freebsd-src/sys/dev/hwpmc/hwpmc_uncore.c
Warner Losh fdafd315ad sys: Automated cleanup of cdefs and other formatting
Apply the following automated changes to try to eliminate
no-longer-needed sys/cdefs.h includes as well as now-empty
blank lines in a row.

Remove /^#if.*\n#endif.*\n#include\s+<sys/cdefs.h>.*\n/
Remove /\n+#include\s+<sys/cdefs.h>.*\n+#if.*\n#endif.*\n+/
Remove /\n+#if.*\n#endif.*\n+/
Remove /^#if.*\n#endif.*\n/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/types.h>/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/param.h>/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/capsicum.h>/

Sponsored by:		Netflix
2023-11-26 22:24:00 -07:00

767 lines
18 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2010 Fabien Thomas
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Intel Uncore PMCs.
*/
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/pmc.h>
#include <sys/pmckern.h>
#include <sys/systm.h>
#include <machine/intr_machdep.h>
#include <x86/apicvar.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/specialreg.h>
#define UCF_PMC_CAPS \
(PMC_CAP_READ | PMC_CAP_WRITE)
#define UCP_PMC_CAPS \
(PMC_CAP_EDGE | PMC_CAP_THRESHOLD | PMC_CAP_READ | PMC_CAP_WRITE | \
PMC_CAP_INVERT | PMC_CAP_QUALIFIER | PMC_CAP_PRECISE)
#define SELECTSEL(x) \
(((x) == PMC_CPU_INTEL_SANDYBRIDGE || (x) == PMC_CPU_INTEL_HASWELL) ? \
UCP_CB0_EVSEL0 : UCP_EVSEL0)
#define SELECTOFF(x) \
(((x) == PMC_CPU_INTEL_SANDYBRIDGE || (x) == PMC_CPU_INTEL_HASWELL) ? \
UCF_OFFSET_SB : UCF_OFFSET)
static enum pmc_cputype uncore_cputype;
struct uncore_cpu {
volatile uint32_t pc_ucfctrl; /* Fixed function control. */
volatile uint64_t pc_globalctrl; /* Global control register. */
struct pmc_hw pc_uncorepmcs[];
};
static struct uncore_cpu **uncore_pcpu;
static uint64_t uncore_pmcmask;
static int uncore_ucf_ri; /* relative index of fixed counters */
static int uncore_ucf_width;
static int uncore_ucf_npmc;
static int uncore_ucp_width;
static int uncore_ucp_npmc;
static int
uncore_pcpu_noop(struct pmc_mdep *md, int cpu)
{
(void) md;
(void) cpu;
return (0);
}
static int
uncore_pcpu_init(struct pmc_mdep *md, int cpu)
{
struct pmc_cpu *pc;
struct uncore_cpu *cc;
struct pmc_hw *phw;
int uncore_ri, n, npmc;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[ucf,%d] insane cpu number %d", __LINE__, cpu));
PMCDBG1(MDP,INI,1,"uncore-init cpu=%d", cpu);
uncore_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_ri;
npmc = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_num;
npmc += md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCF].pcd_num;
cc = malloc(sizeof(struct uncore_cpu) + npmc * sizeof(struct pmc_hw),
M_PMC, M_WAITOK | M_ZERO);
uncore_pcpu[cpu] = cc;
pc = pmc_pcpu[cpu];
KASSERT(pc != NULL && cc != NULL,
("[uncore,%d] NULL per-cpu structures cpu=%d", __LINE__, cpu));
for (n = 0, phw = cc->pc_uncorepmcs; n < npmc; n++, phw++) {
phw->phw_state = PMC_PHW_FLAG_IS_ENABLED |
PMC_PHW_CPU_TO_STATE(cpu) |
PMC_PHW_INDEX_TO_STATE(n + uncore_ri);
phw->phw_pmc = NULL;
pc->pc_hwpmcs[n + uncore_ri] = phw;
}
return (0);
}
static int
uncore_pcpu_fini(struct pmc_mdep *md, int cpu)
{
int uncore_ri, n, npmc;
struct pmc_cpu *pc;
struct uncore_cpu *cc;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] insane cpu number (%d)", __LINE__, cpu));
PMCDBG1(MDP,INI,1,"uncore-pcpu-fini cpu=%d", cpu);
if ((cc = uncore_pcpu[cpu]) == NULL)
return (0);
uncore_pcpu[cpu] = NULL;
pc = pmc_pcpu[cpu];
KASSERT(pc != NULL, ("[uncore,%d] NULL per-cpu %d state", __LINE__,
cpu));
npmc = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_num;
uncore_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_ri;
for (n = 0; n < npmc; n++)
wrmsr(SELECTSEL(uncore_cputype) + n, 0);
wrmsr(UCF_CTRL, 0);
npmc += md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCF].pcd_num;
for (n = 0; n < npmc; n++)
pc->pc_hwpmcs[n + uncore_ri] = NULL;
free(cc, M_PMC);
return (0);
}
/*
* Fixed function counters.
*/
static pmc_value_t
ucf_perfctr_value_to_reload_count(pmc_value_t v)
{
/* If the PMC has overflowed, return a reload count of zero. */
if ((v & (1ULL << (uncore_ucf_width - 1))) == 0)
return (0);
v &= (1ULL << uncore_ucf_width) - 1;
return (1ULL << uncore_ucf_width) - v;
}
static pmc_value_t
ucf_reload_count_to_perfctr_value(pmc_value_t rlc)
{
return (1ULL << uncore_ucf_width) - rlc;
}
static int
ucf_allocate_pmc(int cpu, int ri, struct pmc *pm,
const struct pmc_op_pmcallocate *a)
{
uint32_t flags;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal CPU %d", __LINE__, cpu));
PMCDBG2(MDP,ALL,1, "ucf-allocate ri=%d reqcaps=0x%x", ri, pm->pm_caps);
if (ri < 0 || ri > uncore_ucf_npmc)
return (EINVAL);
if (a->pm_class != PMC_CLASS_UCF)
return (EINVAL);
if ((a->pm_flags & PMC_F_EV_PMU) == 0)
return (EINVAL);
flags = UCF_EN;
pm->pm_md.pm_ucf.pm_ucf_ctrl = (flags << (ri * 4));
PMCDBG1(MDP,ALL,2, "ucf-allocate config=0x%jx",
(uintmax_t) pm->pm_md.pm_ucf.pm_ucf_ctrl);
return (0);
}
static int
ucf_config_pmc(int cpu, int ri, struct pmc *pm)
{
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
("[uncore,%d] illegal row-index %d", __LINE__, ri));
PMCDBG3(MDP,CFG,1, "ucf-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
KASSERT(uncore_pcpu[cpu] != NULL, ("[uncore,%d] null per-cpu %d", __LINE__,
cpu));
uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc = pm;
return (0);
}
static int
ucf_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
{
struct pmc_hw *phw;
phw = &uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri];
snprintf(pi->pm_name, sizeof(pi->pm_name), "UCF-%d", ri);
pi->pm_class = PMC_CLASS_UCF;
if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
pi->pm_enabled = TRUE;
*ppmc = phw->phw_pmc;
} else {
pi->pm_enabled = FALSE;
*ppmc = NULL;
}
return (0);
}
static int
ucf_get_config(int cpu, int ri, struct pmc **ppm)
{
*ppm = uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc;
return (0);
}
static int
ucf_read_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t *v)
{
pmc_value_t tmp;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal cpu value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
("[uncore,%d] illegal row-index %d", __LINE__, ri));
tmp = rdmsr(UCF_CTR0 + ri);
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
*v = ucf_perfctr_value_to_reload_count(tmp);
else
*v = tmp;
PMCDBG3(MDP,REA,1, "ucf-read cpu=%d ri=%d -> v=%jx", cpu, ri, *v);
return (0);
}
static int
ucf_release_pmc(int cpu, int ri, struct pmc *pmc)
{
PMCDBG3(MDP,REL,1, "ucf-release cpu=%d ri=%d pm=%p", cpu, ri, pmc);
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
("[uncore,%d] illegal row-index %d", __LINE__, ri));
KASSERT(uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc == NULL,
("[uncore,%d] PHW pmc non-NULL", __LINE__));
return (0);
}
static int
ucf_start_pmc(int cpu, int ri, struct pmc *pm)
{
struct uncore_cpu *ucfc;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
("[uncore,%d] illegal row-index %d", __LINE__, ri));
PMCDBG2(MDP,STA,1,"ucf-start cpu=%d ri=%d", cpu, ri);
ucfc = uncore_pcpu[cpu];
ucfc->pc_ucfctrl |= pm->pm_md.pm_ucf.pm_ucf_ctrl;
wrmsr(UCF_CTRL, ucfc->pc_ucfctrl);
ucfc->pc_globalctrl |= (1ULL << (ri + SELECTOFF(uncore_cputype)));
wrmsr(UC_GLOBAL_CTRL, ucfc->pc_globalctrl);
PMCDBG4(MDP,STA,1,"ucfctrl=%x(%x) globalctrl=%jx(%jx)",
ucfc->pc_ucfctrl, (uint32_t) rdmsr(UCF_CTRL),
ucfc->pc_globalctrl, rdmsr(UC_GLOBAL_CTRL));
return (0);
}
static int
ucf_stop_pmc(int cpu, int ri, struct pmc *pm __unused)
{
uint32_t fc;
struct uncore_cpu *ucfc;
PMCDBG2(MDP,STO,1,"ucf-stop cpu=%d ri=%d", cpu, ri);
ucfc = uncore_pcpu[cpu];
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
("[uncore,%d] illegal row-index %d", __LINE__, ri));
fc = (UCF_MASK << (ri * 4));
ucfc->pc_ucfctrl &= ~fc;
PMCDBG1(MDP,STO,1,"ucf-stop ucfctrl=%x", ucfc->pc_ucfctrl);
wrmsr(UCF_CTRL, ucfc->pc_ucfctrl);
/* Don't need to write UC_GLOBAL_CTRL, one disable is enough. */
PMCDBG4(MDP,STO,1,"ucfctrl=%x(%x) globalctrl=%jx(%jx)",
ucfc->pc_ucfctrl, (uint32_t) rdmsr(UCF_CTRL),
ucfc->pc_globalctrl, rdmsr(UC_GLOBAL_CTRL));
return (0);
}
static int
ucf_write_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t v)
{
struct uncore_cpu *cc;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal cpu value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
("[uncore,%d] illegal row-index %d", __LINE__, ri));
cc = uncore_pcpu[cpu];
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
v = ucf_reload_count_to_perfctr_value(v);
wrmsr(UCF_CTRL, 0); /* Turn off fixed counters */
wrmsr(UCF_CTR0 + ri, v);
wrmsr(UCF_CTRL, cc->pc_ucfctrl);
PMCDBG4(MDP,WRI,1, "ucf-write cpu=%d ri=%d v=%jx ucfctrl=%jx ",
cpu, ri, v, (uintmax_t) rdmsr(UCF_CTRL));
return (0);
}
static void
ucf_initialize(struct pmc_mdep *md, int maxcpu, int npmc, int pmcwidth)
{
struct pmc_classdep *pcd;
KASSERT(md != NULL, ("[ucf,%d] md is NULL", __LINE__));
PMCDBG0(MDP,INI,1, "ucf-initialize");
pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCF];
pcd->pcd_caps = UCF_PMC_CAPS;
pcd->pcd_class = PMC_CLASS_UCF;
pcd->pcd_num = npmc;
pcd->pcd_ri = md->pmd_npmc;
pcd->pcd_width = pmcwidth;
pcd->pcd_allocate_pmc = ucf_allocate_pmc;
pcd->pcd_config_pmc = ucf_config_pmc;
pcd->pcd_describe = ucf_describe;
pcd->pcd_get_config = ucf_get_config;
pcd->pcd_get_msr = NULL;
pcd->pcd_pcpu_fini = uncore_pcpu_noop;
pcd->pcd_pcpu_init = uncore_pcpu_noop;
pcd->pcd_read_pmc = ucf_read_pmc;
pcd->pcd_release_pmc = ucf_release_pmc;
pcd->pcd_start_pmc = ucf_start_pmc;
pcd->pcd_stop_pmc = ucf_stop_pmc;
pcd->pcd_write_pmc = ucf_write_pmc;
md->pmd_npmc += npmc;
}
/*
* Intel programmable PMCs.
*/
/*
* Event descriptor tables.
*
* For each event id, we track:
*
* 1. The CPUs that the event is valid for.
*
* 2. If the event uses a fixed UMASK, the value of the umask field.
* If the event doesn't use a fixed UMASK, a mask of legal bits
* to check against.
*/
struct ucp_event_descr {
enum pmc_event ucp_ev;
unsigned char ucp_evcode;
unsigned char ucp_umask;
unsigned char ucp_flags;
};
#define UCP_F_I7 (1 << 0) /* CPU: Core i7 */
#define UCP_F_WM (1 << 1) /* CPU: Westmere */
#define UCP_F_SB (1 << 2) /* CPU: Sandy Bridge */
#define UCP_F_HW (1 << 3) /* CPU: Haswell */
#define UCP_F_FM (1 << 4) /* Fixed mask */
#define UCP_F_ALLCPUS \
(UCP_F_I7 | UCP_F_WM)
#define UCP_F_CMASK 0xFF000000
static pmc_value_t
ucp_perfctr_value_to_reload_count(pmc_value_t v)
{
v &= (1ULL << uncore_ucp_width) - 1;
return (1ULL << uncore_ucp_width) - v;
}
static pmc_value_t
ucp_reload_count_to_perfctr_value(pmc_value_t rlc)
{
return (1ULL << uncore_ucp_width) - rlc;
}
/*
* Counter specific event information for Sandybridge and Haswell
*/
static int
ucp_event_sb_hw_ok_on_counter(uint8_t ev, int ri)
{
uint32_t mask;
switch (ev) {
/*
* Events valid only on counter 0.
*/
case 0x80:
case 0x83:
mask = (1 << 0);
break;
default:
mask = ~0; /* Any row index is ok. */
}
return (mask & (1 << ri));
}
static int
ucp_allocate_pmc(int cpu, int ri, struct pmc *pm,
const struct pmc_op_pmcallocate *a)
{
uint8_t ev;
const struct pmc_md_ucp_op_pmcallocate *ucp;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
("[uncore,%d] illegal row-index value %d", __LINE__, ri));
if (a->pm_class != PMC_CLASS_UCP)
return (EINVAL);
if ((a->pm_flags & PMC_F_EV_PMU) == 0)
return (EINVAL);
ucp = &a->pm_md.pm_ucp;
ev = UCP_EVSEL(ucp->pm_ucp_config);
switch (uncore_cputype) {
case PMC_CPU_INTEL_HASWELL:
case PMC_CPU_INTEL_SANDYBRIDGE:
if (ucp_event_sb_hw_ok_on_counter(ev, ri) == 0)
return (EINVAL);
break;
default:
break;
}
pm->pm_md.pm_ucp.pm_ucp_evsel = ucp->pm_ucp_config | UCP_EN;
return (0);
}
static int
ucp_config_pmc(int cpu, int ri, struct pmc *pm)
{
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
("[uncore,%d] illegal row-index %d", __LINE__, ri));
PMCDBG3(MDP,CFG,1, "ucp-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
KASSERT(uncore_pcpu[cpu] != NULL, ("[uncore,%d] null per-cpu %d", __LINE__,
cpu));
uncore_pcpu[cpu]->pc_uncorepmcs[ri].phw_pmc = pm;
return (0);
}
static int
ucp_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
{
struct pmc_hw *phw;
phw = &uncore_pcpu[cpu]->pc_uncorepmcs[ri];
snprintf(pi->pm_name, sizeof(pi->pm_name), "UCP-%d", ri);
pi->pm_class = PMC_CLASS_UCP;
if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
pi->pm_enabled = TRUE;
*ppmc = phw->phw_pmc;
} else {
pi->pm_enabled = FALSE;
*ppmc = NULL;
}
return (0);
}
static int
ucp_get_config(int cpu, int ri, struct pmc **ppm)
{
*ppm = uncore_pcpu[cpu]->pc_uncorepmcs[ri].phw_pmc;
return (0);
}
static int
ucp_read_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t *v)
{
pmc_value_t tmp;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal cpu value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
("[uncore,%d] illegal row-index %d", __LINE__, ri));
tmp = rdmsr(UCP_PMC0 + ri);
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
*v = ucp_perfctr_value_to_reload_count(tmp);
else
*v = tmp;
PMCDBG4(MDP,REA,1, "ucp-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri,
ri, *v);
return (0);
}
static int
ucp_release_pmc(int cpu, int ri, struct pmc *pm)
{
(void) pm;
PMCDBG3(MDP,REL,1, "ucp-release cpu=%d ri=%d pm=%p", cpu, ri,
pm);
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
("[uncore,%d] illegal row-index %d", __LINE__, ri));
KASSERT(uncore_pcpu[cpu]->pc_uncorepmcs[ri].phw_pmc
== NULL, ("[uncore,%d] PHW pmc non-NULL", __LINE__));
return (0);
}
static int
ucp_start_pmc(int cpu, int ri, struct pmc *pm)
{
uint64_t evsel;
struct uncore_cpu *cc;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
("[uncore,%d] illegal row-index %d", __LINE__, ri));
cc = uncore_pcpu[cpu];
PMCDBG2(MDP,STA,1, "ucp-start cpu=%d ri=%d", cpu, ri);
evsel = pm->pm_md.pm_ucp.pm_ucp_evsel;
PMCDBG4(MDP,STA,2,
"ucp-start/2 cpu=%d ri=%d evselmsr=0x%x evsel=0x%x",
cpu, ri, SELECTSEL(uncore_cputype) + ri, evsel);
wrmsr(SELECTSEL(uncore_cputype) + ri, evsel);
cc->pc_globalctrl |= (1ULL << ri);
wrmsr(UC_GLOBAL_CTRL, cc->pc_globalctrl);
return (0);
}
static int
ucp_stop_pmc(int cpu, int ri, struct pmc *pm __unused)
{
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal cpu value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
("[uncore,%d] illegal row index %d", __LINE__, ri));
PMCDBG2(MDP,STO,1, "ucp-stop cpu=%d ri=%d", cpu, ri);
/* stop hw. */
wrmsr(SELECTSEL(uncore_cputype) + ri, 0);
/* Don't need to write UC_GLOBAL_CTRL, one disable is enough. */
return (0);
}
static int
ucp_write_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t v)
{
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[uncore,%d] illegal cpu value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
("[uncore,%d] illegal row index %d", __LINE__, ri));
PMCDBG4(MDP,WRI,1, "ucp-write cpu=%d ri=%d msr=0x%x v=%jx", cpu, ri,
UCP_PMC0 + ri, v);
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
v = ucp_reload_count_to_perfctr_value(v);
/*
* Write the new value to the counter. The counter will be in
* a stopped state when the pcd_write() entry point is called.
*/
wrmsr(UCP_PMC0 + ri, v);
return (0);
}
static void
ucp_initialize(struct pmc_mdep *md, int maxcpu, int npmc, int pmcwidth)
{
struct pmc_classdep *pcd;
KASSERT(md != NULL, ("[ucp,%d] md is NULL", __LINE__));
PMCDBG0(MDP,INI,1, "ucp-initialize");
pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP];
pcd->pcd_caps = UCP_PMC_CAPS;
pcd->pcd_class = PMC_CLASS_UCP;
pcd->pcd_num = npmc;
pcd->pcd_ri = md->pmd_npmc;
pcd->pcd_width = pmcwidth;
pcd->pcd_allocate_pmc = ucp_allocate_pmc;
pcd->pcd_config_pmc = ucp_config_pmc;
pcd->pcd_describe = ucp_describe;
pcd->pcd_get_config = ucp_get_config;
pcd->pcd_get_msr = NULL;
pcd->pcd_pcpu_fini = uncore_pcpu_fini;
pcd->pcd_pcpu_init = uncore_pcpu_init;
pcd->pcd_read_pmc = ucp_read_pmc;
pcd->pcd_release_pmc = ucp_release_pmc;
pcd->pcd_start_pmc = ucp_start_pmc;
pcd->pcd_stop_pmc = ucp_stop_pmc;
pcd->pcd_write_pmc = ucp_write_pmc;
md->pmd_npmc += npmc;
}
int
pmc_uncore_initialize(struct pmc_mdep *md, int maxcpu)
{
uncore_cputype = md->pmd_cputype;
uncore_pmcmask = 0;
/*
* Initialize programmable counters.
*/
uncore_ucp_npmc = 8;
uncore_ucp_width = 48;
uncore_pmcmask |= ((1ULL << uncore_ucp_npmc) - 1);
ucp_initialize(md, maxcpu, uncore_ucp_npmc, uncore_ucp_width);
/*
* Initialize fixed function counters, if present.
*/
uncore_ucf_ri = uncore_ucp_npmc;
uncore_ucf_npmc = 1;
uncore_ucf_width = 48;
ucf_initialize(md, maxcpu, uncore_ucf_npmc, uncore_ucf_width);
uncore_pmcmask |= ((1ULL << uncore_ucf_npmc) - 1) << SELECTOFF(uncore_cputype);
PMCDBG2(MDP,INI,1,"uncore-init pmcmask=0x%jx ucfri=%d", uncore_pmcmask,
uncore_ucf_ri);
uncore_pcpu = malloc(sizeof(*uncore_pcpu) * maxcpu, M_PMC,
M_ZERO | M_WAITOK);
return (0);
}
void
pmc_uncore_finalize(struct pmc_mdep *md)
{
PMCDBG0(MDP,INI,1, "uncore-finalize");
for (int i = 0; i < pmc_cpu_max(); i++)
KASSERT(uncore_pcpu[i] == NULL,
("[uncore,%d] non-null pcpu cpu %d", __LINE__, i));
free(uncore_pcpu, M_PMC);
uncore_pcpu = NULL;
}