freebsd-src/sys/dev/ice/ice_ddp_common.c
Eric Joyner 015f8cc5b0
ice(4): Update copyright year to 2024
Signed-off-by: Eric Joyner <erj@FreeBSD.org>

MFC after:	3 days
Sponsored by:	Intel Corporation
Differential Revision:	https://reviews.freebsd.org/D44003
2024-04-18 16:14:03 -07:00

2536 lines
70 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause */
/* Copyright (c) 2024, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "ice_ddp_common.h"
#include "ice_type.h"
#include "ice_common.h"
#include "ice_sched.h"
/**
* ice_aq_download_pkg
* @hw: pointer to the hardware structure
* @pkg_buf: the package buffer to transfer
* @buf_size: the size of the package buffer
* @last_buf: last buffer indicator
* @error_offset: returns error offset
* @error_info: returns error information
* @cd: pointer to command details structure or NULL
*
* Download Package (0x0C40)
*/
static enum ice_status
ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
u16 buf_size, bool last_buf, u32 *error_offset,
u32 *error_info, struct ice_sq_cd *cd)
{
struct ice_aqc_download_pkg *cmd;
struct ice_aq_desc desc;
enum ice_status status;
if (error_offset)
*error_offset = 0;
if (error_info)
*error_info = 0;
cmd = &desc.params.download_pkg;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
if (last_buf)
cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
if (status == ICE_ERR_AQ_ERROR) {
/* Read error from buffer only when the FW returned an error */
struct ice_aqc_download_pkg_resp *resp;
resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
if (error_offset)
*error_offset = LE32_TO_CPU(resp->error_offset);
if (error_info)
*error_info = LE32_TO_CPU(resp->error_info);
}
return status;
}
/**
* ice_aq_upload_section
* @hw: pointer to the hardware structure
* @pkg_buf: the package buffer which will receive the section
* @buf_size: the size of the package buffer
* @cd: pointer to command details structure or NULL
*
* Upload Section (0x0C41)
*/
enum ice_status
ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
u16 buf_size, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
}
/**
* ice_aq_update_pkg
* @hw: pointer to the hardware structure
* @pkg_buf: the package cmd buffer
* @buf_size: the size of the package cmd buffer
* @last_buf: last buffer indicator
* @error_offset: returns error offset
* @error_info: returns error information
* @cd: pointer to command details structure or NULL
*
* Update Package (0x0C42)
*/
static enum ice_status
ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
bool last_buf, u32 *error_offset, u32 *error_info,
struct ice_sq_cd *cd)
{
struct ice_aqc_download_pkg *cmd;
struct ice_aq_desc desc;
enum ice_status status;
if (error_offset)
*error_offset = 0;
if (error_info)
*error_info = 0;
cmd = &desc.params.download_pkg;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
if (last_buf)
cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
if (status == ICE_ERR_AQ_ERROR) {
/* Read error from buffer only when the FW returned an error */
struct ice_aqc_download_pkg_resp *resp;
resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
if (error_offset)
*error_offset = LE32_TO_CPU(resp->error_offset);
if (error_info)
*error_info = LE32_TO_CPU(resp->error_info);
}
return status;
}
/**
* ice_find_seg_in_pkg
* @hw: pointer to the hardware structure
* @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
* @pkg_hdr: pointer to the package header to be searched
*
* This function searches a package file for a particular segment type. On
* success it returns a pointer to the segment header, otherwise it will
* return NULL.
*/
struct ice_generic_seg_hdr *
ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
struct ice_pkg_hdr *pkg_hdr)
{
u32 i;
ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
pkg_hdr->pkg_format_ver.update,
pkg_hdr->pkg_format_ver.draft);
/* Search all package segments for the requested segment type */
for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) {
struct ice_generic_seg_hdr *seg;
seg = (struct ice_generic_seg_hdr *)
((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i]));
if (LE32_TO_CPU(seg->seg_type) == seg_type)
return seg;
}
return NULL;
}
/**
* ice_get_pkg_seg_by_idx
* @pkg_hdr: pointer to the package header to be searched
* @idx: index of segment
*/
static struct ice_generic_seg_hdr *
ice_get_pkg_seg_by_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx)
{
struct ice_generic_seg_hdr *seg = NULL;
if (idx < LE32_TO_CPU(pkg_hdr->seg_count))
seg = (struct ice_generic_seg_hdr *)
((u8 *)pkg_hdr +
LE32_TO_CPU(pkg_hdr->seg_offset[idx]));
return seg;
}
/**
* ice_is_signing_seg_at_idx - determine if segment is a signing segment
* @pkg_hdr: pointer to package header
* @idx: segment index
*/
static bool ice_is_signing_seg_at_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx)
{
struct ice_generic_seg_hdr *seg;
bool retval = false;
seg = ice_get_pkg_seg_by_idx(pkg_hdr, idx);
if (seg)
retval = LE32_TO_CPU(seg->seg_type) == SEGMENT_TYPE_SIGNING;
return retval;
}
/**
* ice_is_signing_seg_type_at_idx
* @pkg_hdr: pointer to package header
* @idx: segment index
* @seg_id: segment id that is expected
* @sign_type: signing type
*
* Determine if a segment is a signing segment of the correct type
*/
static bool
ice_is_signing_seg_type_at_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx,
u32 seg_id, u32 sign_type)
{
bool result = false;
if (ice_is_signing_seg_at_idx(pkg_hdr, idx)) {
struct ice_sign_seg *seg;
seg = (struct ice_sign_seg *)ice_get_pkg_seg_by_idx(pkg_hdr,
idx);
if (seg && LE32_TO_CPU(seg->seg_id) == seg_id &&
LE32_TO_CPU(seg->sign_type) == sign_type)
result = true;
}
return result;
}
/**
* ice_update_pkg_no_lock
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @count: the number of buffers in the array
*/
enum ice_status
ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
{
enum ice_status status = ICE_SUCCESS;
u32 i;
for (i = 0; i < count; i++) {
struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
bool last = ((i + 1) == count);
u32 offset, info;
status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end),
last, &offset, &info, NULL);
if (status) {
ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
status, offset, info);
break;
}
}
return status;
}
/**
* ice_update_pkg
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @count: the number of buffers in the array
*
* Obtains change lock and updates package.
*/
enum ice_status
ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
{
enum ice_status status;
status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
if (status)
return status;
status = ice_update_pkg_no_lock(hw, bufs, count);
ice_release_change_lock(hw);
return status;
}
static enum ice_ddp_state
ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)
{
switch (aq_err) {
case ICE_AQ_RC_ENOSEC:
return ICE_DDP_PKG_NO_SEC_MANIFEST;
case ICE_AQ_RC_EBADSIG:
return ICE_DDP_PKG_FILE_SIGNATURE_INVALID;
case ICE_AQ_RC_ESVN:
return ICE_DDP_PKG_SECURE_VERSION_NBR_TOO_LOW;
case ICE_AQ_RC_EBADMAN:
return ICE_DDP_PKG_MANIFEST_INVALID;
case ICE_AQ_RC_EBADBUF:
return ICE_DDP_PKG_BUFFER_INVALID;
default:
return ICE_DDP_PKG_ERR;
}
}
/**
* ice_is_buffer_metadata - determine if package buffer is a metadata buffer
* @buf: pointer to buffer header
*/
static bool ice_is_buffer_metadata(struct ice_buf_hdr *buf)
{
bool metadata = false;
if (LE32_TO_CPU(buf->section_entry[0].type) & ICE_METADATA_BUF)
metadata = true;
return metadata;
}
/**
* ice_is_last_download_buffer
* @buf: pointer to current buffer header
* @idx: index of the buffer in the current sequence
* @count: the buffer count in the current sequence
*
* Note: this routine should only be called if the buffer is not the last buffer
*/
static bool
ice_is_last_download_buffer(struct ice_buf_hdr *buf, u32 idx, u32 count)
{
bool last = ((idx + 1) == count);
/* A set metadata flag in the next buffer will signal that the current
* buffer will be the last buffer downloaded
*/
if (!last) {
struct ice_buf *next_buf = ((struct ice_buf *)buf) + 1;
last = ice_is_buffer_metadata((struct ice_buf_hdr *)next_buf);
}
return last;
}
/**
* ice_dwnld_cfg_bufs_no_lock
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @start: buffer index of first buffer to download
* @count: the number of buffers to download
* @indicate_last: if true, then set last buffer flag on last buffer download
*
* Downloads package configuration buffers to the firmware. Metadata buffers
* are skipped, and the first metadata buffer found indicates that the rest
* of the buffers are all metadata buffers.
*/
static enum ice_ddp_state
ice_dwnld_cfg_bufs_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 start,
u32 count, bool indicate_last)
{
enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
struct ice_buf_hdr *bh;
enum ice_aq_err err;
u32 offset, info, i;
if (!bufs || !count)
return ICE_DDP_PKG_ERR;
/* If the first buffer's first section has its metadata bit set
* then there are no buffers to be downloaded, and the operation is
* considered a success.
*/
bh = (struct ice_buf_hdr *)(bufs + start);
if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF)
return ICE_DDP_PKG_SUCCESS;
for (i = 0; i < count; i++) {
enum ice_status status;
bool last = false;
bh = (struct ice_buf_hdr *)(bufs + start + i);
if (indicate_last)
last = ice_is_last_download_buffer(bh, i, count);
status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
&offset, &info, NULL);
/* Save AQ status from download package */
if (status) {
ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
status, offset, info);
err = hw->adminq.sq_last_status;
state = ice_map_aq_err_to_ddp_state(err);
break;
}
if (last)
break;
}
return state;
}
/**
* ice_aq_get_pkg_info_list
* @hw: pointer to the hardware structure
* @pkg_info: the buffer which will receive the information list
* @buf_size: the size of the pkg_info information buffer
* @cd: pointer to command details structure or NULL
*
* Get Package Info List (0x0C43)
*/
static enum ice_status
ice_aq_get_pkg_info_list(struct ice_hw *hw,
struct ice_aqc_get_pkg_info_resp *pkg_info,
u16 buf_size, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
}
/**
* ice_has_signing_seg - determine if package has a signing segment
* @hw: pointer to the hardware structure
* @pkg_hdr: pointer to the driver's package hdr
*/
static bool ice_has_signing_seg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
{
struct ice_generic_seg_hdr *seg_hdr;
seg_hdr = (struct ice_generic_seg_hdr *)
ice_find_seg_in_pkg(hw, SEGMENT_TYPE_SIGNING, pkg_hdr);
return seg_hdr ? true : false;
}
/**
* ice_get_pkg_segment_id - get correct package segment id, based on device
* @mac_type: MAC type of the device
*/
static u32 ice_get_pkg_segment_id(enum ice_mac_type mac_type)
{
u32 seg_id;
switch (mac_type) {
case ICE_MAC_GENERIC:
case ICE_MAC_GENERIC_3K:
case ICE_MAC_GENERIC_3K_E825:
default:
seg_id = SEGMENT_TYPE_ICE_E810;
break;
}
return seg_id;
}
/**
* ice_get_pkg_sign_type - get package segment sign type, based on device
* @mac_type: MAC type of the device
*/
static u32 ice_get_pkg_sign_type(enum ice_mac_type mac_type)
{
u32 sign_type;
switch (mac_type) {
case ICE_MAC_GENERIC_3K:
sign_type = SEGMENT_SIGN_TYPE_RSA3K;
break;
case ICE_MAC_GENERIC_3K_E825:
sign_type = SEGMENT_SIGN_TYPE_RSA3K_E825;
break;
case ICE_MAC_GENERIC:
default:
sign_type = SEGMENT_SIGN_TYPE_RSA2K;
break;
}
return sign_type;
}
/**
* ice_get_signing_req - get correct package requirements, based on device
* @hw: pointer to the hardware structure
*/
static void ice_get_signing_req(struct ice_hw *hw)
{
hw->pkg_seg_id = ice_get_pkg_segment_id(hw->mac_type);
hw->pkg_sign_type = ice_get_pkg_sign_type(hw->mac_type);
}
/**
* ice_download_pkg_sig_seg - download a signature segment
* @hw: pointer to the hardware structure
* @seg: pointer to signature segment
*/
static enum ice_ddp_state
ice_download_pkg_sig_seg(struct ice_hw *hw, struct ice_sign_seg *seg)
{
enum ice_ddp_state state;
state = ice_dwnld_cfg_bufs_no_lock(hw, seg->buf_tbl.buf_array, 0,
LE32_TO_CPU(seg->buf_tbl.buf_count),
false);
return state;
}
/**
* ice_download_pkg_config_seg - download a config segment
* @hw: pointer to the hardware structure
* @pkg_hdr: pointer to package header
* @idx: segment index
* @start: starting buffer
* @count: buffer count
*
* Note: idx must reference a ICE segment
*/
static enum ice_ddp_state
ice_download_pkg_config_seg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr,
u32 idx, u32 start, u32 count)
{
struct ice_buf_table *bufs;
enum ice_ddp_state state;
struct ice_seg *seg;
u32 buf_count;
seg = (struct ice_seg *)ice_get_pkg_seg_by_idx(pkg_hdr, idx);
if (!seg)
return ICE_DDP_PKG_ERR;
bufs = ice_find_buf_table(seg);
buf_count = LE32_TO_CPU(bufs->buf_count);
if (start >= buf_count || start + count > buf_count)
return ICE_DDP_PKG_ERR;
state = ice_dwnld_cfg_bufs_no_lock(hw, bufs->buf_array, start, count,
true);
return state;
}
/**
* ice_dwnld_sign_and_cfg_segs - download a signing segment and config segment
* @hw: pointer to the hardware structure
* @pkg_hdr: pointer to package header
* @idx: segment index (must be a signature segment)
*
* Note: idx must reference a signature segment
*/
static enum ice_ddp_state
ice_dwnld_sign_and_cfg_segs(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr,
u32 idx)
{
enum ice_ddp_state state;
struct ice_sign_seg *seg;
u32 conf_idx;
u32 start;
u32 count;
seg = (struct ice_sign_seg *)ice_get_pkg_seg_by_idx(pkg_hdr, idx);
if (!seg) {
state = ICE_DDP_PKG_ERR;
goto exit;
}
conf_idx = LE32_TO_CPU(seg->signed_seg_idx);
start = LE32_TO_CPU(seg->signed_buf_start);
count = LE32_TO_CPU(seg->signed_buf_count);
state = ice_download_pkg_sig_seg(hw, seg);
if (state)
goto exit;
state = ice_download_pkg_config_seg(hw, pkg_hdr, conf_idx, start,
count);
exit:
return state;
}
/**
* ice_match_signing_seg - determine if a matching signing segment exists
* @pkg_hdr: pointer to package header
* @seg_id: segment id that is expected
* @sign_type: signing type
*/
static bool
ice_match_signing_seg(struct ice_pkg_hdr *pkg_hdr, u32 seg_id, u32 sign_type)
{
bool match = false;
u32 i;
for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) {
if (ice_is_signing_seg_type_at_idx(pkg_hdr, i, seg_id,
sign_type)) {
match = true;
break;
}
}
return match;
}
/**
* ice_post_dwnld_pkg_actions - perform post download package actions
* @hw: pointer to the hardware structure
*/
static enum ice_ddp_state
ice_post_dwnld_pkg_actions(struct ice_hw *hw)
{
enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
enum ice_status status;
status = ice_set_vlan_mode(hw);
if (status) {
ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
status);
state = ICE_DDP_PKG_ERR;
}
return state;
}
/**
* ice_download_pkg_with_sig_seg - download package using signature segments
* @hw: pointer to the hardware structure
* @pkg_hdr: pointer to package header
*/
static enum ice_ddp_state
ice_download_pkg_with_sig_seg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
{
enum ice_aq_err aq_err = hw->adminq.sq_last_status;
enum ice_ddp_state state = ICE_DDP_PKG_ERR;
enum ice_status status;
u32 i;
ice_debug(hw, ICE_DBG_INIT, "Segment ID %d\n", hw->pkg_seg_id);
ice_debug(hw, ICE_DBG_INIT, "Signature type %d\n", hw->pkg_sign_type);
status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
if (status) {
if (status == ICE_ERR_AQ_NO_WORK)
state = ICE_DDP_PKG_ALREADY_LOADED;
else
state = ice_map_aq_err_to_ddp_state(aq_err);
return state;
}
for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) {
if (!ice_is_signing_seg_type_at_idx(pkg_hdr, i, hw->pkg_seg_id,
hw->pkg_sign_type))
continue;
state = ice_dwnld_sign_and_cfg_segs(hw, pkg_hdr, i);
if (state)
break;
}
if (!state)
state = ice_post_dwnld_pkg_actions(hw);
ice_release_global_cfg_lock(hw);
return state;
}
/**
* ice_dwnld_cfg_bufs
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @count: the number of buffers in the array
*
* Obtains global config lock and downloads the package configuration buffers
* to the firmware.
*/
static enum ice_ddp_state
ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
{
enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
enum ice_status status;
struct ice_buf_hdr *bh;
if (!bufs || !count)
return ICE_DDP_PKG_ERR;
/* If the first buffer's first section has its metadata bit set
* then there are no buffers to be downloaded, and the operation is
* considered a success.
*/
bh = (struct ice_buf_hdr *)bufs;
if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF)
return ICE_DDP_PKG_SUCCESS;
status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
if (status) {
if (status == ICE_ERR_AQ_NO_WORK)
return ICE_DDP_PKG_ALREADY_LOADED;
return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status);
}
state = ice_dwnld_cfg_bufs_no_lock(hw, bufs, 0, count, true);
if (!state)
state = ice_post_dwnld_pkg_actions(hw);
ice_release_global_cfg_lock(hw);
return state;
}
/**
* ice_download_pkg_without_sig_seg
* @hw: pointer to the hardware structure
* @ice_seg: pointer to the segment of the package to be downloaded
*
* Handles the download of a complete package without signature segment.
*/
static enum ice_ddp_state
ice_download_pkg_without_sig_seg(struct ice_hw *hw, struct ice_seg *ice_seg)
{
struct ice_buf_table *ice_buf_tbl;
enum ice_ddp_state state;
ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
ice_seg->hdr.seg_format_ver.major,
ice_seg->hdr.seg_format_ver.minor,
ice_seg->hdr.seg_format_ver.update,
ice_seg->hdr.seg_format_ver.draft);
ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
LE32_TO_CPU(ice_seg->hdr.seg_type),
LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
ice_buf_tbl = ice_find_buf_table(ice_seg);
ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
LE32_TO_CPU(ice_buf_tbl->buf_count));
state = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
LE32_TO_CPU(ice_buf_tbl->buf_count));
return state;
}
/**
* ice_download_pkg
* @hw: pointer to the hardware structure
* @pkg_hdr: pointer to package header
* @ice_seg: pointer to the segment of the package to be downloaded
*
* Handles the download of a complete package.
*/
static enum ice_ddp_state
ice_download_pkg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr,
struct ice_seg *ice_seg)
{
enum ice_ddp_state state;
if (hw->pkg_has_signing_seg)
state = ice_download_pkg_with_sig_seg(hw, pkg_hdr);
else
state = ice_download_pkg_without_sig_seg(hw, ice_seg);
ice_post_pkg_dwnld_vlan_mode_cfg(hw);
return state;
}
/**
* ice_init_pkg_info
* @hw: pointer to the hardware structure
* @pkg_hdr: pointer to the driver's package hdr
*
* Saves off the package details into the HW structure.
*/
static enum ice_ddp_state
ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
{
struct ice_generic_seg_hdr *seg_hdr;
if (!pkg_hdr)
return ICE_DDP_PKG_ERR;
hw->pkg_has_signing_seg = ice_has_signing_seg(hw, pkg_hdr);
ice_get_signing_req(hw);
ice_debug(hw, ICE_DBG_INIT, "Pkg using segment id: 0x%08X\n",
hw->pkg_seg_id);
seg_hdr = (struct ice_generic_seg_hdr *)
ice_find_seg_in_pkg(hw, hw->pkg_seg_id, pkg_hdr);
if (seg_hdr) {
struct ice_meta_sect *meta;
struct ice_pkg_enum state;
ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
/* Get package information from the Metadata Section */
meta = (struct ice_meta_sect *)
ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
ICE_SID_METADATA);
if (!meta) {
ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
return ICE_DDP_PKG_INVALID_FILE;
}
hw->pkg_ver = meta->ver;
ice_memcpy(hw->pkg_name, meta->name, sizeof(meta->name),
ICE_NONDMA_TO_NONDMA);
ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
meta->ver.major, meta->ver.minor, meta->ver.update,
meta->ver.draft, meta->name);
hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
ice_memcpy(hw->ice_seg_id, seg_hdr->seg_id,
sizeof(hw->ice_seg_id), ICE_NONDMA_TO_NONDMA);
ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
seg_hdr->seg_format_ver.major,
seg_hdr->seg_format_ver.minor,
seg_hdr->seg_format_ver.update,
seg_hdr->seg_format_ver.draft,
seg_hdr->seg_id);
} else {
ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
return ICE_DDP_PKG_INVALID_FILE;
}
return ICE_DDP_PKG_SUCCESS;
}
/**
* ice_get_pkg_info
* @hw: pointer to the hardware structure
*
* Store details of the package currently loaded in HW into the HW structure.
*/
enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw)
{
enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
struct ice_aqc_get_pkg_info_resp *pkg_info;
u16 size;
u32 i;
size = ice_struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
if (!pkg_info)
return ICE_DDP_PKG_ERR;
if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) {
state = ICE_DDP_PKG_ERR;
goto init_pkg_free_alloc;
}
for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) {
#define ICE_PKG_FLAG_COUNT 4
char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
u8 place = 0;
if (pkg_info->pkg_info[i].is_active) {
flags[place++] = 'A';
hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
hw->active_track_id =
LE32_TO_CPU(pkg_info->pkg_info[i].track_id);
ice_memcpy(hw->active_pkg_name,
pkg_info->pkg_info[i].name,
sizeof(pkg_info->pkg_info[i].name),
ICE_NONDMA_TO_NONDMA);
hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
}
if (pkg_info->pkg_info[i].is_active_at_boot)
flags[place++] = 'B';
if (pkg_info->pkg_info[i].is_modified)
flags[place++] = 'M';
if (pkg_info->pkg_info[i].is_in_nvm)
flags[place++] = 'N';
ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
i, pkg_info->pkg_info[i].ver.major,
pkg_info->pkg_info[i].ver.minor,
pkg_info->pkg_info[i].ver.update,
pkg_info->pkg_info[i].ver.draft,
pkg_info->pkg_info[i].name, flags);
}
init_pkg_free_alloc:
ice_free(hw, pkg_info);
return state;
}
/**
* ice_label_enum_handler
* @sect_type: section type
* @section: pointer to section
* @index: index of the label entry to be returned
* @offset: pointer to receive absolute offset, always zero for label sections
*
* This is a callback function that can be passed to ice_pkg_enum_entry.
* Handles enumeration of individual label entries.
*/
static void *
ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type, void *section, u32 index,
u32 *offset)
{
struct ice_label_section *labels;
if (!section)
return NULL;
if (index > ICE_MAX_LABELS_IN_BUF)
return NULL;
if (offset)
*offset = 0;
labels = (struct ice_label_section *)section;
if (index >= LE16_TO_CPU(labels->count))
return NULL;
return labels->label + index;
}
/**
* ice_enum_labels
* @ice_seg: pointer to the ice segment (NULL on subsequent calls)
* @type: the section type that will contain the label (0 on subsequent calls)
* @state: ice_pkg_enum structure that will hold the state of the enumeration
* @value: pointer to a value that will return the label's value if found
*
* Enumerates a list of labels in the package. The caller will call
* ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
* ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
* the end of the list has been reached.
*/
static char *
ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
u16 *value)
{
struct ice_label *label;
/* Check for valid label section on first call */
if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
return NULL;
label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type,
NULL,
ice_label_enum_handler);
if (!label)
return NULL;
*value = LE16_TO_CPU(label->value);
return label->name;
}
/**
* ice_find_label_value
* @ice_seg: pointer to the ice segment (non-NULL)
* @name: name of the label to search for
* @type: the section type that will contain the label
* @value: pointer to a value that will return the label's value if found
*
* Finds a label's value given the label name and the section type to search.
* The ice_seg parameter must not be NULL since the first call to
* ice_enum_labels requires a pointer to an actual ice_seg structure.
*/
enum ice_status
ice_find_label_value(struct ice_seg *ice_seg, char const *name, u32 type,
u16 *value)
{
struct ice_pkg_enum state;
char *label_name;
u16 val;
ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
if (!ice_seg)
return ICE_ERR_PARAM;
do {
label_name = ice_enum_labels(ice_seg, type, &state, &val);
if (label_name && !strcmp(label_name, name)) {
*value = val;
return ICE_SUCCESS;
}
ice_seg = NULL;
} while (label_name);
return ICE_ERR_CFG;
}
/**
* ice_verify_pkg - verify package
* @pkg: pointer to the package buffer
* @len: size of the package buffer
*
* Verifies various attributes of the package file, including length, format
* version, and the requirement of at least one segment.
*/
enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
{
u32 seg_count;
u32 i;
if (len < ice_struct_size(pkg, seg_offset, 1))
return ICE_DDP_PKG_INVALID_FILE;
if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
return ICE_DDP_PKG_INVALID_FILE;
/* pkg must have at least one segment */
seg_count = LE32_TO_CPU(pkg->seg_count);
if (seg_count < 1)
return ICE_DDP_PKG_INVALID_FILE;
/* make sure segment array fits in package length */
if (len < ice_struct_size(pkg, seg_offset, seg_count))
return ICE_DDP_PKG_INVALID_FILE;
/* all segments must fit within length */
for (i = 0; i < seg_count; i++) {
u32 off = LE32_TO_CPU(pkg->seg_offset[i]);
struct ice_generic_seg_hdr *seg;
/* segment header must fit */
if (len < off + sizeof(*seg))
return ICE_DDP_PKG_INVALID_FILE;
seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
/* segment body must fit */
if (len < off + LE32_TO_CPU(seg->seg_size))
return ICE_DDP_PKG_INVALID_FILE;
}
return ICE_DDP_PKG_SUCCESS;
}
/**
* ice_free_seg - free package segment pointer
* @hw: pointer to the hardware structure
*
* Frees the package segment pointer in the proper manner, depending on if the
* segment was allocated or just the passed in pointer was stored.
*/
void ice_free_seg(struct ice_hw *hw)
{
if (hw->pkg_copy) {
ice_free(hw, hw->pkg_copy);
hw->pkg_copy = NULL;
hw->pkg_size = 0;
}
hw->seg = NULL;
}
/**
* ice_chk_pkg_version - check package version for compatibility with driver
* @pkg_ver: pointer to a version structure to check
*
* Check to make sure that the package about to be downloaded is compatible with
* the driver. To be compatible, the major and minor components of the package
* version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
* definitions.
*/
static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
{
if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ ||
(pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH;
else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ ||
(pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
pkg_ver->minor < ICE_PKG_SUPP_VER_MNR))
return ICE_DDP_PKG_FILE_VERSION_TOO_LOW;
return ICE_DDP_PKG_SUCCESS;
}
/**
* ice_chk_pkg_compat
* @hw: pointer to the hardware structure
* @ospkg: pointer to the package hdr
* @seg: pointer to the package segment hdr
*
* This function checks the package version compatibility with driver and NVM
*/
static enum ice_ddp_state
ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
struct ice_seg **seg)
{
struct ice_aqc_get_pkg_info_resp *pkg;
enum ice_ddp_state state;
u16 size;
u32 i;
/* Check package version compatibility */
state = ice_chk_pkg_version(&hw->pkg_ver);
if (state) {
ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
return state;
}
/* find ICE segment in given package */
*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, hw->pkg_seg_id,
ospkg);
if (!*seg) {
ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
return ICE_DDP_PKG_INVALID_FILE;
}
/* Check if FW is compatible with the OS package */
size = ice_struct_size(pkg, pkg_info, ICE_PKG_CNT);
pkg = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
if (!pkg)
return ICE_DDP_PKG_ERR;
if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) {
state = ICE_DDP_PKG_ERR;
goto fw_ddp_compat_free_alloc;
}
for (i = 0; i < LE32_TO_CPU(pkg->count); i++) {
/* loop till we find the NVM package */
if (!pkg->pkg_info[i].is_in_nvm)
continue;
if ((*seg)->hdr.seg_format_ver.major !=
pkg->pkg_info[i].ver.major ||
(*seg)->hdr.seg_format_ver.minor >
pkg->pkg_info[i].ver.minor) {
state = ICE_DDP_PKG_FW_MISMATCH;
ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
}
/* done processing NVM package so break */
break;
}
fw_ddp_compat_free_alloc:
ice_free(hw, pkg);
return state;
}
/**
* ice_sw_fv_handler
* @sect_type: section type
* @section: pointer to section
* @index: index of the field vector entry to be returned
* @offset: ptr to variable that receives the offset in the field vector table
*
* This is a callback function that can be passed to ice_pkg_enum_entry.
* This function treats the given section as of type ice_sw_fv_section and
* enumerates offset field. "offset" is an index into the field vector table.
*/
static void *
ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
{
struct ice_sw_fv_section *fv_section =
(struct ice_sw_fv_section *)section;
if (!section || sect_type != ICE_SID_FLD_VEC_SW)
return NULL;
if (index >= LE16_TO_CPU(fv_section->count))
return NULL;
if (offset)
/* "index" passed in to this function is relative to a given
* 4k block. To get to the true index into the field vector
* table need to add the relative index to the base_offset
* field of this section
*/
*offset = LE16_TO_CPU(fv_section->base_offset) + index;
return fv_section->fv + index;
}
/**
* ice_get_prof_index_max - get the max profile index for used profile
* @hw: pointer to the HW struct
*
* Calling this function will get the max profile index for used profile
* and store the index number in struct ice_switch_info *switch_info
* in hw for following use.
*/
static int ice_get_prof_index_max(struct ice_hw *hw)
{
u16 prof_index = 0, j, max_prof_index = 0;
struct ice_pkg_enum state;
struct ice_seg *ice_seg;
bool flag = false;
struct ice_fv *fv;
u32 offset;
ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
if (!hw->seg)
return ICE_ERR_PARAM;
ice_seg = hw->seg;
do {
fv = (struct ice_fv *)
ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
&offset, ice_sw_fv_handler);
if (!fv)
break;
ice_seg = NULL;
/* in the profile that not be used, the prot_id is set to 0xff
* and the off is set to 0x1ff for all the field vectors.
*/
for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
fv->ew[j].off != ICE_FV_OFFSET_INVAL)
flag = true;
if (flag && prof_index > max_prof_index)
max_prof_index = prof_index;
prof_index++;
flag = false;
} while (fv);
hw->switch_info->max_used_prof_index = max_prof_index;
return ICE_SUCCESS;
}
/**
* ice_get_ddp_pkg_state - get DDP pkg state after download
* @hw: pointer to the HW struct
* @already_loaded: indicates if pkg was already loaded onto the device
*
*/
static enum ice_ddp_state
ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded)
{
if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
hw->pkg_ver.update == hw->active_pkg_ver.update &&
hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
!memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) {
if (already_loaded)
return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED;
else
return ICE_DDP_PKG_SUCCESS;
} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED;
} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED;
} else {
return ICE_DDP_PKG_ERR;
}
}
/**
* ice_init_pkg_regs - initialize additional package registers
* @hw: pointer to the hardware structure
*/
static void ice_init_pkg_regs(struct ice_hw *hw)
{
#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
#define ICE_SW_BLK_IDX 0
/* setup Switch block input mask, which is 48-bits in two parts */
wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
}
/**
* ice_init_pkg - initialize/download package
* @hw: pointer to the hardware structure
* @buf: pointer to the package buffer
* @len: size of the package buffer
*
* This function initializes a package. The package contains HW tables
* required to do packet processing. First, the function extracts package
* information such as version. Then it finds the ice configuration segment
* within the package; this function then saves a copy of the segment pointer
* within the supplied package buffer. Next, the function will cache any hints
* from the package, followed by downloading the package itself. Note, that if
* a previous PF driver has already downloaded the package successfully, then
* the current driver will not have to download the package again.
*
* The local package contents will be used to query default behavior and to
* update specific sections of the HW's version of the package (e.g. to update
* the parse graph to understand new protocols).
*
* This function stores a pointer to the package buffer memory, and it is
* expected that the supplied buffer will not be freed immediately. If the
* package buffer needs to be freed, such as when read from a file, use
* ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
* case.
*/
enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
{
bool already_loaded = false;
enum ice_ddp_state state;
struct ice_pkg_hdr *pkg;
struct ice_seg *seg;
if (!buf || !len)
return ICE_DDP_PKG_ERR;
pkg = (struct ice_pkg_hdr *)buf;
state = ice_verify_pkg(pkg, len);
if (state) {
ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
state);
return state;
}
/* initialize package info */
state = ice_init_pkg_info(hw, pkg);
if (state)
return state;
/* For packages with signing segments, must be a matching segment */
if (hw->pkg_has_signing_seg)
if (!ice_match_signing_seg(pkg, hw->pkg_seg_id,
hw->pkg_sign_type))
return ICE_DDP_PKG_ERR;
/* before downloading the package, check package version for
* compatibility with driver
*/
state = ice_chk_pkg_compat(hw, pkg, &seg);
if (state)
return state;
/* initialize package hints and then download package */
ice_init_pkg_hints(hw, seg);
state = ice_download_pkg(hw, pkg, seg);
if (state == ICE_DDP_PKG_ALREADY_LOADED) {
ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
already_loaded = true;
}
/* Get information on the package currently loaded in HW, then make sure
* the driver is compatible with this version.
*/
if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) {
state = ice_get_pkg_info(hw);
if (!state)
state = ice_get_ddp_pkg_state(hw, already_loaded);
}
if (ice_is_init_pkg_successful(state)) {
hw->seg = seg;
/* on successful package download update other required
* registers to support the package and fill HW tables
* with package content.
*/
ice_init_pkg_regs(hw);
ice_fill_blk_tbls(hw);
ice_get_prof_index_max(hw);
} else {
ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
state);
}
return state;
}
/**
* ice_copy_and_init_pkg - initialize/download a copy of the package
* @hw: pointer to the hardware structure
* @buf: pointer to the package buffer
* @len: size of the package buffer
*
* This function copies the package buffer, and then calls ice_init_pkg() to
* initialize the copied package contents.
*
* The copying is necessary if the package buffer supplied is constant, or if
* the memory may disappear shortly after calling this function.
*
* If the package buffer resides in the data segment and can be modified, the
* caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
*
* However, if the package buffer needs to be copied first, such as when being
* read from a file, the caller should use ice_copy_and_init_pkg().
*
* This function will first copy the package buffer, before calling
* ice_init_pkg(). The caller is free to immediately destroy the original
* package buffer, as the new copy will be managed by this function and
* related routines.
*/
enum ice_ddp_state
ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
{
enum ice_ddp_state state;
u8 *buf_copy;
if (!buf || !len)
return ICE_DDP_PKG_ERR;
buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA);
state = ice_init_pkg(hw, buf_copy, len);
if (!ice_is_init_pkg_successful(state)) {
/* Free the copy, since we failed to initialize the package */
ice_free(hw, buf_copy);
} else {
/* Track the copied pkg so we can free it later */
hw->pkg_copy = buf_copy;
hw->pkg_size = len;
}
return state;
}
/**
* ice_is_init_pkg_successful - check if DDP init was successful
* @state: state of the DDP pkg after download
*/
bool ice_is_init_pkg_successful(enum ice_ddp_state state)
{
switch (state) {
case ICE_DDP_PKG_SUCCESS:
case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
return true;
default:
return false;
}
}
/**
* ice_pkg_buf_alloc
* @hw: pointer to the HW structure
*
* Allocates a package buffer and returns a pointer to the buffer header.
* Note: all package contents must be in Little Endian form.
*/
struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
{
struct ice_buf_build *bld;
struct ice_buf_hdr *buf;
bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld));
if (!bld)
return NULL;
buf = (struct ice_buf_hdr *)bld;
buf->data_end = CPU_TO_LE16(offsetof(struct ice_buf_hdr,
section_entry));
return bld;
}
static bool ice_is_gtp_u_profile(u32 prof_idx)
{
return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID &&
prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP) ||
prof_idx == ICE_PROFID_IPV4_GTPU_TEID;
}
static bool ice_is_gtp_c_profile(u32 prof_idx)
{
switch (prof_idx) {
case ICE_PROFID_IPV4_GTPC_TEID:
case ICE_PROFID_IPV4_GTPC_NO_TEID:
case ICE_PROFID_IPV6_GTPC_TEID:
case ICE_PROFID_IPV6_GTPC_NO_TEID:
return true;
default:
return false;
}
}
/**
* ice_get_sw_prof_type - determine switch profile type
* @hw: pointer to the HW structure
* @fv: pointer to the switch field vector
* @prof_idx: profile index to check
*/
static enum ice_prof_type
ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx)
{
bool valid_prof = false;
u16 i;
if (ice_is_gtp_c_profile(prof_idx))
return ICE_PROF_TUN_GTPC;
if (ice_is_gtp_u_profile(prof_idx))
return ICE_PROF_TUN_GTPU;
for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
if (fv->ew[i].off != ICE_NAN_OFFSET)
valid_prof = true;
/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
fv->ew[i].off == ICE_VNI_OFFSET)
return ICE_PROF_TUN_UDP;
/* GRE tunnel will have GRE protocol */
if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
return ICE_PROF_TUN_GRE;
}
return valid_prof ? ICE_PROF_NON_TUN : ICE_PROF_INVALID;
}
/**
* ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
* @hw: pointer to hardware structure
* @req_profs: type of profiles requested
* @bm: pointer to memory for returning the bitmap of field vectors
*/
void
ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
ice_bitmap_t *bm)
{
struct ice_pkg_enum state;
struct ice_seg *ice_seg;
struct ice_fv *fv;
ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES);
ice_seg = hw->seg;
do {
enum ice_prof_type prof_type;
u32 offset;
fv = (struct ice_fv *)
ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
&offset, ice_sw_fv_handler);
ice_seg = NULL;
if (fv) {
/* Determine field vector type */
prof_type = ice_get_sw_prof_type(hw, fv, offset);
if (req_profs & prof_type)
ice_set_bit((u16)offset, bm);
}
} while (fv);
}
/**
* ice_get_sw_fv_list
* @hw: pointer to the HW structure
* @lkups: lookup elements or match criteria for the advanced recipe, one
* structure per protocol header
* @bm: bitmap of field vectors to consider
* @fv_list: Head of a list
*
* Finds all the field vector entries from switch block that contain
* a given protocol ID and offset and returns a list of structures of type
* "ice_sw_fv_list_entry". Every structure in the list has a field vector
* definition and profile ID information
* NOTE: The caller of the function is responsible for freeing the memory
* allocated for every list entry.
*/
enum ice_status
ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups,
ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list)
{
struct ice_sw_fv_list_entry *fvl;
struct ice_sw_fv_list_entry *tmp;
struct ice_pkg_enum state;
struct ice_seg *ice_seg;
struct ice_fv *fv;
u32 offset;
ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
if (!lkups->n_val_words || !hw->seg)
return ICE_ERR_PARAM;
ice_seg = hw->seg;
do {
u16 i;
fv = (struct ice_fv *)
ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
&offset, ice_sw_fv_handler);
if (!fv)
break;
ice_seg = NULL;
/* If field vector is not in the bitmap list, then skip this
* profile.
*/
if (!ice_is_bit_set(bm, (u16)offset))
continue;
for (i = 0; i < lkups->n_val_words; i++) {
int j;
for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
if (fv->ew[j].prot_id ==
lkups->fv_words[i].prot_id &&
fv->ew[j].off == lkups->fv_words[i].off)
break;
if (j >= hw->blk[ICE_BLK_SW].es.fvw)
break;
if (i + 1 == lkups->n_val_words) {
fvl = (struct ice_sw_fv_list_entry *)
ice_malloc(hw, sizeof(*fvl));
if (!fvl)
goto err;
fvl->fv_ptr = fv;
fvl->profile_id = offset;
LIST_ADD(&fvl->list_entry, fv_list);
break;
}
}
} while (fv);
if (LIST_EMPTY(fv_list)) {
ice_warn(hw, "Required profiles not found in currently loaded DDP package");
return ICE_ERR_CFG;
}
return ICE_SUCCESS;
err:
LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry,
list_entry) {
LIST_DEL(&fvl->list_entry);
ice_free(hw, fvl);
}
return ICE_ERR_NO_MEMORY;
}
/**
* ice_init_prof_result_bm - Initialize the profile result index bitmap
* @hw: pointer to hardware structure
*/
void ice_init_prof_result_bm(struct ice_hw *hw)
{
struct ice_pkg_enum state;
struct ice_seg *ice_seg;
struct ice_fv *fv;
ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
if (!hw->seg)
return;
ice_seg = hw->seg;
do {
u32 off;
u16 i;
fv = (struct ice_fv *)
ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
&off, ice_sw_fv_handler);
ice_seg = NULL;
if (!fv)
break;
ice_zero_bitmap(hw->switch_info->prof_res_bm[off],
ICE_MAX_FV_WORDS);
/* Determine empty field vector indices, these can be
* used for recipe results. Skip index 0, since it is
* always used for Switch ID.
*/
for (i = 1; i < ICE_MAX_FV_WORDS; i++)
if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
fv->ew[i].off == ICE_FV_OFFSET_INVAL)
ice_set_bit(i,
hw->switch_info->prof_res_bm[off]);
} while (fv);
}
/**
* ice_pkg_buf_free
* @hw: pointer to the HW structure
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Frees a package buffer
*/
void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
{
ice_free(hw, bld);
}
/**
* ice_pkg_buf_reserve_section
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
* @count: the number of sections to reserve
*
* Reserves one or more section table entries in a package buffer. This routine
* can be called multiple times as long as they are made before calling
* ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
* is called once, the number of sections that can be allocated will not be able
* to be increased; not using all reserved sections is fine, but this will
* result in some wasted space in the buffer.
* Note: all package contents must be in Little Endian form.
*/
enum ice_status
ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
{
struct ice_buf_hdr *buf;
u16 section_count;
u16 data_end;
if (!bld)
return ICE_ERR_PARAM;
buf = (struct ice_buf_hdr *)&bld->buf;
/* already an active section, can't increase table size */
section_count = LE16_TO_CPU(buf->section_count);
if (section_count > 0)
return ICE_ERR_CFG;
if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
return ICE_ERR_CFG;
bld->reserved_section_table_entries += count;
data_end = LE16_TO_CPU(buf->data_end) +
FLEX_ARRAY_SIZE(buf, section_entry, count);
buf->data_end = CPU_TO_LE16(data_end);
return ICE_SUCCESS;
}
/**
* ice_pkg_buf_alloc_section
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
* @type: the section type value
* @size: the size of the section to reserve (in bytes)
*
* Reserves memory in the buffer for a section's content and updates the
* buffers' status accordingly. This routine returns a pointer to the first
* byte of the section start within the buffer, which is used to fill in the
* section contents.
* Note: all package contents must be in Little Endian form.
*/
void *
ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
{
struct ice_buf_hdr *buf;
u16 sect_count;
u16 data_end;
if (!bld || !type || !size)
return NULL;
buf = (struct ice_buf_hdr *)&bld->buf;
/* check for enough space left in buffer */
data_end = LE16_TO_CPU(buf->data_end);
/* section start must align on 4 byte boundary */
data_end = ICE_ALIGN(data_end, 4);
if ((data_end + size) > ICE_MAX_S_DATA_END)
return NULL;
/* check for more available section table entries */
sect_count = LE16_TO_CPU(buf->section_count);
if (sect_count < bld->reserved_section_table_entries) {
void *section_ptr = ((u8 *)buf) + data_end;
buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end);
buf->section_entry[sect_count].size = CPU_TO_LE16(size);
buf->section_entry[sect_count].type = CPU_TO_LE32(type);
data_end += size;
buf->data_end = CPU_TO_LE16(data_end);
buf->section_count = CPU_TO_LE16(sect_count + 1);
return section_ptr;
}
/* no free section table entries */
return NULL;
}
/**
* ice_pkg_buf_alloc_single_section
* @hw: pointer to the HW structure
* @type: the section type value
* @size: the size of the section to reserve (in bytes)
* @section: returns pointer to the section
*
* Allocates a package buffer with a single section.
* Note: all package contents must be in Little Endian form.
*/
struct ice_buf_build *
ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
void **section)
{
struct ice_buf_build *buf;
if (!section)
return NULL;
buf = ice_pkg_buf_alloc(hw);
if (!buf)
return NULL;
if (ice_pkg_buf_reserve_section(buf, 1))
goto ice_pkg_buf_alloc_single_section_err;
*section = ice_pkg_buf_alloc_section(buf, type, size);
if (!*section)
goto ice_pkg_buf_alloc_single_section_err;
return buf;
ice_pkg_buf_alloc_single_section_err:
ice_pkg_buf_free(hw, buf);
return NULL;
}
/**
* ice_pkg_buf_unreserve_section
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
* @count: the number of sections to unreserve
*
* Unreserves one or more section table entries in a package buffer, releasing
* space that can be used for section data. This routine can be called
* multiple times as long as they are made before calling
* ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
* is called once, the number of sections that can be allocated will not be able
* to be increased; not using all reserved sections is fine, but this will
* result in some wasted space in the buffer.
* Note: all package contents must be in Little Endian form.
*/
enum ice_status
ice_pkg_buf_unreserve_section(struct ice_buf_build *bld, u16 count)
{
struct ice_buf_hdr *buf;
u16 section_count;
u16 data_end;
if (!bld)
return ICE_ERR_PARAM;
buf = (struct ice_buf_hdr *)&bld->buf;
/* already an active section, can't decrease table size */
section_count = LE16_TO_CPU(buf->section_count);
if (section_count > 0)
return ICE_ERR_CFG;
if (count > bld->reserved_section_table_entries)
return ICE_ERR_CFG;
bld->reserved_section_table_entries -= count;
data_end = LE16_TO_CPU(buf->data_end) -
FLEX_ARRAY_SIZE(buf, section_entry, count);
buf->data_end = CPU_TO_LE16(data_end);
return ICE_SUCCESS;
}
/**
* ice_pkg_buf_get_free_space
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Returns the number of free bytes remaining in the buffer.
* Note: all package contents must be in Little Endian form.
*/
u16 ice_pkg_buf_get_free_space(struct ice_buf_build *bld)
{
struct ice_buf_hdr *buf;
if (!bld)
return 0;
buf = (struct ice_buf_hdr *)&bld->buf;
return ICE_MAX_S_DATA_END - LE16_TO_CPU(buf->data_end);
}
/**
* ice_pkg_buf_get_active_sections
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Returns the number of active sections. Before using the package buffer
* in an update package command, the caller should make sure that there is at
* least one active section - otherwise, the buffer is not legal and should
* not be used.
* Note: all package contents must be in Little Endian form.
*/
u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
{
struct ice_buf_hdr *buf;
if (!bld)
return 0;
buf = (struct ice_buf_hdr *)&bld->buf;
return LE16_TO_CPU(buf->section_count);
}
/**
* ice_pkg_buf
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Return a pointer to the buffer's header
*/
struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
{
if (bld)
return &bld->buf;
return NULL;
}
/**
* ice_find_buf_table
* @ice_seg: pointer to the ice segment
*
* Returns the address of the buffer table within the ice segment.
*/
struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
{
struct ice_nvm_table *nvms;
nvms = (struct ice_nvm_table *)
(ice_seg->device_table +
LE32_TO_CPU(ice_seg->device_table_count));
return (_FORCE_ struct ice_buf_table *)
(nvms->vers + LE32_TO_CPU(nvms->table_count));
}
/**
* ice_pkg_val_buf
* @buf: pointer to the ice buffer
*
* This helper function validates a buffer's header.
*/
static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
{
struct ice_buf_hdr *hdr;
u16 section_count;
u16 data_end;
hdr = (struct ice_buf_hdr *)buf->buf;
/* verify data */
section_count = LE16_TO_CPU(hdr->section_count);
if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
return NULL;
data_end = LE16_TO_CPU(hdr->data_end);
if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
return NULL;
return hdr;
}
/**
* ice_pkg_enum_buf
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
*
* This function will enumerate all the buffers in the ice segment. The first
* call is made with the ice_seg parameter non-NULL; on subsequent calls,
* ice_seg is set to NULL which continues the enumeration. When the function
* returns a NULL pointer, then the end of the buffers has been reached, or an
* unexpected value has been detected (for example an invalid section count or
* an invalid buffer end value).
*/
struct ice_buf_hdr *
ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
{
if (ice_seg) {
state->buf_table = ice_find_buf_table(ice_seg);
if (!state->buf_table)
return NULL;
state->buf_idx = 0;
return ice_pkg_val_buf(state->buf_table->buf_array);
}
if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count))
return ice_pkg_val_buf(state->buf_table->buf_array +
state->buf_idx);
else
return NULL;
}
/**
* ice_pkg_advance_sect
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
*
* This helper function will advance the section within the ice segment,
* also advancing the buffer if needed.
*/
bool
ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
{
if (!ice_seg && !state->buf)
return false;
if (!ice_seg && state->buf)
if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count))
return true;
state->buf = ice_pkg_enum_buf(ice_seg, state);
if (!state->buf)
return false;
/* start of new buffer, reset section index */
state->sect_idx = 0;
return true;
}
/**
* ice_pkg_enum_section
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
* @sect_type: section type to enumerate
*
* This function will enumerate all the sections of a particular type in the
* ice segment. The first call is made with the ice_seg parameter non-NULL;
* on subsequent calls, ice_seg is set to NULL which continues the enumeration.
* When the function returns a NULL pointer, then the end of the matching
* sections has been reached.
*/
void *
ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
u32 sect_type)
{
u16 offset, size;
if (ice_seg)
state->type = sect_type;
if (!ice_pkg_advance_sect(ice_seg, state))
return NULL;
/* scan for next matching section */
while (state->buf->section_entry[state->sect_idx].type !=
CPU_TO_LE32(state->type))
if (!ice_pkg_advance_sect(NULL, state))
return NULL;
/* validate section */
offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
return NULL;
size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size);
if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
return NULL;
/* make sure the section fits in the buffer */
if (offset + size > ICE_PKG_BUF_SIZE)
return NULL;
state->sect_type =
LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type);
/* calc pointer to this section */
state->sect = ((u8 *)state->buf) +
LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
return state->sect;
}
/**
* ice_pkg_enum_entry
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
* @sect_type: section type to enumerate
* @offset: pointer to variable that receives the offset in the table (optional)
* @handler: function that handles access to the entries into the section type
*
* This function will enumerate all the entries in particular section type in
* the ice segment. The first call is made with the ice_seg parameter non-NULL;
* on subsequent calls, ice_seg is set to NULL which continues the enumeration.
* When the function returns a NULL pointer, then the end of the entries has
* been reached.
*
* Since each section may have a different header and entry size, the handler
* function is needed to determine the number and location entries in each
* section.
*
* The offset parameter is optional, but should be used for sections that
* contain an offset for each section table. For such cases, the section handler
* function must return the appropriate offset + index to give the absolution
* offset for each entry. For example, if the base for a section's header
* indicates a base offset of 10, and the index for the entry is 2, then
* section handler function should set the offset to 10 + 2 = 12.
*/
void *
ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
u32 sect_type, u32 *offset,
void *(*handler)(u32 sect_type, void *section,
u32 index, u32 *offset))
{
void *entry;
if (ice_seg) {
if (!handler)
return NULL;
if (!ice_pkg_enum_section(ice_seg, state, sect_type))
return NULL;
state->entry_idx = 0;
state->handler = handler;
} else {
state->entry_idx++;
}
if (!state->handler)
return NULL;
/* get entry */
entry = state->handler(state->sect_type, state->sect, state->entry_idx,
offset);
if (!entry) {
/* end of a section, look for another section of this type */
if (!ice_pkg_enum_section(NULL, state, 0))
return NULL;
state->entry_idx = 0;
entry = state->handler(state->sect_type, state->sect,
state->entry_idx, offset);
}
return entry;
}
/**
* ice_boost_tcam_handler
* @sect_type: section type
* @section: pointer to section
* @index: index of the boost TCAM entry to be returned
* @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
*
* This is a callback function that can be passed to ice_pkg_enum_entry.
* Handles enumeration of individual boost TCAM entries.
*/
static void *
ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
{
struct ice_boost_tcam_section *boost;
if (!section)
return NULL;
if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
return NULL;
if (index > ICE_MAX_BST_TCAMS_IN_BUF)
return NULL;
if (offset)
*offset = 0;
boost = (struct ice_boost_tcam_section *)section;
if (index >= LE16_TO_CPU(boost->count))
return NULL;
return boost->tcam + index;
}
/**
* ice_find_boost_entry
* @ice_seg: pointer to the ice segment (non-NULL)
* @addr: Boost TCAM address of entry to search for
* @entry: returns pointer to the entry
*
* Finds a particular Boost TCAM entry and returns a pointer to that entry
* if it is found. The ice_seg parameter must not be NULL since the first call
* to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
*/
static enum ice_status
ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
struct ice_boost_tcam_entry **entry)
{
struct ice_boost_tcam_entry *tcam;
struct ice_pkg_enum state;
ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
if (!ice_seg)
return ICE_ERR_PARAM;
do {
tcam = (struct ice_boost_tcam_entry *)
ice_pkg_enum_entry(ice_seg, &state,
ICE_SID_RXPARSER_BOOST_TCAM, NULL,
ice_boost_tcam_handler);
if (tcam && LE16_TO_CPU(tcam->addr) == addr) {
*entry = tcam;
return ICE_SUCCESS;
}
ice_seg = NULL;
} while (tcam);
*entry = NULL;
return ICE_ERR_CFG;
}
/**
* ice_init_pkg_hints
* @hw: pointer to the HW structure
* @ice_seg: pointer to the segment of the package scan (non-NULL)
*
* This function will scan the package and save off relevant information
* (hints or metadata) for driver use. The ice_seg parameter must not be NULL
* since the first call to ice_enum_labels requires a pointer to an actual
* ice_seg structure.
*/
void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
{
struct ice_pkg_enum state;
char *label_name;
u16 val;
int i;
ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM);
ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
if (!ice_seg)
return;
label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
&val);
while (label_name) {
/* TODO: Replace !strnsmp() with wrappers like match_some_pre() */
if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
/* check for a tunnel entry */
ice_add_tunnel_hint(hw, label_name, val);
label_name = ice_enum_labels(NULL, 0, &state, &val);
}
/* Cache the appropriate boost TCAM entry pointers for tunnels */
for (i = 0; i < hw->tnl.count; i++) {
ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
&hw->tnl.tbl[i].boost_entry);
if (hw->tnl.tbl[i].boost_entry)
hw->tnl.tbl[i].valid = true;
}
}
/**
* ice_acquire_global_cfg_lock
* @hw: pointer to the HW structure
* @access: access type (read or write)
*
* This function will request ownership of the global config lock for reading
* or writing of the package. When attempting to obtain write access, the
* caller must check for the following two return values:
*
* ICE_SUCCESS - Means the caller has acquired the global config lock
* and can perform writing of the package.
* ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
* package or has found that no update was necessary; in
* this case, the caller can just skip performing any
* update of the package.
*/
enum ice_status
ice_acquire_global_cfg_lock(struct ice_hw *hw,
enum ice_aq_res_access_type access)
{
enum ice_status status;
status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
ICE_GLOBAL_CFG_LOCK_TIMEOUT);
if (status == ICE_ERR_AQ_NO_WORK)
ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
return status;
}
/**
* ice_release_global_cfg_lock
* @hw: pointer to the HW structure
*
* This function will release the global config lock.
*/
void ice_release_global_cfg_lock(struct ice_hw *hw)
{
ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
}
/**
* ice_acquire_change_lock
* @hw: pointer to the HW structure
* @access: access type (read or write)
*
* This function will request ownership of the change lock.
*/
enum ice_status
ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
{
return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
ICE_CHANGE_LOCK_TIMEOUT);
}
/**
* ice_release_change_lock
* @hw: pointer to the HW structure
*
* This function will release the change lock using the proper Admin Command.
*/
void ice_release_change_lock(struct ice_hw *hw)
{
ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
}
/**
* ice_get_set_tx_topo - get or set tx topology
* @hw: pointer to the HW struct
* @buf: pointer to tx topology buffer
* @buf_size: buffer size
* @cd: pointer to command details structure or NULL
* @flags: pointer to descriptor flags
* @set: 0-get, 1-set topology
*
* The function will get or set tx topology
*/
static enum ice_status
ice_get_set_tx_topo(struct ice_hw *hw, u8 *buf, u16 buf_size,
struct ice_sq_cd *cd, u8 *flags, bool set)
{
struct ice_aqc_get_set_tx_topo *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.get_set_tx_topo;
if (set) {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_tx_topo);
cmd->set_flags = ICE_AQC_TX_TOPO_FLAGS_ISSUED;
/* requested to update a new topology, not a default topolgy */
if (buf)
cmd->set_flags |= ICE_AQC_TX_TOPO_FLAGS_SRC_RAM |
ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW;
} else {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_tx_topo);
cmd->get_flags = ICE_AQC_TX_TOPO_GET_RAM;
}
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (status)
return status;
/* read the return flag values (first byte) for get operation */
if (!set && flags)
*flags = desc.params.get_set_tx_topo.set_flags;
return ICE_SUCCESS;
}
/**
* ice_cfg_tx_topo - Initialize new tx topology if available
* @hw: pointer to the HW struct
* @buf: pointer to Tx topology buffer
* @len: buffer size
*
* The function will apply the new Tx topology from the package buffer
* if available.
*/
enum ice_status ice_cfg_tx_topo(struct ice_hw *hw, u8 *buf, u32 len)
{
u8 *current_topo, *new_topo = NULL;
struct ice_run_time_cfg_seg *seg;
struct ice_buf_hdr *section;
struct ice_pkg_hdr *pkg_hdr;
enum ice_ddp_state state;
u16 i, size = 0, offset;
enum ice_status status;
u32 reg = 0;
u8 flags;
if (!buf || !len)
return ICE_ERR_PARAM;
/* Does FW support new Tx topology mode ? */
if (!hw->func_caps.common_cap.tx_sched_topo_comp_mode_en) {
ice_debug(hw, ICE_DBG_INIT, "FW doesn't support compatibility mode\n");
return ICE_ERR_NOT_SUPPORTED;
}
current_topo = (u8 *)ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
if (!current_topo)
return ICE_ERR_NO_MEMORY;
/* get the current Tx topology */
status = ice_get_set_tx_topo(hw, current_topo, ICE_AQ_MAX_BUF_LEN, NULL,
&flags, false);
ice_free(hw, current_topo);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Get current topology is failed\n");
return status;
}
/* Is default topology already applied ? */
if (!(flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
hw->num_tx_sched_layers == 9) {
ice_debug(hw, ICE_DBG_INIT, "Loaded default topology\n");
/* Already default topology is loaded */
return ICE_ERR_ALREADY_EXISTS;
}
/* Is new topology already applied ? */
if ((flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
hw->num_tx_sched_layers == 5) {
ice_debug(hw, ICE_DBG_INIT, "Loaded new topology\n");
/* Already new topology is loaded */
return ICE_ERR_ALREADY_EXISTS;
}
/* Is set topology issued already ? */
if (flags & ICE_AQC_TX_TOPO_FLAGS_ISSUED) {
ice_debug(hw, ICE_DBG_INIT, "Update tx topology was done by another PF\n");
/* add a small delay before exiting */
for (i = 0; i < 20; i++)
ice_msec_delay(100, true);
return ICE_ERR_ALREADY_EXISTS;
}
/* Change the topology from new to default (5 to 9) */
if (!(flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
hw->num_tx_sched_layers == 5) {
ice_debug(hw, ICE_DBG_INIT, "Change topology from 5 to 9 layers\n");
goto update_topo;
}
pkg_hdr = (struct ice_pkg_hdr *)buf;
state = ice_verify_pkg(pkg_hdr, len);
if (state) {
ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
state);
return ICE_ERR_CFG;
}
/* find run time configuration segment */
seg = (struct ice_run_time_cfg_seg *)
ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE_RUN_TIME_CFG, pkg_hdr);
if (!seg) {
ice_debug(hw, ICE_DBG_INIT, "5 layer topology segment is missing\n");
return ICE_ERR_CFG;
}
if (LE32_TO_CPU(seg->buf_table.buf_count) < ICE_MIN_S_COUNT) {
ice_debug(hw, ICE_DBG_INIT, "5 layer topology segment count(%d) is wrong\n",
seg->buf_table.buf_count);
return ICE_ERR_CFG;
}
section = ice_pkg_val_buf(seg->buf_table.buf_array);
if (!section || LE32_TO_CPU(section->section_entry[0].type) !=
ICE_SID_TX_5_LAYER_TOPO) {
ice_debug(hw, ICE_DBG_INIT, "5 layer topology section type is wrong\n");
return ICE_ERR_CFG;
}
size = LE16_TO_CPU(section->section_entry[0].size);
offset = LE16_TO_CPU(section->section_entry[0].offset);
if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) {
ice_debug(hw, ICE_DBG_INIT, "5 layer topology section size is wrong\n");
return ICE_ERR_CFG;
}
/* make sure the section fits in the buffer */
if (offset + size > ICE_PKG_BUF_SIZE) {
ice_debug(hw, ICE_DBG_INIT, "5 layer topology buffer > 4K\n");
return ICE_ERR_CFG;
}
/* Get the new topology buffer */
new_topo = ((u8 *)section) + offset;
update_topo:
/* acquire global lock to make sure that set topology issued
* by one PF
*/
status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, ICE_RES_WRITE,
ICE_GLOBAL_CFG_LOCK_TIMEOUT);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to acquire global lock\n");
return status;
}
/* check reset was triggered already or not */
reg = rd32(hw, GLGEN_RSTAT);
if (reg & GLGEN_RSTAT_DEVSTATE_M) {
/* Reset is in progress, re-init the hw again */
ice_debug(hw, ICE_DBG_INIT, "Reset is in progress. layer topology might be applied already\n");
ice_check_reset(hw);
return ICE_SUCCESS;
}
/* set new topology */
status = ice_get_set_tx_topo(hw, new_topo, size, NULL, NULL, true);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Set tx topology is failed\n");
return status;
}
/* new topology is updated, delay 1 second before issuing the CORRER */
for (i = 0; i < 10; i++)
ice_msec_delay(100, true);
ice_reset(hw, ICE_RESET_CORER);
/* CORER will clear the global lock, so no explicit call
* required for release
*/
return ICE_SUCCESS;
}