get_nameunit(sc->dev));
return;
}
if (ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) {
device_printf(dev,
"request to start interface cannot be completed while parent device %s is prepared for impending reset\n",
device_get_nameunit(sc->dev));
return;
}
/* XXX: Equiv to ice_update_rx_mbuf_sz */
vsi->mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
/* Initialize software Tx tracking values */
ice_init_tx_tracking(vsi);
err = ice_cfg_vsi_for_tx(vsi);
if (err) {
device_printf(dev,
"Unable to configure subif VSI for Tx: %s\n",
ice_err_str(err));
return;
}
err = ice_cfg_vsi_for_rx(vsi);
if (err) {
device_printf(dev,
"Unable to configure subif VSI for Rx: %s\n",
ice_err_str(err));
goto err_cleanup_tx;
}
err = ice_control_all_rx_queues(vsi, true);
if (err) {
device_printf(dev,
"Unable to enable subif Rx rings for receive: %s\n",
ice_err_str(err));
goto err_cleanup_tx;
}
ice_configure_all_rxq_interrupts(vsi);
ice_configure_rx_itr(vsi);
ice_set_state(&mif->state, ICE_STATE_DRIVER_INITIALIZED);
return;
err_cleanup_tx:
ice_vsi_disable_tx(vsi);
}
/**
* ice_if_stop_subif - Stop the subinterface
* @ctx: iflib context structure
* @ifs: subinterface context structure
*
* Called by iflib to stop the subinterface and bring it down.
* (e.g. ifconfig ice0m0 down)
*
* @pre assumes the caller holds the iflib CTX lock
*/
static void
ice_subif_if_stop(if_ctx_t ctx)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
struct ice_softc *sc = mif->back;
struct ice_vsi *vsi = mif->vsi;
device_t dev = mif->subdev;
if (!ice_testandclear_state(&mif->state, ICE_STATE_DRIVER_INITIALIZED))
return;
if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED)) {
device_printf(dev,
"request to stop interface cannot be completed as the parent device %s failed to reset\n",
device_get_nameunit(sc->dev));
return;
}
if (ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) {
device_printf(dev,
"request to stop interface cannot be completed while parent device %s is prepared for impending reset\n",
device_get_nameunit(sc->dev));
return;
}
/* Dissociate the Tx and Rx queues from the interrupts */
ice_flush_txq_interrupts(vsi);
ice_flush_rxq_interrupts(vsi);
/* Disable the Tx and Rx queues */
ice_vsi_disable_tx(vsi);
ice_control_all_rx_queues(vsi, false);
}
/**
* ice_free_irqvs_subif - Free IRQ vector memory for subinterfaces
* @mif: Mirror interface private structure
*
* Free IRQ vector memory allocated during ice_subif_if_msix_intr_assign.
*/
static void
ice_free_irqvs_subif(struct ice_mirr_if *mif)
{
struct ice_softc *sc = mif->back;
struct ice_vsi *vsi = mif->vsi;
if_ctx_t ctx = sc->ctx;
int i;
/* If the irqvs array is NULL, then there are no vectors to free */
if (mif->rx_irqvs == NULL)
return;
/* Free the IRQ vectors -- currently subinterfaces have number
* of vectors equal to number of RX queues
*
* XXX: ctx is parent device's ctx, not the subinterface ctx
*/
for (i = 0; i < vsi->num_rx_queues; i++)
iflib_irq_free(ctx, &mif->rx_irqvs[i].irq);
ice_resmgr_release_map(&sc->os_imgr, mif->os_imap,
mif->num_irq_vectors);
ice_resmgr_release_map(&sc->dev_imgr, mif->if_imap,
mif->num_irq_vectors);
sc->last_rid -= vsi->num_rx_queues;
/* Clear the irqv pointers */
for (i = 0; i < vsi->num_rx_queues; i++)
vsi->rx_queues[i].irqv = NULL;
for (i = 0; i < vsi->num_tx_queues; i++)
vsi->tx_queues[i].irqv = NULL;
/* Release the vector array memory */
free(mif->rx_irqvs, M_ICE);
mif->rx_irqvs = NULL;
}
/**
* ice_subif_if_queues_free - Free queue memory for subinterfaces
* @ctx: the iflib context structure
*
* Free queue memory allocated by ice_subif_tx_queues_alloc() and
* ice_subif_if_rx_queues_alloc().
*/
static void
ice_subif_if_queues_free(if_ctx_t ctx)
{
struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx);
struct ice_vsi *vsi = mif->vsi;
struct ice_tx_queue *txq;
int i;
/* Free the Tx and Rx sysctl contexts, and assign NULL to the node
* pointers.
*/
ice_vsi_del_txqs_ctx(vsi);
ice_vsi_del_rxqs_ctx(vsi);
/* Release MSI-X IRQ vectors */
ice_free_irqvs_subif(mif);
if (vsi->tx_queues != NULL) {
/* free the tx_rsq arrays */
for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++) {
if (txq->tx_rsq != NULL) {
free(txq->tx_rsq, M_ICE);
txq->tx_rsq = NULL;
}
}
free(vsi->tx_queues, M_ICE);
vsi->tx_queues = NULL;
}
if (vsi->rx_queues != NULL) {
free(vsi->rx_queues, M_ICE);
vsi->rx_queues = NULL;
}
}
/**
* ice_subif_if_media_status - Report subinterface media
* @ctx: iflib context structure
* @ifmr: ifmedia request structure to update
*
* Updates the provided ifmr with something, in order to prevent a
* "no media types?" message from ifconfig.
*
* Mirror interfaces are always up.
*/
static void
ice_subif_if_media_status(if_ctx_t ctx __unused, struct ifmediareq *ifmr)
{
ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
ifmr->ifm_active = IFM_ETHER | IFM_AUTO;
}
/**
* ice_subif_if_promisc_set - Set subinterface promiscuous mode
* @ctx: iflib context structure
* @flags: promiscuous flags to configure
*
* Called by iflib to configure device promiscuous mode.
*
* @remark This does not need to be implemented for now.
*/
static int
ice_subif_if_promisc_set(if_ctx_t ctx __unused, int flags __unused)
{
return (0);
}