freebsd-src/sys/dev/axgbe/xgbe-txrx.c
Stephan de Wit 2b8df536a6 axgbe: Various stability improvements
Hook in RSS glue.

Default to "off" for the split header feature to ensure netmap
compatibility.

Change the PCS indirection register values based on hardware type
(ported from Linux).

Move tunable settings to sysctl_init() and set the defaults there.
Ensure it's called at the right time by moving it back.

Reset PHY RX data path when mailbox command times out (Ported from
Linux).

Check if VLAN HW tagging is enabled before assuming a VLAN tag
is present in a descriptor.

Disable the hardware filter since multicast traffic is dropped
in promisc mode.

Remove unnecessary return statement.

Missing sfp_get_mux, causing a race between ports to read
SFP(+) sideband signals.

Validate and fix incorrectly initialized polarity/configuration
registers.

Remove unnecessary SFP reset.

axgbe_isc_rxd_pkt_get has no error state, remove unnecessary
big packet check.

Enable RSF to prevent zero-length packets while in Netmap mode.

DMA cache coherency update (ported from Linux).

Reviewed by: imp
Pull Request: https://github.com/freebsd/freebsd-src/pull/1103
2024-04-28 19:57:51 -06:00

801 lines
24 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2020 Advanced Micro Devices, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Contact Information :
* Rajesh Kumar <rajesh1.kumar@amd.com>
* Shreyank Amartya <Shreyank.Amartya@amd.com>
*
*/
#include <sys/cdefs.h>
#include "xgbe.h"
#include "xgbe-common.h"
/*
* IFLIB interfaces
*/
static int axgbe_isc_txd_encap(void *, if_pkt_info_t);
static void axgbe_isc_txd_flush(void *, uint16_t, qidx_t);
static int axgbe_isc_txd_credits_update(void *, uint16_t, bool);
static void axgbe_isc_rxd_refill(void *, if_rxd_update_t);
static void axgbe_isc_rxd_flush(void *, uint16_t, uint8_t, qidx_t);
static int axgbe_isc_rxd_available(void *, uint16_t, qidx_t, qidx_t);
static int axgbe_isc_rxd_pkt_get(void *, if_rxd_info_t);
struct if_txrx axgbe_txrx = {
.ift_txd_encap = axgbe_isc_txd_encap,
.ift_txd_flush = axgbe_isc_txd_flush,
.ift_txd_credits_update = axgbe_isc_txd_credits_update,
.ift_rxd_available = axgbe_isc_rxd_available,
.ift_rxd_pkt_get = axgbe_isc_rxd_pkt_get,
.ift_rxd_refill = axgbe_isc_rxd_refill,
.ift_rxd_flush = axgbe_isc_rxd_flush,
.ift_legacy_intr = NULL
};
static void
xgbe_print_pkt_info(struct xgbe_prv_data *pdata, if_pkt_info_t pi)
{
axgbe_printf(1, "------Packet Info Start------\n");
axgbe_printf(1, "pi len: %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n",
pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx);
axgbe_printf(1, "pi new_pidx: %d csum_flags: %x mflags: %x vtag: %d\n",
pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_mflags, pi->ipi_vtag);
axgbe_printf(1, "pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n",
pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto);
axgbe_printf(1, "pi tcp_hlen: %d tcp_hflags: %x tcp_seq: %d tso_segsz %d\n",
pi->ipi_tcp_hlen, pi->ipi_tcp_hflags, pi->ipi_tcp_seq, pi->ipi_tso_segsz);
}
static bool
axgbe_ctx_desc_setup(struct xgbe_prv_data *pdata, struct xgbe_ring *ring,
if_pkt_info_t pi)
{
struct xgbe_ring_desc *rdesc;
struct xgbe_ring_data *rdata;
bool inc_cur = false;
rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
rdesc = rdata->rdesc;
axgbe_printf(1, "ipi_tso_segsz %d cur_mss %d idx %d\n",
pi->ipi_tso_segsz, ring->tx.cur_mss, ring->cur);
axgbe_printf(1, "ipi_vtag 0x%x cur_vlan_ctag 0x%x\n",
pi->ipi_vtag, ring->tx.cur_vlan_ctag);
if ((pi->ipi_csum_flags & CSUM_TSO) &&
(pi->ipi_tso_segsz != ring->tx.cur_mss)) {
/*
* Set TSO maximum segment size
* Mark as context descriptor
* Indicate this descriptor contains MSS
*/
XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
MSS, pi->ipi_tso_segsz);
XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, CTXT, 1);
XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, TCMSSV, 1);
ring->tx.cur_mss = pi->ipi_tso_segsz;
inc_cur = true;
}
if (pi->ipi_vtag && (pi->ipi_vtag != ring->tx.cur_vlan_ctag)) {
/*
* Mark it as context descriptor
* Set the VLAN tag
* Indicate this descriptor contains the VLAN tag
*/
XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, CTXT, 1);
XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
VT, pi->ipi_vtag);
XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, VLTV, 1);
ring->tx.cur_vlan_ctag = pi->ipi_vtag;
inc_cur = true;
}
return (inc_cur);
}
static uint16_t
axgbe_calculate_tx_parms(struct xgbe_prv_data *pdata, if_pkt_info_t pi,
struct xgbe_packet_data *packet)
{
uint32_t tcp_payload_len = 0, bytes = 0;
uint16_t max_len, hlen, payload_len, pkts = 0;
packet->tx_packets = packet->tx_bytes = 0;
hlen = pi->ipi_ehdrlen + pi->ipi_ip_hlen + pi->ipi_tcp_hlen;
if (pi->ipi_csum_flags & CSUM_TSO) {
tcp_payload_len = pi->ipi_len - hlen;
axgbe_printf(1, "%s: ipi_len %x elen %d iplen %d tcplen %d\n",
__func__, pi->ipi_len, pi->ipi_ehdrlen, pi->ipi_ip_hlen,
pi->ipi_tcp_hlen);
max_len = if_getmtu(pdata->netdev) + ETH_HLEN;
if (pi->ipi_vtag)
max_len += VLAN_HLEN;
while (tcp_payload_len) {
payload_len = max_len - hlen;
payload_len = min(payload_len, tcp_payload_len);
tcp_payload_len -= payload_len;
pkts++;
bytes += (hlen + payload_len);
axgbe_printf(1, "%s: max_len %d payload_len %d "
"tcp_len %d\n", __func__, max_len, payload_len,
tcp_payload_len);
}
} else {
pkts = 1;
bytes = pi->ipi_len;
}
packet->tx_packets = pkts;
packet->tx_bytes = bytes;
axgbe_printf(1, "%s: packets %d bytes %d hlen %d\n", __func__,
packet->tx_packets, packet->tx_bytes, hlen);
return (hlen);
}
static int
axgbe_isc_txd_encap(void *arg, if_pkt_info_t pi)
{
struct axgbe_if_softc *sc = (struct axgbe_if_softc*)arg;
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_channel *channel;
struct xgbe_ring *ring;
struct xgbe_ring_desc *rdesc;
struct xgbe_ring_data *rdata;
struct xgbe_packet_data *packet;
unsigned int cur, start, tx_set_ic;
uint16_t offset, hlen, datalen, tcp_payload_len = 0;
int cur_seg = 0;
xgbe_print_pkt_info(pdata, pi);
channel = pdata->channel[pi->ipi_qsidx];
ring = channel->tx_ring;
packet = &ring->packet_data;
cur = start = ring->cur;
axgbe_printf(1, "--> %s: txq %d cur %d dirty %d\n",
__func__, pi->ipi_qsidx, ring->cur, ring->dirty);
MPASS(pi->ipi_len != 0);
if (__predict_false(pi->ipi_len == 0)) {
axgbe_error("empty packet received from stack\n");
return (0);
}
MPASS(ring->cur == pi->ipi_pidx);
if (__predict_false(ring->cur != pi->ipi_pidx)) {
axgbe_error("--> %s: cur(%d) ne pidx(%d)\n", __func__,
ring->cur, pi->ipi_pidx);
}
/* Determine if an interrupt should be generated for this Tx:
* Interrupt:
* - Tx frame count exceeds the frame count setting
* - Addition of Tx frame count to the frame count since the
* last interrupt was set exceeds the frame count setting
* No interrupt:
* - No frame count setting specified (ethtool -C ethX tx-frames 0)
* - Addition of Tx frame count to the frame count since the
* last interrupt was set does not exceed the frame count setting
*/
memset(packet, 0, sizeof(*packet));
hlen = axgbe_calculate_tx_parms(pdata, pi, packet);
axgbe_printf(1, "%s: ipi_len %d tx_pkts %d tx_bytes %d hlen %d\n",
__func__, pi->ipi_len, packet->tx_packets, packet->tx_bytes, hlen);
ring->coalesce_count += packet->tx_packets;
if (!pdata->tx_frames)
tx_set_ic = 0;
else if (packet->tx_packets > pdata->tx_frames)
tx_set_ic = 1;
else if ((ring->coalesce_count % pdata->tx_frames) < (packet->tx_packets))
tx_set_ic = 1;
else
tx_set_ic = 0;
/* Add Context descriptor if needed (for TSO, VLAN cases) */
if (axgbe_ctx_desc_setup(pdata, ring, pi))
cur++;
rdata = XGBE_GET_DESC_DATA(ring, cur);
rdesc = rdata->rdesc;
axgbe_printf(1, "%s: cur %d lo 0x%lx hi 0x%lx ds_len 0x%x "
"ipi_len 0x%x\n", __func__, cur,
lower_32_bits(pi->ipi_segs[cur_seg].ds_addr),
upper_32_bits(pi->ipi_segs[cur_seg].ds_addr),
(int)pi->ipi_segs[cur_seg].ds_len, pi->ipi_len);
/* Update buffer address (for TSO this is the header) */
rdesc->desc0 = cpu_to_le32(lower_32_bits(pi->ipi_segs[cur_seg].ds_addr));
rdesc->desc1 = cpu_to_le32(upper_32_bits(pi->ipi_segs[cur_seg].ds_addr));
/* Update the buffer length */
if (hlen == 0)
hlen = pi->ipi_segs[cur_seg].ds_len;
XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L, hlen);
/* VLAN tag insertion check */
if (pi->ipi_vtag) {
XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
TX_NORMAL_DESC2_VLAN_INSERT);
}
/* Mark it as First Descriptor */
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
/* Mark it as a NORMAL descriptor */
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
/*
* Set the OWN bit if this is not the first descriptor. For first
* descriptor, OWN bit will be set at last so that hardware will
* process the descriptors only after the OWN bit for the first
* descriptor is set
*/
if (cur != start)
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
if (pi->ipi_csum_flags & CSUM_TSO) {
/* Enable TSO */
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
tcp_payload_len = pi->ipi_len - hlen;
/* Set TCP payload length*/
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
tcp_payload_len);
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
pi->ipi_tcp_hlen/4);
axgbe_printf(1, "tcp_payload %d tcp_hlen %d\n", tcp_payload_len,
pi->ipi_tcp_hlen/4);
} else {
/* Enable CRC and Pad Insertion */
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
/* Enable HW CSUM*/
if (pi->ipi_csum_flags)
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CIC, 0x3);
/* Set total length to be transmitted */
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL, pi->ipi_len);
}
cur++;
for (cur_seg = 0 ; cur_seg < pi->ipi_nsegs ; cur_seg++) {
if (cur_seg == 0) {
offset = hlen;
datalen = pi->ipi_segs[cur_seg].ds_len - hlen;
} else {
offset = 0;
datalen = pi->ipi_segs[cur_seg].ds_len;
}
if (datalen) {
rdata = XGBE_GET_DESC_DATA(ring, cur);
rdesc = rdata->rdesc;
/* Update buffer address */
rdesc->desc0 =
cpu_to_le32(lower_32_bits(pi->ipi_segs[cur_seg].ds_addr + offset));
rdesc->desc1 =
cpu_to_le32(upper_32_bits(pi->ipi_segs[cur_seg].ds_addr + offset));
/* Update the buffer length */
XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L, datalen);
/* Set OWN bit */
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
/* Mark it as NORMAL descriptor */
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
/* Enable HW CSUM*/
if (pi->ipi_csum_flags)
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CIC, 0x3);
axgbe_printf(1, "%s: cur %d lo 0x%lx hi 0x%lx ds_len 0x%x "
"ipi_len 0x%x\n", __func__, cur,
lower_32_bits(pi->ipi_segs[cur_seg].ds_addr),
upper_32_bits(pi->ipi_segs[cur_seg].ds_addr),
(int)pi->ipi_segs[cur_seg].ds_len, pi->ipi_len);
cur++;
}
}
/* Set LAST bit for the last descriptor */
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
/* Set IC bit based on Tx coalescing settings */
if (tx_set_ic)
XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
wmb();
/* Set OWN bit for the first descriptor */
rdata = XGBE_GET_DESC_DATA(ring, start);
rdesc = rdata->rdesc;
XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
ring->cur = pi->ipi_new_pidx = (cur & (ring->rdesc_count - 1));
axgbe_printf(1, "<-- %s: end cur %d dirty %d\n", __func__, ring->cur,
ring->dirty);
return (0);
}
static void
axgbe_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
{
struct axgbe_if_softc *sc = (struct axgbe_if_softc*)arg;
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_channel *channel = pdata->channel[txqid];
struct xgbe_ring *ring = channel->tx_ring;
struct xgbe_ring_data *rdata = XGBE_GET_DESC_DATA(ring, pidx);
axgbe_printf(1, "--> %s: flush txq %d pidx %d cur %d dirty %d\n",
__func__, txqid, pidx, ring->cur, ring->dirty);
/* Ring Doorbell */
XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
lower_32_bits(rdata->rdata_paddr));
}
static int
axgbe_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
{
struct axgbe_if_softc *sc = (struct axgbe_if_softc*)arg;
struct xgbe_hw_if *hw_if = &sc->pdata.hw_if;
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_channel *channel = pdata->channel[txqid];
struct xgbe_ring *ring = channel->tx_ring;
struct xgbe_ring_data *rdata;
int processed = 0;
axgbe_printf(1, "%s: txq %d clear %d cur %d dirty %d\n",
__func__, txqid, clear, ring->cur, ring->dirty);
if (__predict_false(ring->cur == ring->dirty)) {
axgbe_printf(1, "<-- %s: cur(%d) equals dirty(%d)\n",
__func__, ring->cur, ring->dirty);
return (0);
}
/* Check whether the first dirty descriptor is Tx complete */
rdata = XGBE_GET_DESC_DATA(ring, ring->dirty);
if (!hw_if->tx_complete(rdata->rdesc)) {
axgbe_printf(1, "<-- %s: (dirty %d)\n", __func__, ring->dirty);
return (0);
}
/*
* If clear is false just let the caller know that there
* are descriptors to reclaim
*/
if (!clear) {
axgbe_printf(1, "<-- %s: (!clear)\n", __func__);
return (1);
}
do {
hw_if->tx_desc_reset(rdata);
processed++;
ring->dirty = (ring->dirty + 1) & (ring->rdesc_count - 1);
/*
* tx_complete will return true for unused descriptors also.
* so, check tx_complete only until used descriptors.
*/
if (ring->cur == ring->dirty)
break;
rdata = XGBE_GET_DESC_DATA(ring, ring->dirty);
} while (hw_if->tx_complete(rdata->rdesc));
axgbe_printf(1, "<-- %s: processed %d cur %d dirty %d\n", __func__,
processed, ring->cur, ring->dirty);
return (processed);
}
static void
axgbe_isc_rxd_refill(void *arg, if_rxd_update_t iru)
{
struct axgbe_if_softc *sc = (struct axgbe_if_softc*)arg;
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_channel *channel = pdata->channel[iru->iru_qsidx];
struct xgbe_ring *ring = channel->rx_ring;
struct xgbe_ring_data *rdata;
struct xgbe_ring_desc *rdesc;
unsigned int rx_usecs = pdata->rx_usecs;
unsigned int rx_frames = pdata->rx_frames;
unsigned int inte;
uint8_t count = iru->iru_count;
int i, j;
bool config_intr = false;
axgbe_printf(1, "--> %s: rxq %d fl %d pidx %d count %d ring cur %d "
"dirty %d\n", __func__, iru->iru_qsidx, iru->iru_flidx,
iru->iru_pidx, count, ring->cur, ring->dirty);
for (i = iru->iru_pidx, j = 0 ; j < count ; i++, j++) {
if (i == sc->scctx->isc_nrxd[0])
i = 0;
rdata = XGBE_GET_DESC_DATA(ring, i);
rdesc = rdata->rdesc;
if (__predict_false(XGMAC_GET_BITS_LE(rdesc->desc3,
RX_NORMAL_DESC3, OWN))) {
axgbe_error("%s: refill clash, cur %d dirty %d index %d"
"pidx %d\n", __func__, ring->cur, ring->dirty, j, i);
}
if (pdata->sph_enable) {
if (iru->iru_flidx == 0) {
/* Fill header/buffer1 address */
rdesc->desc0 =
cpu_to_le32(lower_32_bits(iru->iru_paddrs[j]));
rdesc->desc1 =
cpu_to_le32(upper_32_bits(iru->iru_paddrs[j]));
} else {
/* Fill data/buffer2 address */
rdesc->desc2 =
cpu_to_le32(lower_32_bits(iru->iru_paddrs[j]));
rdesc->desc3 =
cpu_to_le32(upper_32_bits(iru->iru_paddrs[j]));
config_intr = true;
}
} else {
/* Fill header/buffer1 address */
rdesc->desc0 = rdesc->desc2 =
cpu_to_le32(lower_32_bits(iru->iru_paddrs[j]));
rdesc->desc1 = rdesc->desc3 =
cpu_to_le32(upper_32_bits(iru->iru_paddrs[j]));
config_intr = true;
}
if (config_intr) {
if (!rx_usecs && !rx_frames) {
/* No coalescing, interrupt for every descriptor */
inte = 1;
} else {
/* Set interrupt based on Rx frame coalescing setting */
if (rx_frames && !((ring->dirty + 1) % rx_frames))
inte = 1;
else
inte = 0;
}
XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
wmb();
ring->dirty = ((ring->dirty + 1) & (ring->rdesc_count - 1));
config_intr = false;
}
}
axgbe_printf(1, "<-- %s: rxq: %d cur: %d dirty: %d\n", __func__,
channel->queue_index, ring->cur, ring->dirty);
}
static void
axgbe_isc_rxd_flush(void *arg, uint16_t qsidx, uint8_t flidx, qidx_t pidx)
{
struct axgbe_if_softc *sc = (struct axgbe_if_softc*)arg;
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_channel *channel = pdata->channel[qsidx];
struct xgbe_ring *ring = channel->rx_ring;
struct xgbe_ring_data *rdata;
axgbe_printf(1, "--> %s: rxq %d fl %d pidx %d cur %d dirty %d\n",
__func__, qsidx, flidx, pidx, ring->cur, ring->dirty);
rdata = XGBE_GET_DESC_DATA(ring, pidx);
/*
* update RX descriptor tail pointer in hardware to indicate
* that new buffers are present in the allocated memory region
*/
if (!pdata->sph_enable || flidx == 1) {
XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
lower_32_bits(rdata->rdata_paddr));
}
}
static int
axgbe_isc_rxd_available(void *arg, uint16_t qsidx, qidx_t idx, qidx_t budget)
{
struct axgbe_if_softc *sc = (struct axgbe_if_softc*)arg;
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_channel *channel = pdata->channel[qsidx];
struct xgbe_ring *ring = channel->rx_ring;
struct xgbe_ring_data *rdata;
struct xgbe_ring_desc *rdesc;
unsigned int cur;
int count = 0;
uint8_t incomplete = 1, context_next = 0, running = 0;
axgbe_printf(1, "--> %s: rxq %d idx %d budget %d cur %d dirty %d\n",
__func__, qsidx, idx, budget, ring->cur, ring->dirty);
if (__predict_false(test_bit(XGBE_DOWN, &pdata->dev_state))) {
axgbe_printf(0, "%s: Polling when XGBE_DOWN\n", __func__);
return (count);
}
cur = ring->cur;
for (count = 0; count <= budget; ) {
rdata = XGBE_GET_DESC_DATA(ring, cur);
rdesc = rdata->rdesc;
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
break;
running = 1;
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
incomplete = 0;
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
context_next = 1;
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT))
context_next = 0;
cur = (cur + 1) & (ring->rdesc_count - 1);
if (incomplete || context_next)
continue;
/* Increment pkt count & reset variables for next full packet */
count++;
incomplete = 1;
context_next = 0;
running = 0;
}
axgbe_printf(1, "--> %s: rxq %d cur %d incomp %d con_next %d running %d "
"count %d\n", __func__, qsidx, cur, incomplete, context_next,
running, count);
return (count);
}
static unsigned int
xgbe_rx_buf1_len(struct xgbe_prv_data *pdata, struct xgbe_ring_data *rdata,
struct xgbe_packet_data *packet)
{
unsigned int ret = 0;
if (pdata->sph_enable) {
/* Always zero if not the first descriptor */
if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, FIRST)) {
axgbe_printf(1, "%s: Not First\n", __func__);
return (0);
}
}
/* First descriptor with split header, return header length */
if (rdata->rx.hdr_len) {
axgbe_printf(1, "%s: hdr_len %d\n", __func__, rdata->rx.hdr_len);
return (rdata->rx.hdr_len);
}
/* First descriptor but not the last descriptor and no split header,
* so the full buffer was used, 256 represents the hardcoded value of
* a max header split defined in the hardware
*/
if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, LAST)) {
axgbe_printf(1, "%s: Not last %d\n", __func__,
pdata->rx_buf_size);
if (pdata->sph_enable) {
return (256);
} else {
return (pdata->rx_buf_size);
}
}
/* First descriptor and last descriptor and no split header, so
* calculate how much of the buffer was used, we can return the
* segment length or the remaining bytes of the packet
*/
axgbe_printf(1, "%s: pkt_len %d buf_size %d\n", __func__, rdata->rx.len,
pdata->rx_buf_size);
if (pdata->sph_enable) {
ret = min_t(unsigned int, 256, rdata->rx.len);
} else {
ret = rdata->rx.len;
}
return (ret);
}
static unsigned int
xgbe_rx_buf2_len(struct xgbe_prv_data *pdata, struct xgbe_ring_data *rdata,
struct xgbe_packet_data *packet, unsigned int len)
{
/* Always the full buffer if not the last descriptor */
if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, LAST)) {
axgbe_printf(1, "%s: Not last %d\n", __func__, pdata->rx_buf_size);
return (pdata->rx_buf_size);
}
/* Last descriptor so calculate how much of the buffer was used
* for the last bit of data
*/
return ((rdata->rx.len != 0)? (rdata->rx.len - len) : 0);
}
static inline void
axgbe_add_frag(struct xgbe_prv_data *pdata, if_rxd_info_t ri, int idx, int len,
int pos, int flid)
{
axgbe_printf(2, "idx %d len %d pos %d flid %d\n", idx, len, pos, flid);
ri->iri_frags[pos].irf_flid = flid;
ri->iri_frags[pos].irf_idx = idx;
ri->iri_frags[pos].irf_len = len;
}
static int
axgbe_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
{
struct axgbe_if_softc *sc = (struct axgbe_if_softc*)arg;
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct xgbe_channel *channel = pdata->channel[ri->iri_qsidx];
struct xgbe_ring *ring = channel->rx_ring;
struct xgbe_packet_data *packet = &ring->packet_data;
struct xgbe_ring_data *rdata;
unsigned int last, context_next, context;
unsigned int buf1_len, buf2_len, len = 0, prev_cur;
int i = 0;
axgbe_printf(2, "%s: rxq %d cidx %d cur %d dirty %d\n", __func__,
ri->iri_qsidx, ri->iri_cidx, ring->cur, ring->dirty);
memset(packet, 0, sizeof(struct xgbe_packet_data));
while (1) {
read_again:
if (hw_if->dev_read(channel)) {
axgbe_printf(2, "<-- %s: OWN bit seen on %d\n",
__func__, ring->cur);
break;
}
rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
prev_cur = ring->cur;
ring->cur = (ring->cur + 1) & (ring->rdesc_count - 1);
last = XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
LAST);
context_next = XGMAC_GET_BITS(packet->attributes,
RX_PACKET_ATTRIBUTES, CONTEXT_NEXT);
context = XGMAC_GET_BITS(packet->attributes,
RX_PACKET_ATTRIBUTES, CONTEXT);
if (!context) {
/* Get the data length in the descriptor buffers */
buf1_len = xgbe_rx_buf1_len(pdata, rdata, packet);
len += buf1_len;
if (pdata->sph_enable) {
buf2_len = xgbe_rx_buf2_len(pdata, rdata, packet, len);
len += buf2_len;
}
} else
buf1_len = buf2_len = 0;
if (packet->errors)
axgbe_printf(1, "%s: last %d context %d con_next %d buf1 %d "
"buf2 %d len %d frags %d error %d\n", __func__, last, context,
context_next, buf1_len, buf2_len, len, i, packet->errors);
axgbe_add_frag(pdata, ri, prev_cur, buf1_len, i, 0);
i++;
if (pdata->sph_enable) {
axgbe_add_frag(pdata, ri, prev_cur, buf2_len, i, 1);
i++;
}
if (!last || context_next)
goto read_again;
break;
}
if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CSUM_DONE)) {
ri->iri_csum_flags |= CSUM_IP_CHECKED;
ri->iri_csum_flags |= CSUM_IP_VALID;
axgbe_printf(2, "%s: csum flags 0x%x\n", __func__, ri->iri_csum_flags);
}
if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, VLAN_CTAG)) {
ri->iri_flags |= M_VLANTAG;
ri->iri_vtag = packet->vlan_ctag;
axgbe_printf(2, "%s: iri_flags 0x%x vtag 0x%x\n", __func__,
ri->iri_flags, ri->iri_vtag);
}
if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, RSS_HASH)) {
ri->iri_flowid = packet->rss_hash;
ri->iri_rsstype = packet->rss_hash_type;
axgbe_printf(2, "%s: hash 0x%x/0x%x rsstype 0x%x/0x%x\n",
__func__, packet->rss_hash, ri->iri_flowid,
packet->rss_hash_type, ri->iri_rsstype);
}
if (__predict_false(len == 0))
axgbe_printf(1, "%s: Discarding Zero len packet\n", __func__);
if (__predict_false(packet->errors))
axgbe_printf(1, "<-- %s: rxq: %d len: %d frags: %d cidx %d cur: %d "
"dirty: %d error 0x%x\n", __func__, ri->iri_qsidx, len, i,
ri->iri_cidx, ring->cur, ring->dirty, packet->errors);
axgbe_printf(1, "%s: Packet len %d frags %d\n", __func__, len, i);
ri->iri_len = len;
ri->iri_nfrags = i;
return (0);
}