freebsd-src/sys/dev/hwpmc/hwpmc_amd.c
Mitchell Horne b5437d6c65 hwpmc_amd: remove an unused variable
This should fix the LINT builds.

Reported by:	Jenkins
Sponsored by:	The FreeBSD Foundation
Fixes:	2c6f474ee8 ("hwpmc_amd: kill of k7 support bits")
2023-10-19 11:00:31 -03:00

907 lines
25 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2003-2008 Joseph Koshy
* Copyright (c) 2007 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by A. Joseph Koshy under
* sponsorship from the FreeBSD Foundation and Google, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Support for the AMD K8 and later processors */
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/pmc.h>
#include <sys/pmckern.h>
#include <sys/smp.h>
#include <sys/systm.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#define OVERFLOW_WAIT_COUNT 50
DPCPU_DEFINE_STATIC(uint32_t, nmi_counter);
/* AMD K8 PMCs */
struct amd_descr {
struct pmc_descr pm_descr; /* "base class" */
uint32_t pm_evsel; /* address of EVSEL register */
uint32_t pm_perfctr; /* address of PERFCTR register */
};
/* Counter hardware. */
#define PMCDESC(evsel, perfctr) \
{ \
.pm_descr = { \
.pd_name = "", \
.pd_class = PMC_CLASS_K8, \
.pd_caps = AMD_PMC_CAPS, \
.pd_width = 48 \
}, \
.pm_evsel = (evsel), \
.pm_perfctr = (perfctr) \
}
static struct amd_descr amd_pmcdesc[AMD_NPMCS] =
{
PMCDESC(AMD_PMC_EVSEL_0, AMD_PMC_PERFCTR_0),
PMCDESC(AMD_PMC_EVSEL_1, AMD_PMC_PERFCTR_1),
PMCDESC(AMD_PMC_EVSEL_2, AMD_PMC_PERFCTR_2),
PMCDESC(AMD_PMC_EVSEL_3, AMD_PMC_PERFCTR_3),
PMCDESC(AMD_PMC_EVSEL_4, AMD_PMC_PERFCTR_4),
PMCDESC(AMD_PMC_EVSEL_5, AMD_PMC_PERFCTR_5),
PMCDESC(AMD_PMC_EVSEL_EP_L3_0, AMD_PMC_PERFCTR_EP_L3_0),
PMCDESC(AMD_PMC_EVSEL_EP_L3_1, AMD_PMC_PERFCTR_EP_L3_1),
PMCDESC(AMD_PMC_EVSEL_EP_L3_2, AMD_PMC_PERFCTR_EP_L3_2),
PMCDESC(AMD_PMC_EVSEL_EP_L3_3, AMD_PMC_PERFCTR_EP_L3_3),
PMCDESC(AMD_PMC_EVSEL_EP_L3_4, AMD_PMC_PERFCTR_EP_L3_4),
PMCDESC(AMD_PMC_EVSEL_EP_L3_5, AMD_PMC_PERFCTR_EP_L3_5),
PMCDESC(AMD_PMC_EVSEL_EP_DF_0, AMD_PMC_PERFCTR_EP_DF_0),
PMCDESC(AMD_PMC_EVSEL_EP_DF_1, AMD_PMC_PERFCTR_EP_DF_1),
PMCDESC(AMD_PMC_EVSEL_EP_DF_2, AMD_PMC_PERFCTR_EP_DF_2),
PMCDESC(AMD_PMC_EVSEL_EP_DF_3, AMD_PMC_PERFCTR_EP_DF_3)
};
struct amd_event_code_map {
enum pmc_event pe_ev; /* enum value */
uint16_t pe_code; /* encoded event mask */
uint8_t pe_mask; /* bits allowed in unit mask */
};
const struct amd_event_code_map amd_event_codes[] = {
{ PMC_EV_K8_FP_DISPATCHED_FPU_OPS, 0x00, 0x3F },
{ PMC_EV_K8_FP_CYCLES_WITH_NO_FPU_OPS_RETIRED, 0x01, 0x00 },
{ PMC_EV_K8_FP_DISPATCHED_FPU_FAST_FLAG_OPS, 0x02, 0x00 },
{ PMC_EV_K8_LS_SEGMENT_REGISTER_LOAD, 0x20, 0x7F },
{ PMC_EV_K8_LS_MICROARCHITECTURAL_RESYNC_BY_SELF_MODIFYING_CODE,
0x21, 0x00 },
{ PMC_EV_K8_LS_MICROARCHITECTURAL_RESYNC_BY_SNOOP, 0x22, 0x00 },
{ PMC_EV_K8_LS_BUFFER2_FULL, 0x23, 0x00 },
{ PMC_EV_K8_LS_LOCKED_OPERATION, 0x24, 0x07 },
{ PMC_EV_K8_LS_MICROARCHITECTURAL_LATE_CANCEL, 0x25, 0x00 },
{ PMC_EV_K8_LS_RETIRED_CFLUSH_INSTRUCTIONS, 0x26, 0x00 },
{ PMC_EV_K8_LS_RETIRED_CPUID_INSTRUCTIONS, 0x27, 0x00 },
{ PMC_EV_K8_DC_ACCESS, 0x40, 0x00 },
{ PMC_EV_K8_DC_MISS, 0x41, 0x00 },
{ PMC_EV_K8_DC_REFILL_FROM_L2, 0x42, 0x1F },
{ PMC_EV_K8_DC_REFILL_FROM_SYSTEM, 0x43, 0x1F },
{ PMC_EV_K8_DC_COPYBACK, 0x44, 0x1F },
{ PMC_EV_K8_DC_L1_DTLB_MISS_AND_L2_DTLB_HIT, 0x45, 0x00 },
{ PMC_EV_K8_DC_L1_DTLB_MISS_AND_L2_DTLB_MISS, 0x46, 0x00 },
{ PMC_EV_K8_DC_MISALIGNED_DATA_REFERENCE, 0x47, 0x00 },
{ PMC_EV_K8_DC_MICROARCHITECTURAL_LATE_CANCEL, 0x48, 0x00 },
{ PMC_EV_K8_DC_MICROARCHITECTURAL_EARLY_CANCEL, 0x49, 0x00 },
{ PMC_EV_K8_DC_ONE_BIT_ECC_ERROR, 0x4A, 0x03 },
{ PMC_EV_K8_DC_DISPATCHED_PREFETCH_INSTRUCTIONS, 0x4B, 0x07 },
{ PMC_EV_K8_DC_DCACHE_ACCESSES_BY_LOCKS, 0x4C, 0x03 },
{ PMC_EV_K8_BU_CPU_CLK_UNHALTED, 0x76, 0x00 },
{ PMC_EV_K8_BU_INTERNAL_L2_REQUEST, 0x7D, 0x1F },
{ PMC_EV_K8_BU_FILL_REQUEST_L2_MISS, 0x7E, 0x07 },
{ PMC_EV_K8_BU_FILL_INTO_L2, 0x7F, 0x03 },
{ PMC_EV_K8_IC_FETCH, 0x80, 0x00 },
{ PMC_EV_K8_IC_MISS, 0x81, 0x00 },
{ PMC_EV_K8_IC_REFILL_FROM_L2, 0x82, 0x00 },
{ PMC_EV_K8_IC_REFILL_FROM_SYSTEM, 0x83, 0x00 },
{ PMC_EV_K8_IC_L1_ITLB_MISS_AND_L2_ITLB_HIT, 0x84, 0x00 },
{ PMC_EV_K8_IC_L1_ITLB_MISS_AND_L2_ITLB_MISS, 0x85, 0x00 },
{ PMC_EV_K8_IC_MICROARCHITECTURAL_RESYNC_BY_SNOOP, 0x86, 0x00 },
{ PMC_EV_K8_IC_INSTRUCTION_FETCH_STALL, 0x87, 0x00 },
{ PMC_EV_K8_IC_RETURN_STACK_HIT, 0x88, 0x00 },
{ PMC_EV_K8_IC_RETURN_STACK_OVERFLOW, 0x89, 0x00 },
{ PMC_EV_K8_FR_RETIRED_X86_INSTRUCTIONS, 0xC0, 0x00 },
{ PMC_EV_K8_FR_RETIRED_UOPS, 0xC1, 0x00 },
{ PMC_EV_K8_FR_RETIRED_BRANCHES, 0xC2, 0x00 },
{ PMC_EV_K8_FR_RETIRED_BRANCHES_MISPREDICTED, 0xC3, 0x00 },
{ PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES, 0xC4, 0x00 },
{ PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES_MISPREDICTED, 0xC5, 0x00 },
{ PMC_EV_K8_FR_RETIRED_FAR_CONTROL_TRANSFERS, 0xC6, 0x00 },
{ PMC_EV_K8_FR_RETIRED_RESYNCS, 0xC7, 0x00 },
{ PMC_EV_K8_FR_RETIRED_NEAR_RETURNS, 0xC8, 0x00 },
{ PMC_EV_K8_FR_RETIRED_NEAR_RETURNS_MISPREDICTED, 0xC9, 0x00 },
{ PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES_MISPREDICTED_BY_ADDR_MISCOMPARE,
0xCA, 0x00 },
{ PMC_EV_K8_FR_RETIRED_FPU_INSTRUCTIONS, 0xCB, 0x0F },
{ PMC_EV_K8_FR_RETIRED_FASTPATH_DOUBLE_OP_INSTRUCTIONS,
0xCC, 0x07 },
{ PMC_EV_K8_FR_INTERRUPTS_MASKED_CYCLES, 0xCD, 0x00 },
{ PMC_EV_K8_FR_INTERRUPTS_MASKED_WHILE_PENDING_CYCLES, 0xCE, 0x00 },
{ PMC_EV_K8_FR_TAKEN_HARDWARE_INTERRUPTS, 0xCF, 0x00 },
{ PMC_EV_K8_FR_DECODER_EMPTY, 0xD0, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALLS, 0xD1, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_FROM_BRANCH_ABORT_TO_RETIRE,
0xD2, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_FOR_SERIALIZATION, 0xD3, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_FOR_SEGMENT_LOAD, 0xD4, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_REORDER_BUFFER_IS_FULL,
0xD5, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_RESERVATION_STATIONS_ARE_FULL,
0xD6, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_FPU_IS_FULL, 0xD7, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_LS_IS_FULL, 0xD8, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_WAITING_FOR_ALL_TO_BE_QUIET,
0xD9, 0x00 },
{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_FAR_XFER_OR_RESYNC_BRANCH_PENDING,
0xDA, 0x00 },
{ PMC_EV_K8_FR_FPU_EXCEPTIONS, 0xDB, 0x0F },
{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR0, 0xDC, 0x00 },
{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR1, 0xDD, 0x00 },
{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR2, 0xDE, 0x00 },
{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR3, 0xDF, 0x00 },
{ PMC_EV_K8_NB_MEMORY_CONTROLLER_PAGE_ACCESS_EVENT, 0xE0, 0x7 },
{ PMC_EV_K8_NB_MEMORY_CONTROLLER_PAGE_TABLE_OVERFLOW, 0xE1, 0x00 },
{ PMC_EV_K8_NB_MEMORY_CONTROLLER_DRAM_COMMAND_SLOTS_MISSED,
0xE2, 0x00 },
{ PMC_EV_K8_NB_MEMORY_CONTROLLER_TURNAROUND, 0xE3, 0x07 },
{ PMC_EV_K8_NB_MEMORY_CONTROLLER_BYPASS_SATURATION, 0xE4, 0x0F },
{ PMC_EV_K8_NB_SIZED_COMMANDS, 0xEB, 0x7F },
{ PMC_EV_K8_NB_PROBE_RESULT, 0xEC, 0x0F },
{ PMC_EV_K8_NB_HT_BUS0_BANDWIDTH, 0xF6, 0x0F },
{ PMC_EV_K8_NB_HT_BUS1_BANDWIDTH, 0xF7, 0x0F },
{ PMC_EV_K8_NB_HT_BUS2_BANDWIDTH, 0xF8, 0x0F }
};
const int amd_event_codes_size = nitems(amd_event_codes);
/*
* Per-processor information
*/
struct amd_cpu {
struct pmc_hw pc_amdpmcs[AMD_NPMCS];
};
static struct amd_cpu **amd_pcpu;
/*
* Read a PMC value from the MSR.
*/
static int
amd_read_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t *v)
{
const struct amd_descr *pd;
pmc_value_t tmp;
enum pmc_mode mode;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
KASSERT(amd_pcpu[cpu],
("[amd,%d] null per-cpu, cpu %d", __LINE__, cpu));
pd = &amd_pmcdesc[ri];
mode = PMC_TO_MODE(pm);
PMCDBG2(MDP, REA, 1, "amd-read id=%d class=%d", ri,
pd->pm_descr.pd_class);
tmp = rdmsr(pd->pm_perfctr); /* RDMSR serializes */
PMCDBG2(MDP, REA, 2, "amd-read (pre-munge) id=%d -> %jd", ri, tmp);
if (PMC_IS_SAMPLING_MODE(mode)) {
/*
* Clamp value to 0 if the counter just overflowed,
* otherwise the returned reload count would wrap to a
* huge value.
*/
if ((tmp & (1ULL << 47)) == 0)
tmp = 0;
else {
/* Sign extend 48 bit value to 64 bits. */
tmp = (pmc_value_t) ((int64_t)(tmp << 16) >> 16);
tmp = AMD_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
}
}
*v = tmp;
PMCDBG2(MDP, REA, 2, "amd-read (post-munge) id=%d -> %jd", ri, *v);
return (0);
}
/*
* Write a PMC MSR.
*/
static int
amd_write_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t v)
{
const struct amd_descr *pd;
enum pmc_mode mode;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
pd = &amd_pmcdesc[ri];
mode = PMC_TO_MODE(pm);
/* use 2's complement of the count for sampling mode PMCs */
if (PMC_IS_SAMPLING_MODE(mode))
v = AMD_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
PMCDBG3(MDP, WRI, 1, "amd-write cpu=%d ri=%d v=%jx", cpu, ri, v);
/* write the PMC value */
wrmsr(pd->pm_perfctr, v);
return (0);
}
/*
* Configure hardware PMC according to the configuration recorded in 'pm'.
*/
static int
amd_config_pmc(int cpu, int ri, struct pmc *pm)
{
struct pmc_hw *phw;
PMCDBG3(MDP, CFG, 1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
KASSERT(pm == NULL || phw->phw_pmc == NULL,
("[amd,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
__LINE__, pm, phw->phw_pmc));
phw->phw_pmc = pm;
return (0);
}
/*
* Retrieve a configured PMC pointer from hardware state.
*/
static int
amd_get_config(int cpu, int ri, struct pmc **ppm)
{
*ppm = amd_pcpu[cpu]->pc_amdpmcs[ri].phw_pmc;
return (0);
}
/*
* Machine-dependent actions taken during the context switch in of a
* thread.
*/
static int
amd_switch_in(struct pmc_cpu *pc __pmcdbg_used, struct pmc_process *pp)
{
PMCDBG3(MDP, SWI, 1, "pc=%p pp=%p enable-msr=%d", pc, pp,
(pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0);
/* enable the RDPMC instruction if needed */
if (pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS)
load_cr4(rcr4() | CR4_PCE);
return (0);
}
/*
* Machine-dependent actions taken during the context switch out of a
* thread.
*/
static int
amd_switch_out(struct pmc_cpu *pc __pmcdbg_used,
struct pmc_process *pp __pmcdbg_used)
{
PMCDBG3(MDP, SWO, 1, "pc=%p pp=%p enable-msr=%d", pc, pp, pp ?
(pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS) == 1 : 0);
/* always turn off the RDPMC instruction */
load_cr4(rcr4() & ~CR4_PCE);
return (0);
}
/*
* Check if a given PMC allocation is feasible.
*/
static int
amd_allocate_pmc(int cpu __unused, int ri, struct pmc *pm,
const struct pmc_op_pmcallocate *a)
{
const struct pmc_descr *pd;
uint64_t allowed_unitmask, caps, config, unitmask;
enum pmc_event pe;
int i;
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row index %d", __LINE__, ri));
pd = &amd_pmcdesc[ri].pm_descr;
/* check class match */
if (pd->pd_class != a->pm_class)
return (EINVAL);
if ((a->pm_flags & PMC_F_EV_PMU) == 0)
return (EINVAL);
caps = pm->pm_caps;
PMCDBG2(MDP, ALL, 1,"amd-allocate ri=%d caps=0x%x", ri, caps);
/* Validate sub-class. */
if ((ri >= 0 && ri < 6) && a->pm_md.pm_amd.pm_amd_sub_class !=
PMC_AMD_SUB_CLASS_CORE)
return (EINVAL);
if ((ri >= 6 && ri < 12) && a->pm_md.pm_amd.pm_amd_sub_class !=
PMC_AMD_SUB_CLASS_L3_CACHE)
return (EINVAL);
if ((ri >= 12 && ri < 16) && a->pm_md.pm_amd.pm_amd_sub_class !=
PMC_AMD_SUB_CLASS_DATA_FABRIC)
return (EINVAL);
if (strlen(pmc_cpuid) != 0) {
pm->pm_md.pm_amd.pm_amd_evsel = a->pm_md.pm_amd.pm_amd_config;
PMCDBG2(MDP, ALL, 2,"amd-allocate ri=%d -> config=0x%x", ri,
a->pm_md.pm_amd.pm_amd_config);
return (0);
}
pe = a->pm_ev;
/* map ev to the correct event mask code */
config = allowed_unitmask = 0;
for (i = 0; i < amd_event_codes_size; i++) {
if (amd_event_codes[i].pe_ev == pe) {
config =
AMD_PMC_TO_EVENTMASK(amd_event_codes[i].pe_code);
allowed_unitmask =
AMD_PMC_TO_UNITMASK(amd_event_codes[i].pe_mask);
break;
}
}
if (i == amd_event_codes_size)
return (EINVAL);
unitmask = a->pm_md.pm_amd.pm_amd_config & AMD_PMC_UNITMASK;
if ((unitmask & ~allowed_unitmask) != 0) /* disallow reserved bits */
return (EINVAL);
if (unitmask && (caps & PMC_CAP_QUALIFIER) != 0)
config |= unitmask;
if ((caps & PMC_CAP_THRESHOLD) != 0)
config |= a->pm_md.pm_amd.pm_amd_config & AMD_PMC_COUNTERMASK;
/* Set at least one of the 'usr' or 'os' caps. */
if ((caps & PMC_CAP_USER) != 0)
config |= AMD_PMC_USR;
if ((caps & PMC_CAP_SYSTEM) != 0)
config |= AMD_PMC_OS;
if ((caps & (PMC_CAP_USER | PMC_CAP_SYSTEM)) == 0)
config |= (AMD_PMC_USR|AMD_PMC_OS);
if ((caps & PMC_CAP_EDGE) != 0)
config |= AMD_PMC_EDGE;
if ((caps & PMC_CAP_INVERT) != 0)
config |= AMD_PMC_INVERT;
if ((caps & PMC_CAP_INTERRUPT) != 0)
config |= AMD_PMC_INT;
pm->pm_md.pm_amd.pm_amd_evsel = config; /* save config value */
PMCDBG2(MDP, ALL, 2, "amd-allocate ri=%d -> config=0x%x", ri, config);
return (0);
}
/*
* Release machine dependent state associated with a PMC. This is a
* no-op on this architecture.
*/
static int
amd_release_pmc(int cpu, int ri, struct pmc *pmc __unused)
{
struct pmc_hw *phw __diagused;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
KASSERT(phw->phw_pmc == NULL,
("[amd,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
return (0);
}
/*
* Start a PMC.
*/
static int
amd_start_pmc(int cpu __diagused, int ri, struct pmc *pm)
{
const struct amd_descr *pd;
uint64_t config;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
pd = &amd_pmcdesc[ri];
PMCDBG2(MDP, STA, 1, "amd-start cpu=%d ri=%d", cpu, ri);
KASSERT(AMD_PMC_IS_STOPPED(pd->pm_evsel),
("[amd,%d] pmc%d,cpu%d: Starting active PMC \"%s\"", __LINE__,
ri, cpu, pd->pm_descr.pd_name));
/* turn on the PMC ENABLE bit */
config = pm->pm_md.pm_amd.pm_amd_evsel | AMD_PMC_ENABLE;
PMCDBG1(MDP, STA, 2, "amd-start config=0x%x", config);
wrmsr(pd->pm_evsel, config);
return (0);
}
/*
* Stop a PMC.
*/
static int
amd_stop_pmc(int cpu __diagused, int ri, struct pmc *pm)
{
const struct amd_descr *pd;
uint64_t config;
int i;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] illegal row-index %d", __LINE__, ri));
pd = &amd_pmcdesc[ri];
KASSERT(!AMD_PMC_IS_STOPPED(pd->pm_evsel),
("[amd,%d] PMC%d, CPU%d \"%s\" already stopped",
__LINE__, ri, cpu, pd->pm_descr.pd_name));
PMCDBG1(MDP, STO, 1, "amd-stop ri=%d", ri);
/* turn off the PMC ENABLE bit */
config = pm->pm_md.pm_amd.pm_amd_evsel & ~AMD_PMC_ENABLE;
wrmsr(pd->pm_evsel, config);
/*
* Due to NMI latency on newer AMD processors
* NMI interrupts are ignored, which leads to
* panic or messages based on kernel configuration
*/
/* Wait for the count to be reset */
for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
if (rdmsr(pd->pm_perfctr) & (1 << (pd->pm_descr.pd_width - 1)))
break;
DELAY(1);
}
return (0);
}
/*
* Interrupt handler. This function needs to return '1' if the
* interrupt was this CPU's PMCs or '0' otherwise. It is not allowed
* to sleep or do anything a 'fast' interrupt handler is not allowed
* to do.
*/
static int
amd_intr(struct trapframe *tf)
{
struct amd_cpu *pac;
struct pmc *pm;
pmc_value_t v;
uint64_t config, evsel, perfctr;
uint32_t active = 0, count = 0;
int i, error, retval, cpu;
cpu = curcpu;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] out of range CPU %d", __LINE__, cpu));
PMCDBG3(MDP, INT, 1, "cpu=%d tf=%p um=%d", cpu, tf, TRAPF_USERMODE(tf));
retval = 0;
pac = amd_pcpu[cpu];
/*
* look for all PMCs that have interrupted:
* - look for a running, sampling PMC which has overflowed
* and which has a valid 'struct pmc' association
*
* If found, we call a helper to process the interrupt.
*
* PMCs interrupting at the same time are collapsed into
* a single interrupt. Check all the valid pmcs for
* overflow.
*/
for (i = 0; i < AMD_CORE_NPMCS; i++) {
if ((pm = pac->pc_amdpmcs[i].phw_pmc) == NULL ||
!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
continue;
}
/* Consider pmc with valid handle as active */
active++;
if (!AMD_PMC_HAS_OVERFLOWED(i))
continue;
retval = 1; /* Found an interrupting PMC. */
if (pm->pm_state != PMC_STATE_RUNNING)
continue;
/* Stop the PMC, reload count. */
evsel = amd_pmcdesc[i].pm_evsel;
perfctr = amd_pmcdesc[i].pm_perfctr;
v = pm->pm_sc.pm_reloadcount;
config = rdmsr(evsel);
KASSERT((config & ~AMD_PMC_ENABLE) ==
(pm->pm_md.pm_amd.pm_amd_evsel & ~AMD_PMC_ENABLE),
("[amd,%d] config mismatch reg=0x%jx pm=0x%jx", __LINE__,
(uintmax_t)config, (uintmax_t)pm->pm_md.pm_amd.pm_amd_evsel));
wrmsr(evsel, config & ~AMD_PMC_ENABLE);
wrmsr(perfctr, AMD_RELOAD_COUNT_TO_PERFCTR_VALUE(v));
/* Restart the counter if logging succeeded. */
error = pmc_process_interrupt(PMC_HR, pm, tf);
if (error == 0)
wrmsr(evsel, config);
}
/*
* Due to NMI latency, there can be a scenario in which
* multiple pmcs gets serviced in an earlier NMI and we
* do not find an overflow in the subsequent NMI.
*
* For such cases we keep a per-cpu count of active NMIs
* and compare it with min(active pmcs, 2) to determine
* if this NMI was for a pmc overflow which was serviced
* in an earlier request or should be ignored.
*/
if (retval) {
DPCPU_SET(nmi_counter, min(2, active));
} else {
if ((count = DPCPU_GET(nmi_counter))) {
retval = 1;
DPCPU_SET(nmi_counter, --count);
}
}
if (retval)
counter_u64_add(pmc_stats.pm_intr_processed, 1);
else
counter_u64_add(pmc_stats.pm_intr_ignored, 1);
PMCDBG1(MDP, INT, 2, "retval=%d", retval);
return (retval);
}
/*
* Describe a PMC.
*/
static int
amd_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
{
const struct amd_descr *pd;
struct pmc_hw *phw;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] row-index %d out of range", __LINE__, ri));
phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
pd = &amd_pmcdesc[ri];
strlcpy(pi->pm_name, pd->pm_descr.pd_name, sizeof(pi->pm_name));
pi->pm_class = pd->pm_descr.pd_class;
if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) != 0) {
pi->pm_enabled = true;
*ppmc = phw->phw_pmc;
} else {
pi->pm_enabled = false;
*ppmc = NULL;
}
return (0);
}
/*
* Return the MSR address of the given PMC.
*/
static int
amd_get_msr(int ri, uint32_t *msr)
{
KASSERT(ri >= 0 && ri < AMD_NPMCS,
("[amd,%d] ri %d out of range", __LINE__, ri));
*msr = amd_pmcdesc[ri].pm_perfctr - AMD_PMC_PERFCTR_0;
return (0);
}
/*
* Processor-dependent initialization.
*/
static int
amd_pcpu_init(struct pmc_mdep *md, int cpu)
{
struct amd_cpu *pac;
struct pmc_cpu *pc;
struct pmc_hw *phw;
int first_ri, n;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] insane cpu number %d", __LINE__, cpu));
PMCDBG1(MDP, INI, 1, "amd-init cpu=%d", cpu);
amd_pcpu[cpu] = pac = malloc(sizeof(struct amd_cpu), M_PMC,
M_WAITOK | M_ZERO);
/*
* Set the content of the hardware descriptors to a known
* state and initialize pointers in the MI per-cpu descriptor.
*/
pc = pmc_pcpu[cpu];
first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_K8].pcd_ri;
KASSERT(pc != NULL, ("[amd,%d] NULL per-cpu pointer", __LINE__));
for (n = 0, phw = pac->pc_amdpmcs; n < AMD_NPMCS; n++, phw++) {
phw->phw_state = PMC_PHW_FLAG_IS_ENABLED |
PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n);
phw->phw_pmc = NULL;
pc->pc_hwpmcs[n + first_ri] = phw;
}
return (0);
}
/*
* Processor-dependent cleanup prior to the KLD being unloaded.
*/
static int
amd_pcpu_fini(struct pmc_mdep *md, int cpu)
{
struct amd_cpu *pac;
struct pmc_cpu *pc;
uint32_t evsel;
int first_ri, i;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[amd,%d] insane cpu number (%d)", __LINE__, cpu));
PMCDBG1(MDP, INI, 1, "amd-cleanup cpu=%d", cpu);
/*
* First, turn off all PMCs on this CPU.
*/
for (i = 0; i < 4; i++) { /* XXX this loop is now not needed */
evsel = rdmsr(AMD_PMC_EVSEL_0 + i);
evsel &= ~AMD_PMC_ENABLE;
wrmsr(AMD_PMC_EVSEL_0 + i, evsel);
}
/*
* Next, free up allocated space.
*/
if ((pac = amd_pcpu[cpu]) == NULL)
return (0);
amd_pcpu[cpu] = NULL;
#ifdef HWPMC_DEBUG
for (i = 0; i < AMD_NPMCS; i++) {
KASSERT(pac->pc_amdpmcs[i].phw_pmc == NULL,
("[amd,%d] CPU%d/PMC%d in use", __LINE__, cpu, i));
KASSERT(AMD_PMC_IS_STOPPED(AMD_PMC_EVSEL_0 + i),
("[amd,%d] CPU%d/PMC%d not stopped", __LINE__, cpu, i));
}
#endif
pc = pmc_pcpu[cpu];
KASSERT(pc != NULL, ("[amd,%d] NULL per-cpu state", __LINE__));
first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_K8].pcd_ri;
/*
* Reset pointers in the MI 'per-cpu' state.
*/
for (i = 0; i < AMD_NPMCS; i++)
pc->pc_hwpmcs[i + first_ri] = NULL;
free(pac, M_PMC);
return (0);
}
/*
* Initialize ourselves.
*/
struct pmc_mdep *
pmc_amd_initialize(void)
{
struct pmc_classdep *pcd;
struct pmc_mdep *pmc_mdep;
enum pmc_cputype cputype;
int error, i, ncpus;
int family, model, stepping;
/*
* The presence of hardware performance counters on the AMD
* Athlon, Duron or later processors, is _not_ indicated by
* any of the processor feature flags set by the 'CPUID'
* instruction, so we only check the 'instruction family'
* field returned by CPUID for instruction family >= 6.
*/
family = CPUID_TO_FAMILY(cpu_id);
model = CPUID_TO_MODEL(cpu_id);
stepping = CPUID_TO_STEPPING(cpu_id);
if (family == 0x18)
snprintf(pmc_cpuid, sizeof(pmc_cpuid), "HygonGenuine-%d-%02X-%X",
family, model, stepping);
else
snprintf(pmc_cpuid, sizeof(pmc_cpuid), "AuthenticAMD-%d-%02X-%X",
family, model, stepping);
switch (cpu_id & 0xF00) {
case 0xF00: /* Athlon64/Opteron processor */
cputype = PMC_CPU_AMD_K8;
break;
default:
printf("pmc: Unknown AMD CPU %x %d-%d.\n", cpu_id, family,
model);
return (NULL);
}
/*
* Allocate space for pointers to PMC HW descriptors and for
* the MDEP structure used by MI code.
*/
amd_pcpu = malloc(sizeof(struct amd_cpu *) * pmc_cpu_max(), M_PMC,
M_WAITOK | M_ZERO);
/*
* These processors have two classes of PMCs: the TSC and
* programmable PMCs.
*/
pmc_mdep = pmc_mdep_alloc(2);
ncpus = pmc_cpu_max();
/* Initialize the TSC. */
error = pmc_tsc_initialize(pmc_mdep, ncpus);
if (error != 0)
goto error;
/* Initialize AMD K8 PMC handling. */
pcd = &pmc_mdep->pmd_classdep[PMC_MDEP_CLASS_INDEX_K8];
pcd->pcd_caps = AMD_PMC_CAPS;
pcd->pcd_class = PMC_CLASS_K8;
pcd->pcd_num = AMD_NPMCS;
pcd->pcd_ri = pmc_mdep->pmd_npmc;
pcd->pcd_width = 48;
/* fill in the correct pmc name and class */
for (i = 0; i < AMD_NPMCS; i++) {
snprintf(amd_pmcdesc[i].pm_descr.pd_name, PMC_NAME_MAX, "K8-%d",
i);
}
pcd->pcd_allocate_pmc = amd_allocate_pmc;
pcd->pcd_config_pmc = amd_config_pmc;
pcd->pcd_describe = amd_describe;
pcd->pcd_get_config = amd_get_config;
pcd->pcd_get_msr = amd_get_msr;
pcd->pcd_pcpu_fini = amd_pcpu_fini;
pcd->pcd_pcpu_init = amd_pcpu_init;
pcd->pcd_read_pmc = amd_read_pmc;
pcd->pcd_release_pmc = amd_release_pmc;
pcd->pcd_start_pmc = amd_start_pmc;
pcd->pcd_stop_pmc = amd_stop_pmc;
pcd->pcd_write_pmc = amd_write_pmc;
pmc_mdep->pmd_cputype = cputype;
pmc_mdep->pmd_intr = amd_intr;
pmc_mdep->pmd_switch_in = amd_switch_in;
pmc_mdep->pmd_switch_out = amd_switch_out;
pmc_mdep->pmd_npmc += AMD_NPMCS;
PMCDBG0(MDP, INI, 0, "amd-initialize");
return (pmc_mdep);
error:
free(pmc_mdep, M_PMC);
return (NULL);
}
/*
* Finalization code for AMD CPUs.
*/
void
pmc_amd_finalize(struct pmc_mdep *md)
{
PMCDBG0(MDP, INI, 1, "amd-finalize");
pmc_tsc_finalize(md);
for (int i = 0; i < pmc_cpu_max(); i++)
KASSERT(amd_pcpu[i] == NULL,
("[amd,%d] non-null pcpu cpu %d", __LINE__, i));
free(amd_pcpu, M_PMC);
amd_pcpu = NULL;
}