freebsd-src/sys/dev/ice/ice_osdep.c
Eric Joyner 015f8cc5b0
ice(4): Update copyright year to 2024
Signed-off-by: Eric Joyner <erj@FreeBSD.org>

MFC after:	3 days
Sponsored by:	Intel Corporation
Differential Revision:	https://reviews.freebsd.org/D44003
2024-04-18 16:14:03 -07:00

445 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause */
/* Copyright (c) 2024, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file ice_osdep.c
* @brief Functions used to implement OS compatibility layer
*
* Contains functions used by ice_osdep.h to implement the OS compatibility
* layer used by some of the hardware files. Specifically, it is for the bits
* of OS compatibility which don't make sense as macros or inline functions.
*/
#include "ice_common.h"
#include "ice_iflib.h"
#include <machine/stdarg.h>
#include <sys/time.h>
/**
* @var M_ICE_OSDEP
* @brief OS compatibility layer allocation type
*
* malloc(9) allocation type used by the OS compatibility layer for
* distinguishing allocations by this layer from those of the rest of the
* driver.
*/
MALLOC_DEFINE(M_ICE_OSDEP, "ice-osdep", "Intel(R) 100Gb Network Driver osdep allocations");
/**
* @var ice_lock_count
* @brief Global count of # of ice_lock mutexes initialized
*
* A global count of the total number of times that ice_init_lock has been
* called. This is used to generate unique lock names for each ice_lock, to
* aid in witness lock checking.
*/
u16 ice_lock_count = 0;
static void ice_dmamap_cb(void *arg, bus_dma_segment_t * segs, int __unused nseg, int error);
/**
* ice_hw_to_dev - Given a hw private struct, find the associated device_t
* @hw: the hardware private structure
*
* Given a hw structure pointer, lookup the softc and extract the device
* pointer. Assumes that hw is embedded within the ice_softc, instead of being
* allocated separately, so that __containerof math will work.
*
* This can't be defined in ice_osdep.h as it depends on the complete
* definition of struct ice_softc. That can't be easily included in
* ice_osdep.h without creating circular header dependencies.
*/
device_t
ice_hw_to_dev(struct ice_hw *hw) {
struct ice_softc *sc = __containerof(hw, struct ice_softc, hw);
return sc->dev;
}
/**
* ice_debug - Log a debug message if the type is enabled
* @hw: device private hardware structure
* @mask: the debug message type
* @fmt: printf format specifier
*
* Check if hw->debug_mask has enabled the given message type. If so, log the
* message to the console using vprintf. Mimic the output of device_printf by
* using device_print_prettyname().
*/
void
ice_debug(struct ice_hw *hw, uint64_t mask, char *fmt, ...)
{
device_t dev = ice_hw_to_dev(hw);
va_list args;
if (!(mask & hw->debug_mask))
return;
device_print_prettyname(dev);
va_start(args, fmt);
vprintf(fmt, args);
va_end(args);
}
/**
* ice_debug_array - Format and print an array of values to the console
* @hw: private hardware structure
* @mask: the debug message type
* @rowsize: preferred number of rows to use
* @groupsize: preferred size in bytes to print each chunk
* @buf: the array buffer to print
* @len: size of the array buffer
*
* Format the given array as a series of uint8_t values with hexadecimal
* notation and log the contents to the console log.
*
* TODO: Currently only supports a group size of 1, due to the way hexdump is
* implemented.
*/
void
ice_debug_array(struct ice_hw *hw, uint64_t mask, uint32_t rowsize,
uint32_t __unused groupsize, uint8_t *buf, size_t len)
{
device_t dev = ice_hw_to_dev(hw);
char prettyname[20];
if (!(mask & hw->debug_mask))
return;
/* Format the device header to a string */
snprintf(prettyname, sizeof(prettyname), "%s: ", device_get_nameunit(dev));
/* Make sure the row-size isn't too large */
if (rowsize > 0xFF)
rowsize = 0xFF;
hexdump(buf, len, prettyname, HD_OMIT_CHARS | rowsize);
}
/**
* ice_info_fwlog - Format and print an array of values to the console
* @hw: private hardware structure
* @rowsize: preferred number of rows to use
* @groupsize: preferred size in bytes to print each chunk
* @buf: the array buffer to print
* @len: size of the array buffer
*
* Format the given array as a series of uint8_t values with hexadecimal
* notation and log the contents to the console log. This variation is
* specific to firmware logging.
*
* TODO: Currently only supports a group size of 1, due to the way hexdump is
* implemented.
*/
void
ice_info_fwlog(struct ice_hw *hw, uint32_t rowsize, uint32_t __unused groupsize,
uint8_t *buf, size_t len)
{
device_t dev = ice_hw_to_dev(hw);
char prettyname[20];
if (!ice_fwlog_supported(hw))
return;
/* Format the device header to a string */
snprintf(prettyname, sizeof(prettyname), "%s: FWLOG: ",
device_get_nameunit(dev));
/* Make sure the row-size isn't too large */
if (rowsize > 0xFF)
rowsize = 0xFF;
hexdump(buf, len, prettyname, HD_OMIT_CHARS | rowsize);
}
/**
* rd32 - Read a 32bit hardware register value
* @hw: the private hardware structure
* @reg: register address to read
*
* Read the specified 32bit register value from BAR0 and return its contents.
*/
uint32_t
rd32(struct ice_hw *hw, uint32_t reg)
{
struct ice_softc *sc = __containerof(hw, struct ice_softc, hw);
return bus_space_read_4(sc->bar0.tag, sc->bar0.handle, reg);
}
/**
* rd64 - Read a 64bit hardware register value
* @hw: the private hardware structure
* @reg: register address to read
*
* Read the specified 64bit register value from BAR0 and return its contents.
*
* @pre For 32-bit builds, assumes that the 64bit register read can be
* safely broken up into two 32-bit register reads.
*/
uint64_t
rd64(struct ice_hw *hw, uint32_t reg)
{
struct ice_softc *sc = __containerof(hw, struct ice_softc, hw);
uint64_t data;
#ifdef __amd64__
data = bus_space_read_8(sc->bar0.tag, sc->bar0.handle, reg);
#else
/*
* bus_space_read_8 isn't supported on 32bit platforms, so we fall
* back to using two bus_space_read_4 calls.
*/
data = bus_space_read_4(sc->bar0.tag, sc->bar0.handle, reg);
data |= ((uint64_t)bus_space_read_4(sc->bar0.tag, sc->bar0.handle, reg + 4)) << 32;
#endif
return data;
}
/**
* wr32 - Write a 32bit hardware register
* @hw: the private hardware structure
* @reg: the register address to write to
* @val: the 32bit value to write
*
* Write the specified 32bit value to a register address in BAR0.
*/
void
wr32(struct ice_hw *hw, uint32_t reg, uint32_t val)
{
struct ice_softc *sc = __containerof(hw, struct ice_softc, hw);
bus_space_write_4(sc->bar0.tag, sc->bar0.handle, reg, val);
}
/**
* wr64 - Write a 64bit hardware register
* @hw: the private hardware structure
* @reg: the register address to write to
* @val: the 64bit value to write
*
* Write the specified 64bit value to a register address in BAR0.
*
* @pre For 32-bit builds, assumes that the 64bit register write can be safely
* broken up into two 32-bit register writes.
*/
void
wr64(struct ice_hw *hw, uint32_t reg, uint64_t val)
{
struct ice_softc *sc = __containerof(hw, struct ice_softc, hw);
#ifdef __amd64__
bus_space_write_8(sc->bar0.tag, sc->bar0.handle, reg, val);
#else
uint32_t lo_val, hi_val;
/*
* bus_space_write_8 isn't supported on 32bit platforms, so we fall
* back to using two bus_space_write_4 calls.
*/
lo_val = (uint32_t)val;
hi_val = (uint32_t)(val >> 32);
bus_space_write_4(sc->bar0.tag, sc->bar0.handle, reg, lo_val);
bus_space_write_4(sc->bar0.tag, sc->bar0.handle, reg + 4, hi_val);
#endif
}
/**
* ice_usec_delay - Delay for the specified number of microseconds
* @time: microseconds to delay
* @sleep: if true, sleep where possible
*
* If sleep is true, and if the current thread is allowed to sleep, pause so
* that another thread can execute. Otherwise, use DELAY to spin the thread
* instead.
*/
void
ice_usec_delay(uint32_t time, bool sleep)
{
if (sleep && THREAD_CAN_SLEEP())
pause("ice_usec_delay", USEC_2_TICKS(time));
else
DELAY(time);
}
/**
* ice_msec_delay - Delay for the specified number of milliseconds
* @time: milliseconds to delay
* @sleep: if true, sleep where possible
*
* If sleep is true, and if the current thread is allowed to sleep, pause so
* that another thread can execute. Otherwise, use DELAY to spin the thread
* instead.
*/
void
ice_msec_delay(uint32_t time, bool sleep)
{
if (sleep && THREAD_CAN_SLEEP())
pause("ice_msec_delay", MSEC_2_TICKS(time));
else
DELAY(time * 1000);
}
/**
* ice_msec_pause - pause (sleep) the thread for a time in milliseconds
* @time: milliseconds to sleep
*
* Wrapper for ice_msec_delay with sleep set to true.
*/
void
ice_msec_pause(uint32_t time)
{
ice_msec_delay(time, true);
}
/**
* ice_msec_spin - Spin the thread for a time in milliseconds
* @time: milliseconds to delay
*
* Wrapper for ice_msec_delay with sleep sent to false.
*/
void
ice_msec_spin(uint32_t time)
{
ice_msec_delay(time, false);
}
/********************************************************************
* Manage DMA'able memory.
*******************************************************************/
/**
* ice_dmamap_cb - Callback function DMA maps
* @arg: pointer to return the segment address
* @segs: the segments array
* @nseg: number of segments in the array
* @error: error code
*
* Callback used by the bus DMA code to obtain the segment address.
*/
static void
ice_dmamap_cb(void *arg, bus_dma_segment_t * segs, int __unused nseg, int error)
{
if (error)
return;
*(bus_addr_t *) arg = segs->ds_addr;
return;
}
/**
* ice_alloc_dma_mem - Request OS to allocate DMA memory
* @hw: private hardware structure
* @mem: structure defining the DMA memory request
* @size: the allocation size
*
* Allocates some memory for DMA use. Use the FreeBSD bus DMA interface to
* track this memory using a bus DMA tag and map.
*
* Returns a pointer to the DMA memory address.
*/
void *
ice_alloc_dma_mem(struct ice_hw *hw, struct ice_dma_mem *mem, u64 size)
{
device_t dev = ice_hw_to_dev(hw);
int err;
err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsz */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&mem->tag);
if (err != 0) {
device_printf(dev,
"ice_alloc_dma: bus_dma_tag_create failed, "
"error %s\n", ice_err_str(err));
goto fail_0;
}
err = bus_dmamem_alloc(mem->tag, (void **)&mem->va,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &mem->map);
if (err != 0) {
device_printf(dev,
"ice_alloc_dma: bus_dmamem_alloc failed, "
"error %s\n", ice_err_str(err));
goto fail_1;
}
err = bus_dmamap_load(mem->tag, mem->map, mem->va,
size,
ice_dmamap_cb,
&mem->pa,
BUS_DMA_NOWAIT);
if (err != 0) {
device_printf(dev,
"ice_alloc_dma: bus_dmamap_load failed, "
"error %s\n", ice_err_str(err));
goto fail_2;
}
mem->size = size;
bus_dmamap_sync(mem->tag, mem->map,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
return (mem->va);
fail_2:
bus_dmamem_free(mem->tag, mem->va, mem->map);
fail_1:
bus_dma_tag_destroy(mem->tag);
fail_0:
mem->map = NULL;
mem->tag = NULL;
return (NULL);
}
/**
* ice_free_dma_mem - Free DMA memory allocated by ice_alloc_dma_mem
* @hw: the hardware private structure
* @mem: DMA memory to free
*
* Release the bus DMA tag and map, and free the DMA memory associated with
* it.
*/
void
ice_free_dma_mem(struct ice_hw __unused *hw, struct ice_dma_mem *mem)
{
bus_dmamap_sync(mem->tag, mem->map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(mem->tag, mem->map);
bus_dmamem_free(mem->tag, mem->va, mem->map);
bus_dma_tag_destroy(mem->tag);
mem->map = NULL;
mem->tag = NULL;
}