freebsd-src/sys/dev/cxgbe/adapter.h
Navdeep Parhar 2d0a012712 cxgbev(4): Pay attention to the VLAN configuration for the VF.
Make sure that the transmit traffic is tagged correctly or else the
firmware will refuse to transmit and will report an ACL violation.

On receive the hardware will make sure that tagged traffic is delivered
to the appropriate VM.  The driver only asserts that the VLAN id that
was extracted from the wire traffic matches the VF's configuration.

All this works when associating a specific VLAN id with a VF.  The
'trunk' setting likely needs more work.

MFC after:	1 week
Sponsored by:	Chelsio Communications
2024-06-17 10:35:14 -07:00

1584 lines
44 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#ifndef __T4_ADAPTER_H__
#define __T4_ADAPTER_H__
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/counter.h>
#include <sys/rman.h>
#include <sys/types.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/rwlock.h>
#include <sys/seqc.h>
#include <sys/sx.h>
#include <sys/vmem.h>
#include <vm/uma.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <machine/bus.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/pfil.h>
#include <netinet/in.h>
#include <netinet/tcp_lro.h>
#include "offload.h"
#include "t4_ioctl.h"
#include "common/t4_msg.h"
#include "firmware/t4fw_interface.h"
#define KTR_CXGBE KTR_SPARE3
MALLOC_DECLARE(M_CXGBE);
#define CXGBE_UNIMPLEMENTED(s) \
panic("%s (%s, line %d) not implemented yet.", s, __FILE__, __LINE__)
/*
* Same as LIST_HEAD from queue.h. This is to avoid conflict with LinuxKPI's
* LIST_HEAD when building iw_cxgbe.
*/
#define CXGBE_LIST_HEAD(name, type) \
struct name { \
struct type *lh_first; /* first element */ \
}
#ifndef SYSCTL_ADD_UQUAD
#define SYSCTL_ADD_UQUAD SYSCTL_ADD_QUAD
#define sysctl_handle_64 sysctl_handle_quad
#define CTLTYPE_U64 CTLTYPE_QUAD
#endif
SYSCTL_DECL(_hw_cxgbe);
struct adapter;
typedef struct adapter adapter_t;
enum {
/*
* All ingress queues use this entry size. Note that the firmware event
* queue and any iq expecting CPL_RX_PKT in the descriptor needs this to
* be at least 64.
*/
IQ_ESIZE = 64,
/* Default queue sizes for all kinds of ingress queues */
FW_IQ_QSIZE = 256,
RX_IQ_QSIZE = 1024,
/* All egress queues use this entry size */
EQ_ESIZE = 64,
/* Default queue sizes for all kinds of egress queues */
CTRL_EQ_QSIZE = 1024,
TX_EQ_QSIZE = 1024,
SW_ZONE_SIZES = 4, /* cluster, jumbop, jumbo9k, jumbo16k */
CL_METADATA_SIZE = CACHE_LINE_SIZE,
SGE_MAX_WR_NDESC = SGE_MAX_WR_LEN / EQ_ESIZE, /* max WR size in desc */
TX_SGL_SEGS = 39,
TX_SGL_SEGS_TSO = 38,
TX_SGL_SEGS_VM = 38,
TX_SGL_SEGS_VM_TSO = 37,
TX_SGL_SEGS_EO_TSO = 30, /* XXX: lower for IPv6. */
TX_SGL_SEGS_VXLAN_TSO = 37,
TX_WR_FLITS = SGE_MAX_WR_LEN / 8
};
enum {
/* adapter intr_type */
INTR_INTX = (1 << 0),
INTR_MSI = (1 << 1),
INTR_MSIX = (1 << 2)
};
enum {
XGMAC_MTU = (1 << 0),
XGMAC_PROMISC = (1 << 1),
XGMAC_ALLMULTI = (1 << 2),
XGMAC_VLANEX = (1 << 3),
XGMAC_UCADDR = (1 << 4),
XGMAC_MCADDRS = (1 << 5),
XGMAC_ALL = 0xffff
};
enum {
/* flags understood by begin_synchronized_op */
HOLD_LOCK = (1 << 0),
SLEEP_OK = (1 << 1),
INTR_OK = (1 << 2),
/* flags understood by end_synchronized_op */
LOCK_HELD = HOLD_LOCK,
};
enum {
/* adapter flags. synch_op or adapter_lock. */
FULL_INIT_DONE = (1 << 0),
FW_OK = (1 << 1),
CHK_MBOX_ACCESS = (1 << 2),
MASTER_PF = (1 << 3),
BUF_PACKING_OK = (1 << 6),
IS_VF = (1 << 7),
KERN_TLS_ON = (1 << 8), /* HW is configured for KERN_TLS */
CXGBE_BUSY = (1 << 9),
/* adapter error_flags. reg_lock for HW_OFF_LIMITS, atomics for the rest. */
ADAP_STOPPED = (1 << 0), /* Adapter has been stopped. */
ADAP_FATAL_ERR = (1 << 1), /* Encountered a fatal error. */
HW_OFF_LIMITS = (1 << 2), /* off limits to all except reset_thread */
ADAP_CIM_ERR = (1 << 3), /* Error was related to FW/CIM. */
/* port flags */
HAS_TRACEQ = (1 << 3),
FIXED_IFMEDIA = (1 << 4), /* ifmedia list doesn't change. */
/* VI flags */
VI_DETACHING = (1 << 0),
VI_INIT_DONE = (1 << 1),
/* 1 << 2 is unused, was VI_SYSCTL_CTX */
TX_USES_VM_WR = (1 << 3),
VI_SKIP_STATS = (1 << 4),
/* adapter debug_flags */
DF_DUMP_MBOX = (1 << 0), /* Log all mbox cmd/rpl. */
DF_LOAD_FW_ANYTIME = (1 << 1), /* Allow LOAD_FW after init */
DF_DISABLE_TCB_CACHE = (1 << 2), /* Disable TCB cache (T6+) */
DF_DISABLE_CFG_RETRY = (1 << 3), /* Disable fallback config */
DF_VERBOSE_SLOWINTR = (1 << 4), /* Chatty slow intr handler */
};
#define IS_DETACHING(vi) ((vi)->flags & VI_DETACHING)
#define SET_DETACHING(vi) do {(vi)->flags |= VI_DETACHING;} while (0)
#define CLR_DETACHING(vi) do {(vi)->flags &= ~VI_DETACHING;} while (0)
#define IS_BUSY(sc) ((sc)->flags & CXGBE_BUSY)
#define SET_BUSY(sc) do {(sc)->flags |= CXGBE_BUSY;} while (0)
#define CLR_BUSY(sc) do {(sc)->flags &= ~CXGBE_BUSY;} while (0)
struct vi_info {
device_t dev;
struct port_info *pi;
struct adapter *adapter;
if_t ifp;
struct pfil_head *pfil;
unsigned long flags;
int if_flags;
uint16_t *rss, *nm_rss;
uint16_t viid; /* opaque VI identifier */
uint16_t smt_idx;
uint16_t vin;
uint8_t vfvld;
int16_t xact_addr_filt;/* index of exact MAC address filter */
uint16_t rss_size; /* size of VI's RSS table slice */
uint16_t rss_base; /* start of VI's RSS table slice */
int hashen;
int nintr;
int first_intr;
/* These need to be int as they are used in sysctl */
int ntxq; /* # of tx queues */
int first_txq; /* index of first tx queue */
int rsrv_noflowq; /* Reserve queue 0 for non-flowid packets */
int nrxq; /* # of rx queues */
int first_rxq; /* index of first rx queue */
int nofldtxq; /* # of offload tx queues */
int first_ofld_txq; /* index of first offload tx queue */
int nofldrxq; /* # of offload rx queues */
int first_ofld_rxq; /* index of first offload rx queue */
int nnmtxq;
int first_nm_txq;
int nnmrxq;
int first_nm_rxq;
int tmr_idx;
int ofld_tmr_idx;
int pktc_idx;
int ofld_pktc_idx;
int qsize_rxq;
int qsize_txq;
struct timeval last_refreshed;
struct fw_vi_stats_vf stats;
struct mtx tick_mtx;
struct callout tick;
struct sysctl_ctx_list ctx;
struct sysctl_oid *rxq_oid;
struct sysctl_oid *txq_oid;
struct sysctl_oid *nm_rxq_oid;
struct sysctl_oid *nm_txq_oid;
struct sysctl_oid *ofld_rxq_oid;
struct sysctl_oid *ofld_txq_oid;
uint8_t hw_addr[ETHER_ADDR_LEN]; /* factory MAC address, won't change */
u_int txq_rr;
u_int rxq_rr;
};
struct tx_ch_rl_params {
enum fw_sched_params_rate ratemode; /* %port (REL) or kbps (ABS) */
uint32_t maxrate;
};
/* CLRL state */
enum clrl_state {
CS_UNINITIALIZED = 0,
CS_PARAMS_SET, /* sw parameters have been set. */
CS_HW_UPDATE_REQUESTED, /* async HW update requested. */
CS_HW_UPDATE_IN_PROGRESS, /* sync hw update in progress. */
CS_HW_CONFIGURED /* configured in the hardware. */
};
/* CLRL flags */
enum {
CF_USER = (1 << 0), /* was configured by driver ioctl. */
};
struct tx_cl_rl_params {
enum clrl_state state;
int refcount;
uint8_t flags;
enum fw_sched_params_rate ratemode; /* %port REL or ABS value */
enum fw_sched_params_unit rateunit; /* kbps or pps (when ABS) */
enum fw_sched_params_mode mode; /* aggr or per-flow */
uint32_t maxrate;
uint16_t pktsize;
uint16_t burstsize;
};
/* Tx scheduler parameters for a channel/port */
struct tx_sched_params {
/* Channel Rate Limiter */
struct tx_ch_rl_params ch_rl;
/* Class WRR */
/* XXX */
/* Class Rate Limiter (including the default pktsize and burstsize). */
int pktsize;
int burstsize;
struct tx_cl_rl_params cl_rl[];
};
struct port_info {
device_t dev;
struct adapter *adapter;
struct vi_info *vi;
int nvi;
int up_vis;
int uld_vis;
bool vxlan_tcam_entry;
struct tx_sched_params *sched_params;
struct mtx pi_lock;
char lockname[16];
unsigned long flags;
uint8_t lport; /* associated offload logical port */
int8_t mdio_addr;
uint8_t port_type;
uint8_t mod_type;
uint8_t port_id;
uint8_t tx_chan; /* tx TP c-channel */
uint8_t rx_chan; /* rx TP c-channel */
uint8_t mps_bg_map; /* rx MPS buffer group bitmap */
uint8_t rx_e_chan_map; /* rx TP e-channel bitmap */
struct link_config link_cfg;
struct ifmedia media;
struct port_stats stats;
u_int tnl_cong_drops;
u_int tx_parse_error;
int fcs_reg;
uint64_t fcs_base;
struct sysctl_ctx_list ctx;
};
#define IS_MAIN_VI(vi) ((vi) == &((vi)->pi->vi[0]))
struct cluster_metadata {
uma_zone_t zone;
caddr_t cl;
u_int refcount;
};
struct fl_sdesc {
caddr_t cl;
uint16_t nmbuf; /* # of driver originated mbufs with ref on cluster */
int16_t moff; /* offset of metadata from cl */
uint8_t zidx;
};
struct tx_desc {
__be64 flit[8];
};
struct tx_sdesc {
struct mbuf *m; /* m_nextpkt linked chain of frames */
uint8_t desc_used; /* # of hardware descriptors used by the WR */
};
#define IQ_PAD (IQ_ESIZE - sizeof(struct rsp_ctrl) - sizeof(struct rss_header))
struct iq_desc {
struct rss_header rss;
uint8_t cpl[IQ_PAD];
struct rsp_ctrl rsp;
};
#undef IQ_PAD
CTASSERT(sizeof(struct iq_desc) == IQ_ESIZE);
enum {
/* iq type */
IQ_OTHER = FW_IQ_IQTYPE_OTHER,
IQ_ETH = FW_IQ_IQTYPE_NIC,
IQ_OFLD = FW_IQ_IQTYPE_OFLD,
/* iq flags */
IQ_SW_ALLOCATED = (1 << 0), /* sw resources allocated */
IQ_HAS_FL = (1 << 1), /* iq associated with a freelist */
IQ_RX_TIMESTAMP = (1 << 2), /* provide the SGE rx timestamp */
IQ_LRO_ENABLED = (1 << 3), /* iq is an eth rxq with LRO enabled */
IQ_ADJ_CREDIT = (1 << 4), /* hw is off by 1 credit for this iq */
IQ_HW_ALLOCATED = (1 << 5), /* fw/hw resources allocated */
/* iq state */
IQS_DISABLED = 0,
IQS_BUSY = 1,
IQS_IDLE = 2,
/* netmap related flags */
NM_OFF = 0,
NM_ON = 1,
NM_BUSY = 2,
};
enum {
CPL_COOKIE_RESERVED = 0,
CPL_COOKIE_FILTER,
CPL_COOKIE_DDP0,
CPL_COOKIE_DDP1,
CPL_COOKIE_TOM,
CPL_COOKIE_HASHFILTER,
CPL_COOKIE_ETHOFLD,
CPL_COOKIE_KERN_TLS,
NUM_CPL_COOKIES = 8 /* Limited by M_COOKIE. Do not increase. */
};
struct sge_iq;
struct rss_header;
typedef int (*cpl_handler_t)(struct sge_iq *, const struct rss_header *,
struct mbuf *);
typedef int (*an_handler_t)(struct sge_iq *, const struct rsp_ctrl *);
typedef int (*fw_msg_handler_t)(struct adapter *, const __be64 *);
/*
* Ingress Queue: T4 is producer, driver is consumer.
*/
struct sge_iq {
uint16_t flags;
uint8_t qtype;
volatile int state;
struct adapter *adapter;
struct iq_desc *desc; /* KVA of descriptor ring */
int8_t intr_pktc_idx; /* packet count threshold index */
uint8_t gen; /* generation bit */
uint8_t intr_params; /* interrupt holdoff parameters */
int8_t cong_drop; /* congestion drop settings for the queue */
uint16_t qsize; /* size (# of entries) of the queue */
uint16_t sidx; /* index of the entry with the status page */
uint16_t cidx; /* consumer index */
uint16_t cntxt_id; /* SGE context id for the iq */
uint16_t abs_id; /* absolute SGE id for the iq */
int16_t intr_idx; /* interrupt used by the queue */
STAILQ_ENTRY(sge_iq) link;
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
bus_addr_t ba; /* bus address of descriptor ring */
};
enum {
/* eq type */
EQ_CTRL = 1,
EQ_ETH = 2,
EQ_OFLD = 3,
/* eq flags */
EQ_SW_ALLOCATED = (1 << 0), /* sw resources allocated */
EQ_HW_ALLOCATED = (1 << 1), /* hw/fw resources allocated */
EQ_ENABLED = (1 << 3), /* open for business */
EQ_QFLUSH = (1 << 4), /* if_qflush in progress */
};
/* Listed in order of preference. Update t4_sysctls too if you change these */
enum {DOORBELL_UDB, DOORBELL_WCWR, DOORBELL_UDBWC, DOORBELL_KDB};
/*
* Egress Queue: driver is producer, T4 is consumer.
*
* Note: A free list is an egress queue (driver produces the buffers and T4
* consumes them) but it's special enough to have its own struct (see sge_fl).
*/
struct sge_eq {
unsigned int flags; /* MUST be first */
unsigned int cntxt_id; /* SGE context id for the eq */
unsigned int abs_id; /* absolute SGE id for the eq */
uint8_t type; /* EQ_CTRL/EQ_ETH/EQ_OFLD */
uint8_t doorbells;
uint8_t port_id; /* port_id of the port associated with the eq */
uint8_t tx_chan; /* tx channel used by the eq */
struct mtx eq_lock;
struct tx_desc *desc; /* KVA of descriptor ring */
volatile uint32_t *udb; /* KVA of doorbell (lies within BAR2) */
u_int udb_qid; /* relative qid within the doorbell page */
uint16_t sidx; /* index of the entry with the status page */
uint16_t cidx; /* consumer idx (desc idx) */
uint16_t pidx; /* producer idx (desc idx) */
uint16_t equeqidx; /* EQUEQ last requested at this pidx */
uint16_t dbidx; /* pidx of the most recent doorbell */
uint16_t iqid; /* cached iq->cntxt_id (see iq below) */
volatile u_int equiq; /* EQUIQ outstanding */
struct sge_iq *iq; /* iq that receives egr_update for the eq */
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
bus_addr_t ba; /* bus address of descriptor ring */
char lockname[16];
};
struct rx_buf_info {
uma_zone_t zone; /* zone that this cluster comes from */
uint16_t size1; /* same as size of cluster: 2K/4K/9K/16K.
* hwsize[hwidx1] = size1. No spare. */
uint16_t size2; /* hwsize[hwidx2] = size2.
* spare in cluster = size1 - size2. */
int8_t hwidx1; /* SGE bufsize idx for size1 */
int8_t hwidx2; /* SGE bufsize idx for size2 */
uint8_t type; /* EXT_xxx type of the cluster */
};
enum {
NUM_MEMWIN = 3,
MEMWIN0_APERTURE = 2048,
MEMWIN0_BASE = 0x1b800,
MEMWIN1_APERTURE = 32768,
MEMWIN1_BASE = 0x28000,
MEMWIN2_APERTURE_T4 = 65536,
MEMWIN2_BASE_T4 = 0x30000,
MEMWIN2_APERTURE_T5 = 128 * 1024,
MEMWIN2_BASE_T5 = 0x60000,
};
struct memwin {
struct rwlock mw_lock __aligned(CACHE_LINE_SIZE);
uint32_t mw_base; /* constant after setup_memwin */
uint32_t mw_aperture; /* ditto */
uint32_t mw_curpos; /* protected by mw_lock */
};
enum {
FL_STARVING = (1 << 0), /* on the adapter's list of starving fl's */
FL_DOOMED = (1 << 1), /* about to be destroyed */
FL_BUF_PACKING = (1 << 2), /* buffer packing enabled */
FL_BUF_RESUME = (1 << 3), /* resume from the middle of the frame */
};
#define FL_RUNNING_LOW(fl) \
(IDXDIFF(fl->dbidx * 8, fl->cidx, fl->sidx * 8) <= fl->lowat)
#define FL_NOT_RUNNING_LOW(fl) \
(IDXDIFF(fl->dbidx * 8, fl->cidx, fl->sidx * 8) >= 2 * fl->lowat)
struct sge_fl {
struct mtx fl_lock;
__be64 *desc; /* KVA of descriptor ring, ptr to addresses */
struct fl_sdesc *sdesc; /* KVA of software descriptor ring */
uint16_t zidx; /* refill zone idx */
uint16_t safe_zidx;
uint16_t lowat; /* # of buffers <= this means fl needs help */
int flags;
uint16_t buf_boundary;
/* The 16b idx all deal with hw descriptors */
uint16_t dbidx; /* hw pidx after last doorbell */
uint16_t sidx; /* index of status page */
volatile uint16_t hw_cidx;
/* The 32b idx are all buffer idx, not hardware descriptor idx */
uint32_t cidx; /* consumer index */
uint32_t pidx; /* producer index */
uint32_t dbval;
u_int rx_offset; /* offset in fl buf (when buffer packing) */
volatile uint32_t *udb;
uint64_t cl_allocated; /* # of clusters allocated */
uint64_t cl_recycled; /* # of clusters recycled */
uint64_t cl_fast_recycled; /* # of clusters recycled (fast) */
/* These 3 are valid when FL_BUF_RESUME is set, stale otherwise. */
struct mbuf *m0;
struct mbuf **pnext;
u_int remaining;
uint16_t qsize; /* # of hw descriptors (status page included) */
uint16_t cntxt_id; /* SGE context id for the freelist */
TAILQ_ENTRY(sge_fl) link; /* All starving freelists */
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
char lockname[16];
bus_addr_t ba; /* bus address of descriptor ring */
};
struct mp_ring;
struct txpkts {
uint8_t wr_type; /* type 0 or type 1 */
uint8_t npkt; /* # of packets in this work request */
uint8_t len16; /* # of 16B pieces used by this work request */
uint8_t score;
uint8_t max_npkt; /* maximum number of packets allowed */
uint16_t plen; /* total payload (sum of all packets) */
/* straight from fw_eth_tx_pkts_vm_wr. */
__u8 ethmacdst[6];
__u8 ethmacsrc[6];
__be16 ethtype;
__be16 vlantci;
struct mbuf *mb[15];
};
/* txq: SGE egress queue + what's needed for Ethernet NIC */
struct sge_txq {
struct sge_eq eq; /* MUST be first */
if_t ifp; /* the interface this txq belongs to */
struct mp_ring *r; /* tx software ring */
struct tx_sdesc *sdesc; /* KVA of software descriptor ring */
struct sglist *gl;
__be32 cpl_ctrl0; /* for convenience */
int tc_idx; /* traffic class */
uint64_t last_tx; /* cycle count when eth_tx was last called */
struct txpkts txp;
struct task tx_reclaim_task;
/* stats for common events first */
uint64_t txcsum; /* # of times hardware assisted with checksum */
uint64_t tso_wrs; /* # of TSO work requests */
uint64_t vlan_insertion;/* # of times VLAN tag was inserted */
uint64_t imm_wrs; /* # of work requests with immediate data */
uint64_t sgl_wrs; /* # of work requests with direct SGL */
uint64_t txpkt_wrs; /* # of txpkt work requests (not coalesced) */
uint64_t txpkts0_wrs; /* # of type0 coalesced tx work requests */
uint64_t txpkts1_wrs; /* # of type1 coalesced tx work requests */
uint64_t txpkts0_pkts; /* # of frames in type0 coalesced tx WRs */
uint64_t txpkts1_pkts; /* # of frames in type1 coalesced tx WRs */
uint64_t txpkts_flush; /* # of times txp had to be sent by tx_update */
uint64_t raw_wrs; /* # of raw work requests (alloc_wr_mbuf) */
uint64_t vxlan_tso_wrs; /* # of VXLAN TSO work requests */
uint64_t vxlan_txcsum;
uint64_t kern_tls_records;
uint64_t kern_tls_short;
uint64_t kern_tls_partial;
uint64_t kern_tls_full;
uint64_t kern_tls_octets;
uint64_t kern_tls_waste;
uint64_t kern_tls_options;
uint64_t kern_tls_header;
uint64_t kern_tls_fin;
uint64_t kern_tls_fin_short;
uint64_t kern_tls_cbc;
uint64_t kern_tls_gcm;
/* stats for not-that-common events */
/* Optional scratch space for constructing work requests. */
uint8_t ss[SGE_MAX_WR_LEN] __aligned(16);
} __aligned(CACHE_LINE_SIZE);
/* rxq: SGE ingress queue + SGE free list + miscellaneous items */
struct sge_rxq {
struct sge_iq iq; /* MUST be first */
struct sge_fl fl; /* MUST follow iq */
if_t ifp; /* the interface this rxq belongs to */
struct lro_ctrl lro; /* LRO state */
/* stats for common events first */
uint64_t rxcsum; /* # of times hardware assisted with checksum */
uint64_t vlan_extraction;/* # of times VLAN tag was extracted */
uint64_t vxlan_rxcsum;
/* stats for not-that-common events */
} __aligned(CACHE_LINE_SIZE);
static inline struct sge_rxq *
iq_to_rxq(struct sge_iq *iq)
{
return (__containerof(iq, struct sge_rxq, iq));
}
/* ofld_rxq: SGE ingress queue + SGE free list + miscellaneous items */
struct sge_ofld_rxq {
struct sge_iq iq; /* MUST be first */
struct sge_fl fl; /* MUST follow iq */
counter_u64_t rx_iscsi_ddp_setup_ok;
counter_u64_t rx_iscsi_ddp_setup_error;
uint64_t rx_iscsi_ddp_pdus;
uint64_t rx_iscsi_ddp_octets;
uint64_t rx_iscsi_fl_pdus;
uint64_t rx_iscsi_fl_octets;
uint64_t rx_iscsi_padding_errors;
uint64_t rx_iscsi_header_digest_errors;
uint64_t rx_iscsi_data_digest_errors;
uint64_t rx_aio_ddp_jobs;
uint64_t rx_aio_ddp_octets;
u_long rx_toe_tls_records;
u_long rx_toe_tls_octets;
u_long rx_toe_ddp_octets;
counter_u64_t ddp_buffer_alloc;
counter_u64_t ddp_buffer_reuse;
counter_u64_t ddp_buffer_free;
} __aligned(CACHE_LINE_SIZE);
static inline struct sge_ofld_rxq *
iq_to_ofld_rxq(struct sge_iq *iq)
{
return (__containerof(iq, struct sge_ofld_rxq, iq));
}
struct wrqe {
STAILQ_ENTRY(wrqe) link;
struct sge_wrq *wrq;
int wr_len;
char wr[] __aligned(16);
};
struct wrq_cookie {
TAILQ_ENTRY(wrq_cookie) link;
int ndesc;
int pidx;
};
/*
* wrq: SGE egress queue that is given prebuilt work requests. Control queues
* are of this type.
*/
struct sge_wrq {
struct sge_eq eq; /* MUST be first */
struct adapter *adapter;
struct task wrq_tx_task;
/* Tx desc reserved but WR not "committed" yet. */
TAILQ_HEAD(wrq_incomplete_wrs , wrq_cookie) incomplete_wrs;
/* List of WRs ready to go out as soon as descriptors are available. */
STAILQ_HEAD(, wrqe) wr_list;
u_int nwr_pending;
u_int ndesc_needed;
/* stats for common events first */
uint64_t tx_wrs_direct; /* # of WRs written directly to desc ring. */
uint64_t tx_wrs_ss; /* # of WRs copied from scratch space. */
uint64_t tx_wrs_copied; /* # of WRs queued and copied to desc ring. */
/* stats for not-that-common events */
/*
* Scratch space for work requests that wrap around after reaching the
* status page, and some information about the last WR that used it.
*/
uint16_t ss_pidx;
uint16_t ss_len;
uint8_t ss[SGE_MAX_WR_LEN];
} __aligned(CACHE_LINE_SIZE);
/* ofld_txq: SGE egress queue + miscellaneous items */
struct sge_ofld_txq {
struct sge_wrq wrq;
counter_u64_t tx_iscsi_pdus;
counter_u64_t tx_iscsi_octets;
counter_u64_t tx_iscsi_iso_wrs;
counter_u64_t tx_aio_jobs;
counter_u64_t tx_aio_octets;
counter_u64_t tx_toe_tls_records;
counter_u64_t tx_toe_tls_octets;
} __aligned(CACHE_LINE_SIZE);
#define INVALID_NM_RXQ_CNTXT_ID ((uint16_t)(-1))
struct sge_nm_rxq {
/* Items used by the driver rx ithread are in this cacheline. */
volatile int nm_state __aligned(CACHE_LINE_SIZE); /* NM_OFF, NM_ON, or NM_BUSY */
u_int nid; /* netmap ring # for this queue */
struct vi_info *vi;
struct iq_desc *iq_desc;
uint16_t iq_abs_id;
uint16_t iq_cntxt_id;
uint16_t iq_cidx;
uint16_t iq_sidx;
uint8_t iq_gen;
uint32_t fl_sidx;
/* Items used by netmap rxsync are in this cacheline. */
__be64 *fl_desc __aligned(CACHE_LINE_SIZE);
uint16_t fl_cntxt_id;
uint32_t fl_pidx;
uint32_t fl_sidx2; /* copy of fl_sidx */
uint32_t fl_db_val;
u_int fl_db_saved;
u_int fl_db_threshold; /* in descriptors */
u_int fl_hwidx:4;
/*
* fl_cidx is used by both the ithread and rxsync, the rest are not used
* in the rx fast path.
*/
uint32_t fl_cidx __aligned(CACHE_LINE_SIZE);
bus_dma_tag_t iq_desc_tag;
bus_dmamap_t iq_desc_map;
bus_addr_t iq_ba;
int intr_idx;
bus_dma_tag_t fl_desc_tag;
bus_dmamap_t fl_desc_map;
bus_addr_t fl_ba;
};
#define INVALID_NM_TXQ_CNTXT_ID ((u_int)(-1))
struct sge_nm_txq {
struct tx_desc *desc;
uint16_t cidx;
uint16_t pidx;
uint16_t sidx;
uint16_t equiqidx; /* EQUIQ last requested at this pidx */
uint16_t equeqidx; /* EQUEQ last requested at this pidx */
uint16_t dbidx; /* pidx of the most recent doorbell */
uint8_t doorbells;
volatile uint32_t *udb;
u_int udb_qid;
u_int cntxt_id;
__be32 cpl_ctrl0; /* for convenience */
__be32 op_pkd; /* ditto */
u_int nid; /* netmap ring # for this queue */
/* infrequently used items after this */
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
bus_addr_t ba;
int iqidx;
} __aligned(CACHE_LINE_SIZE);
struct sge {
int nrxq; /* total # of Ethernet rx queues */
int ntxq; /* total # of Ethernet tx queues */
int nofldrxq; /* total # of TOE rx queues */
int nofldtxq; /* total # of TOE tx queues */
int nnmrxq; /* total # of netmap rx queues */
int nnmtxq; /* total # of netmap tx queues */
int niq; /* total # of ingress queues */
int neq; /* total # of egress queues */
struct sge_iq fwq; /* Firmware event queue */
struct sge_wrq *ctrlq; /* Control queues */
struct sge_txq *txq; /* NIC tx queues */
struct sge_rxq *rxq; /* NIC rx queues */
struct sge_ofld_txq *ofld_txq; /* TOE tx queues */
struct sge_ofld_rxq *ofld_rxq; /* TOE rx queues */
struct sge_nm_txq *nm_txq; /* netmap tx queues */
struct sge_nm_rxq *nm_rxq; /* netmap rx queues */
uint16_t iq_start; /* first cntxt_id */
uint16_t iq_base; /* first abs_id */
int eq_start; /* first cntxt_id */
int eq_base; /* first abs_id */
int iqmap_sz;
int eqmap_sz;
struct sge_iq **iqmap; /* iq->cntxt_id to iq mapping */
struct sge_eq **eqmap; /* eq->cntxt_id to eq mapping */
int8_t safe_zidx;
struct rx_buf_info rx_buf_info[SW_ZONE_SIZES];
};
struct devnames {
const char *nexus_name;
const char *ifnet_name;
const char *vi_ifnet_name;
const char *pf03_drv_name;
const char *vf_nexus_name;
const char *vf_ifnet_name;
};
struct clip_entry;
#define CNT_CAL_INFO 3
struct clock_sync {
uint64_t hw_cur;
uint64_t hw_prev;
sbintime_t sbt_cur;
sbintime_t sbt_prev;
seqc_t gen;
};
struct adapter {
SLIST_ENTRY(adapter) link;
device_t dev;
struct cdev *cdev;
const struct devnames *names;
/* PCIe register resources */
int regs_rid;
struct resource *regs_res;
int msix_rid;
struct resource *msix_res;
bus_space_handle_t bh;
bus_space_tag_t bt;
bus_size_t mmio_len;
int udbs_rid;
struct resource *udbs_res;
volatile uint8_t *udbs_base;
unsigned int pf;
unsigned int mbox;
unsigned int vpd_busy;
unsigned int vpd_flag;
/* Interrupt information */
int intr_type;
int intr_count;
struct irq {
struct resource *res;
int rid;
void *tag;
struct sge_rxq *rxq;
struct sge_nm_rxq *nm_rxq;
} __aligned(CACHE_LINE_SIZE) *irq;
int sge_gts_reg;
int sge_kdoorbell_reg;
bus_dma_tag_t dmat; /* Parent DMA tag */
struct sge sge;
int lro_timeout;
int sc_do_rxcopy;
int vxlan_port;
u_int vxlan_refcount;
int rawf_base;
int nrawf;
u_int vlan_id;
struct taskqueue *tq[MAX_NPORTS]; /* General purpose taskqueues */
struct port_info *port[MAX_NPORTS];
uint8_t chan_map[MAX_NCHAN]; /* channel -> port */
CXGBE_LIST_HEAD(, clip_entry) *clip_table;
TAILQ_HEAD(, clip_entry) clip_pending; /* these need hw update. */
u_long clip_mask;
int clip_gen;
struct timeout_task clip_task;
void *tom_softc; /* (struct tom_data *) */
struct tom_tunables tt;
struct t4_offload_policy *policy;
struct rwlock policy_lock;
void *iwarp_softc; /* (struct c4iw_dev *) */
struct iw_tunables iwt;
void *iscsi_ulp_softc; /* (struct cxgbei_data *) */
struct l2t_data *l2t; /* L2 table */
struct smt_data *smt; /* Source MAC Table */
struct tid_info tids;
vmem_t *key_map;
struct tls_tunables tlst;
uint8_t doorbells;
int offload_map; /* port_id's with IFCAP_TOE enabled */
int bt_map; /* tx_chan's with BASE-T */
int active_ulds; /* ULDs activated on this adapter */
int flags;
int debug_flags;
int error_flags; /* Used by error handler and live reset. */
char ifp_lockname[16];
struct mtx ifp_lock;
if_t ifp; /* tracer ifp */
struct ifmedia media;
int traceq; /* iq used by all tracers, -1 if none */
int tracer_valid; /* bitmap of valid tracers */
int tracer_enabled; /* bitmap of enabled tracers */
char fw_version[16];
char tp_version[16];
char er_version[16];
char bs_version[16];
char cfg_file[32];
u_int cfcsum;
struct adapter_params params;
const struct chip_params *chip_params;
struct t4_virt_res vres;
uint16_t nbmcaps;
uint16_t linkcaps;
uint16_t switchcaps;
uint16_t niccaps;
uint16_t toecaps;
uint16_t rdmacaps;
uint16_t cryptocaps;
uint16_t iscsicaps;
uint16_t fcoecaps;
struct sysctl_ctx_list ctx;
struct sysctl_oid *ctrlq_oid;
struct sysctl_oid *fwq_oid;
struct mtx sc_lock;
char lockname[16];
/* Starving free lists */
struct mtx sfl_lock; /* same cache-line as sc_lock? but that's ok */
TAILQ_HEAD(, sge_fl) sfl;
struct callout sfl_callout;
struct callout cal_callout;
struct clock_sync cal_info[CNT_CAL_INFO];
int cal_current;
int cal_count;
uint32_t cal_gen;
/*
* Driver code that can run when the adapter is suspended must use this
* lock or a synchronized_op and check for HW_OFF_LIMITS before
* accessing hardware.
*
* XXX: could be changed to rwlock. wlock in suspend/resume and for
* indirect register access, rlock everywhere else.
*/
struct mtx reg_lock;
struct memwin memwin[NUM_MEMWIN]; /* memory windows */
struct mtx tc_lock;
struct task tc_task;
struct task fatal_error_task;
struct task reset_task;
const void *reset_thread;
int num_resets;
int incarnation;
const char *last_op;
const void *last_op_thr;
int last_op_flags;
int swintr;
int sensor_resets;
struct callout ktls_tick;
};
#define ADAPTER_LOCK(sc) mtx_lock(&(sc)->sc_lock)
#define ADAPTER_UNLOCK(sc) mtx_unlock(&(sc)->sc_lock)
#define ADAPTER_LOCK_ASSERT_OWNED(sc) mtx_assert(&(sc)->sc_lock, MA_OWNED)
#define ADAPTER_LOCK_ASSERT_NOTOWNED(sc) mtx_assert(&(sc)->sc_lock, MA_NOTOWNED)
#define ASSERT_SYNCHRONIZED_OP(sc) \
KASSERT(IS_BUSY(sc) && \
(mtx_owned(&(sc)->sc_lock) || sc->last_op_thr == curthread), \
("%s: operation not synchronized.", __func__))
#define PORT_LOCK(pi) mtx_lock(&(pi)->pi_lock)
#define PORT_UNLOCK(pi) mtx_unlock(&(pi)->pi_lock)
#define PORT_LOCK_ASSERT_OWNED(pi) mtx_assert(&(pi)->pi_lock, MA_OWNED)
#define PORT_LOCK_ASSERT_NOTOWNED(pi) mtx_assert(&(pi)->pi_lock, MA_NOTOWNED)
#define FL_LOCK(fl) mtx_lock(&(fl)->fl_lock)
#define FL_TRYLOCK(fl) mtx_trylock(&(fl)->fl_lock)
#define FL_UNLOCK(fl) mtx_unlock(&(fl)->fl_lock)
#define FL_LOCK_ASSERT_OWNED(fl) mtx_assert(&(fl)->fl_lock, MA_OWNED)
#define FL_LOCK_ASSERT_NOTOWNED(fl) mtx_assert(&(fl)->fl_lock, MA_NOTOWNED)
#define RXQ_FL_LOCK(rxq) FL_LOCK(&(rxq)->fl)
#define RXQ_FL_UNLOCK(rxq) FL_UNLOCK(&(rxq)->fl)
#define RXQ_FL_LOCK_ASSERT_OWNED(rxq) FL_LOCK_ASSERT_OWNED(&(rxq)->fl)
#define RXQ_FL_LOCK_ASSERT_NOTOWNED(rxq) FL_LOCK_ASSERT_NOTOWNED(&(rxq)->fl)
#define EQ_LOCK(eq) mtx_lock(&(eq)->eq_lock)
#define EQ_TRYLOCK(eq) mtx_trylock(&(eq)->eq_lock)
#define EQ_UNLOCK(eq) mtx_unlock(&(eq)->eq_lock)
#define EQ_LOCK_ASSERT_OWNED(eq) mtx_assert(&(eq)->eq_lock, MA_OWNED)
#define EQ_LOCK_ASSERT_NOTOWNED(eq) mtx_assert(&(eq)->eq_lock, MA_NOTOWNED)
#define TXQ_LOCK(txq) EQ_LOCK(&(txq)->eq)
#define TXQ_TRYLOCK(txq) EQ_TRYLOCK(&(txq)->eq)
#define TXQ_UNLOCK(txq) EQ_UNLOCK(&(txq)->eq)
#define TXQ_LOCK_ASSERT_OWNED(txq) EQ_LOCK_ASSERT_OWNED(&(txq)->eq)
#define TXQ_LOCK_ASSERT_NOTOWNED(txq) EQ_LOCK_ASSERT_NOTOWNED(&(txq)->eq)
#define for_each_txq(vi, iter, q) \
for (q = &vi->adapter->sge.txq[vi->first_txq], iter = 0; \
iter < vi->ntxq; ++iter, ++q)
#define for_each_rxq(vi, iter, q) \
for (q = &vi->adapter->sge.rxq[vi->first_rxq], iter = 0; \
iter < vi->nrxq; ++iter, ++q)
#define for_each_ofld_txq(vi, iter, q) \
for (q = &vi->adapter->sge.ofld_txq[vi->first_ofld_txq], iter = 0; \
iter < vi->nofldtxq; ++iter, ++q)
#define for_each_ofld_rxq(vi, iter, q) \
for (q = &vi->adapter->sge.ofld_rxq[vi->first_ofld_rxq], iter = 0; \
iter < vi->nofldrxq; ++iter, ++q)
#define for_each_nm_txq(vi, iter, q) \
for (q = &vi->adapter->sge.nm_txq[vi->first_nm_txq], iter = 0; \
iter < vi->nnmtxq; ++iter, ++q)
#define for_each_nm_rxq(vi, iter, q) \
for (q = &vi->adapter->sge.nm_rxq[vi->first_nm_rxq], iter = 0; \
iter < vi->nnmrxq; ++iter, ++q)
#define for_each_vi(_pi, _iter, _vi) \
for ((_vi) = (_pi)->vi, (_iter) = 0; (_iter) < (_pi)->nvi; \
++(_iter), ++(_vi))
#define IDXINCR(idx, incr, wrap) do { \
idx = wrap - idx > incr ? idx + incr : incr - (wrap - idx); \
} while (0)
#define IDXDIFF(head, tail, wrap) \
((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
/* One for errors, one for firmware events */
#define T4_EXTRA_INTR 2
/* One for firmware events */
#define T4VF_EXTRA_INTR 1
static inline int
forwarding_intr_to_fwq(struct adapter *sc)
{
return (sc->intr_count == 1);
}
/* Works reliably inside a sync_op or with reg_lock held. */
static inline bool
hw_off_limits(struct adapter *sc)
{
int off_limits = atomic_load_int(&sc->error_flags) & HW_OFF_LIMITS;
return (__predict_false(off_limits != 0));
}
static inline int
mbuf_nsegs(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
KASSERT(m->m_pkthdr.inner_l5hlen > 0,
("%s: mbuf %p missing information on # of segments.", __func__, m));
return (m->m_pkthdr.inner_l5hlen);
}
static inline void
set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
{
M_ASSERTPKTHDR(m);
m->m_pkthdr.inner_l5hlen = nsegs;
}
/* Internal mbuf flags stored in PH_loc.eight[1]. */
#define MC_NOMAP 0x01
#define MC_RAW_WR 0x02
#define MC_TLS 0x04
static inline int
mbuf_cflags(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
return (m->m_pkthdr.PH_loc.eight[4]);
}
static inline void
set_mbuf_cflags(struct mbuf *m, uint8_t flags)
{
M_ASSERTPKTHDR(m);
m->m_pkthdr.PH_loc.eight[4] = flags;
}
static inline int
mbuf_len16(struct mbuf *m)
{
int n;
M_ASSERTPKTHDR(m);
n = m->m_pkthdr.PH_loc.eight[0];
if (!(mbuf_cflags(m) & MC_TLS))
MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
return (n);
}
static inline void
set_mbuf_len16(struct mbuf *m, uint8_t len16)
{
M_ASSERTPKTHDR(m);
if (!(mbuf_cflags(m) & MC_TLS))
MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
m->m_pkthdr.PH_loc.eight[0] = len16;
}
static inline uint32_t
t4_read_reg(struct adapter *sc, uint32_t reg)
{
if (hw_off_limits(sc))
MPASS(curthread == sc->reset_thread);
return bus_space_read_4(sc->bt, sc->bh, reg);
}
static inline void
t4_write_reg(struct adapter *sc, uint32_t reg, uint32_t val)
{
if (hw_off_limits(sc))
MPASS(curthread == sc->reset_thread);
bus_space_write_4(sc->bt, sc->bh, reg, val);
}
static inline uint64_t
t4_read_reg64(struct adapter *sc, uint32_t reg)
{
if (hw_off_limits(sc))
MPASS(curthread == sc->reset_thread);
#ifdef __LP64__
return bus_space_read_8(sc->bt, sc->bh, reg);
#else
return (uint64_t)bus_space_read_4(sc->bt, sc->bh, reg) +
((uint64_t)bus_space_read_4(sc->bt, sc->bh, reg + 4) << 32);
#endif
}
static inline void
t4_write_reg64(struct adapter *sc, uint32_t reg, uint64_t val)
{
if (hw_off_limits(sc))
MPASS(curthread == sc->reset_thread);
#ifdef __LP64__
bus_space_write_8(sc->bt, sc->bh, reg, val);
#else
bus_space_write_4(sc->bt, sc->bh, reg, val);
bus_space_write_4(sc->bt, sc->bh, reg + 4, val>> 32);
#endif
}
static inline void
t4_os_pci_read_cfg1(struct adapter *sc, int reg, uint8_t *val)
{
if (hw_off_limits(sc))
MPASS(curthread == sc->reset_thread);
*val = pci_read_config(sc->dev, reg, 1);
}
static inline void
t4_os_pci_write_cfg1(struct adapter *sc, int reg, uint8_t val)
{
if (hw_off_limits(sc))
MPASS(curthread == sc->reset_thread);
pci_write_config(sc->dev, reg, val, 1);
}
static inline void
t4_os_pci_read_cfg2(struct adapter *sc, int reg, uint16_t *val)
{
if (hw_off_limits(sc))
MPASS(curthread == sc->reset_thread);
*val = pci_read_config(sc->dev, reg, 2);
}
static inline void
t4_os_pci_write_cfg2(struct adapter *sc, int reg, uint16_t val)
{
if (hw_off_limits(sc))
MPASS(curthread == sc->reset_thread);
pci_write_config(sc->dev, reg, val, 2);
}
static inline void
t4_os_pci_read_cfg4(struct adapter *sc, int reg, uint32_t *val)
{
if (hw_off_limits(sc))
MPASS(curthread == sc->reset_thread);
*val = pci_read_config(sc->dev, reg, 4);
}
static inline void
t4_os_pci_write_cfg4(struct adapter *sc, int reg, uint32_t val)
{
if (hw_off_limits(sc))
MPASS(curthread == sc->reset_thread);
pci_write_config(sc->dev, reg, val, 4);
}
static inline struct port_info *
adap2pinfo(struct adapter *sc, int idx)
{
return (sc->port[idx]);
}
static inline void
t4_os_set_hw_addr(struct port_info *pi, uint8_t hw_addr[])
{
bcopy(hw_addr, pi->vi[0].hw_addr, ETHER_ADDR_LEN);
}
static inline int
tx_resume_threshold(struct sge_eq *eq)
{
/* not quite the same as qsize / 4, but this will do. */
return (eq->sidx / 4);
}
static inline int
t4_use_ldst(struct adapter *sc)
{
#ifdef notyet
return (sc->flags & FW_OK || !sc->use_bd);
#else
return (0);
#endif
}
static inline void
CH_DUMP_MBOX(struct adapter *sc, int mbox, const int reg,
const char *msg, const __be64 *const p, const bool err)
{
if (!(sc->debug_flags & DF_DUMP_MBOX) && !err)
return;
if (p != NULL) {
log(err ? LOG_ERR : LOG_DEBUG,
"%s: mbox %u %s %016llx %016llx %016llx %016llx "
"%016llx %016llx %016llx %016llx\n",
device_get_nameunit(sc->dev), mbox, msg,
(long long)be64_to_cpu(p[0]), (long long)be64_to_cpu(p[1]),
(long long)be64_to_cpu(p[2]), (long long)be64_to_cpu(p[3]),
(long long)be64_to_cpu(p[4]), (long long)be64_to_cpu(p[5]),
(long long)be64_to_cpu(p[6]), (long long)be64_to_cpu(p[7]));
} else {
log(err ? LOG_ERR : LOG_DEBUG,
"%s: mbox %u %s %016llx %016llx %016llx %016llx "
"%016llx %016llx %016llx %016llx\n",
device_get_nameunit(sc->dev), mbox, msg,
(long long)t4_read_reg64(sc, reg),
(long long)t4_read_reg64(sc, reg + 8),
(long long)t4_read_reg64(sc, reg + 16),
(long long)t4_read_reg64(sc, reg + 24),
(long long)t4_read_reg64(sc, reg + 32),
(long long)t4_read_reg64(sc, reg + 40),
(long long)t4_read_reg64(sc, reg + 48),
(long long)t4_read_reg64(sc, reg + 56));
}
}
/* t4_main.c */
extern int t4_ntxq;
extern int t4_nrxq;
extern int t4_intr_types;
extern int t4_tmr_idx;
extern int t4_pktc_idx;
extern unsigned int t4_qsize_rxq;
extern unsigned int t4_qsize_txq;
extern int t4_ddp_rcvbuf_len;
extern unsigned int t4_ddp_rcvbuf_cache;
extern device_method_t cxgbe_methods[];
int t4_os_find_pci_capability(struct adapter *, int);
int t4_os_pci_save_state(struct adapter *);
int t4_os_pci_restore_state(struct adapter *);
void t4_os_portmod_changed(struct port_info *);
void t4_os_link_changed(struct port_info *);
void t4_iterate(void (*)(struct adapter *, void *), void *);
void t4_init_devnames(struct adapter *);
void t4_add_adapter(struct adapter *);
int t4_detach_common(device_t);
int t4_map_bars_0_and_4(struct adapter *);
int t4_map_bar_2(struct adapter *);
int t4_adj_doorbells(struct adapter *);
int t4_setup_intr_handlers(struct adapter *);
void t4_sysctls(struct adapter *);
int begin_synchronized_op(struct adapter *, struct vi_info *, int, char *);
void end_synchronized_op(struct adapter *, int);
void begin_vi_detach(struct adapter *, struct vi_info *);
void end_vi_detach(struct adapter *, struct vi_info *);
int update_mac_settings(if_t, int);
int adapter_init(struct adapter *);
int vi_init(struct vi_info *);
void vi_sysctls(struct vi_info *);
int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int);
int alloc_atid(struct adapter *, void *);
void *lookup_atid(struct adapter *, int);
void free_atid(struct adapter *, int);
void release_tid(struct adapter *, int, struct sge_wrq *);
int cxgbe_media_change(if_t);
void cxgbe_media_status(if_t, struct ifmediareq *);
void t4_os_cim_err(struct adapter *);
#ifdef KERN_TLS
/* t6_kern_tls.c */
int t6_tls_tag_alloc(if_t, union if_snd_tag_alloc_params *,
struct m_snd_tag **);
void t6_ktls_modload(void);
void t6_ktls_modunload(void);
int t6_ktls_try(if_t, struct socket *, struct ktls_session *);
int t6_ktls_parse_pkt(struct mbuf *);
int t6_ktls_write_wr(struct sge_txq *, void *, struct mbuf *, u_int);
#endif
/* t4_keyctx.c */
struct auth_hash;
union authctx;
#ifdef KERN_TLS
struct ktls_session;
struct tls_key_req;
struct tls_keyctx;
#endif
void t4_aes_getdeckey(void *, const void *, unsigned int);
void t4_copy_partial_hash(int, union authctx *, void *);
void t4_init_gmac_hash(const char *, int, char *);
void t4_init_hmac_digest(const struct auth_hash *, u_int, const char *, int,
char *);
#ifdef KERN_TLS
u_int t4_tls_key_info_size(const struct ktls_session *);
int t4_tls_proto_ver(const struct ktls_session *);
int t4_tls_cipher_mode(const struct ktls_session *);
int t4_tls_auth_mode(const struct ktls_session *);
int t4_tls_hmac_ctrl(const struct ktls_session *);
void t4_tls_key_ctx(const struct ktls_session *, int, struct tls_keyctx *);
int t4_alloc_tls_keyid(struct adapter *);
void t4_free_tls_keyid(struct adapter *, int);
void t4_write_tlskey_wr(const struct ktls_session *, int, int, int, int,
struct tls_key_req *);
#endif
#ifdef DEV_NETMAP
/* t4_netmap.c */
struct sge_nm_rxq;
void cxgbe_nm_attach(struct vi_info *);
void cxgbe_nm_detach(struct vi_info *);
void service_nm_rxq(struct sge_nm_rxq *);
int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int);
int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int);
int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
#endif
/* t4_sge.c */
void t4_sge_modload(void);
void t4_sge_modunload(void);
uint64_t t4_sge_extfree_refs(void);
void t4_tweak_chip_settings(struct adapter *);
int t4_verify_chip_settings(struct adapter *);
void t4_init_rx_buf_info(struct adapter *);
int t4_create_dma_tag(struct adapter *);
void t4_sge_sysctls(struct adapter *, struct sysctl_ctx_list *,
struct sysctl_oid_list *);
int t4_destroy_dma_tag(struct adapter *);
int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
bus_addr_t *, void **);
int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
void *);
void free_fl_buffers(struct adapter *, struct sge_fl *);
int t4_setup_adapter_queues(struct adapter *);
int t4_teardown_adapter_queues(struct adapter *);
int t4_setup_vi_queues(struct vi_info *);
int t4_teardown_vi_queues(struct vi_info *);
void t4_intr_all(void *);
void t4_intr(void *);
#ifdef DEV_NETMAP
void t4_nm_intr(void *);
void t4_vi_intr(void *);
#endif
void t4_intr_err(void *);
void t4_intr_evt(void *);
void t4_wrq_tx_locked(struct adapter *, struct sge_wrq *, struct wrqe *);
void t4_update_fl_bufsize(if_t);
struct mbuf *alloc_wr_mbuf(int, int);
int parse_pkt(struct mbuf **, bool);
void *start_wrq_wr(struct sge_wrq *, int, struct wrq_cookie *);
void commit_wrq_wr(struct sge_wrq *, void *, struct wrq_cookie *);
int t4_sge_set_conm_context(struct adapter *, int, int, int);
void t4_register_an_handler(an_handler_t);
void t4_register_fw_msg_handler(int, fw_msg_handler_t);
void t4_register_cpl_handler(int, cpl_handler_t);
void t4_register_shared_cpl_handler(int, cpl_handler_t, int);
#ifdef RATELIMIT
void send_etid_flush_wr(struct cxgbe_rate_tag *);
#endif
/* t4_tracer.c */
struct t4_tracer;
void t4_tracer_modload(void);
void t4_tracer_modunload(void);
void t4_tracer_port_detach(struct adapter *);
int t4_get_tracer(struct adapter *, struct t4_tracer *);
int t4_set_tracer(struct adapter *, struct t4_tracer *);
int t4_trace_pkt(struct sge_iq *, const struct rss_header *, struct mbuf *);
int t5_trace_pkt(struct sge_iq *, const struct rss_header *, struct mbuf *);
/* t4_sched.c */
int t4_set_sched_class(struct adapter *, struct t4_sched_params *);
int t4_set_sched_queue(struct adapter *, struct t4_sched_queue *);
int t4_init_tx_sched(struct adapter *);
int t4_free_tx_sched(struct adapter *);
void t4_update_tx_sched(struct adapter *);
int t4_reserve_cl_rl_kbps(struct adapter *, int, u_int, int *);
void t4_release_cl_rl(struct adapter *, int, int);
int sysctl_tc(SYSCTL_HANDLER_ARGS);
int sysctl_tc_params(SYSCTL_HANDLER_ARGS);
#ifdef RATELIMIT
void t4_init_etid_table(struct adapter *);
void t4_free_etid_table(struct adapter *);
struct cxgbe_rate_tag *lookup_etid(struct adapter *, int);
int cxgbe_rate_tag_alloc(if_t, union if_snd_tag_alloc_params *,
struct m_snd_tag **);
void cxgbe_rate_tag_free_locked(struct cxgbe_rate_tag *);
void cxgbe_ratelimit_query(if_t, struct if_ratelimit_query_results *);
#endif
/* t4_filter.c */
int get_filter_mode(struct adapter *, uint32_t *);
int set_filter_mode(struct adapter *, uint32_t);
int set_filter_mask(struct adapter *, uint32_t);
int get_filter(struct adapter *, struct t4_filter *);
int set_filter(struct adapter *, struct t4_filter *);
int del_filter(struct adapter *, struct t4_filter *);
int t4_filter_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *);
int t4_hashfilter_ao_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *);
int t4_hashfilter_tcb_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *);
int t4_del_hashfilter_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *);
void free_hftid_hash(struct tid_info *);
static inline struct wrqe *
alloc_wrqe(int wr_len, struct sge_wrq *wrq)
{
int len = offsetof(struct wrqe, wr) + wr_len;
struct wrqe *wr;
wr = malloc(len, M_CXGBE, M_NOWAIT);
if (__predict_false(wr == NULL))
return (NULL);
wr->wr_len = wr_len;
wr->wrq = wrq;
return (wr);
}
static inline void *
wrtod(struct wrqe *wr)
{
return (&wr->wr[0]);
}
static inline void
free_wrqe(struct wrqe *wr)
{
free(wr, M_CXGBE);
}
static inline void
t4_wrq_tx(struct adapter *sc, struct wrqe *wr)
{
struct sge_wrq *wrq = wr->wrq;
TXQ_LOCK(wrq);
t4_wrq_tx_locked(sc, wrq, wr);
TXQ_UNLOCK(wrq);
}
static inline int
read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
int len)
{
return (rw_via_memwin(sc, idx, addr, val, len, 0));
}
static inline int
write_via_memwin(struct adapter *sc, int idx, uint32_t addr,
const uint32_t *val, int len)
{
return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1));
}
/* Number of len16 -> number of descriptors */
static inline int
tx_len16_to_desc(int len16)
{
return (howmany(len16, EQ_ESIZE / 16));
}
#endif