freebsd-src/sys/dev/axgbe/xgbe-dev.c
Stephan de Wit 2b8df536a6 axgbe: Various stability improvements
Hook in RSS glue.

Default to "off" for the split header feature to ensure netmap
compatibility.

Change the PCS indirection register values based on hardware type
(ported from Linux).

Move tunable settings to sysctl_init() and set the defaults there.
Ensure it's called at the right time by moving it back.

Reset PHY RX data path when mailbox command times out (Ported from
Linux).

Check if VLAN HW tagging is enabled before assuming a VLAN tag
is present in a descriptor.

Disable the hardware filter since multicast traffic is dropped
in promisc mode.

Remove unnecessary return statement.

Missing sfp_get_mux, causing a race between ports to read
SFP(+) sideband signals.

Validate and fix incorrectly initialized polarity/configuration
registers.

Remove unnecessary SFP reset.

axgbe_isc_rxd_pkt_get has no error state, remove unnecessary
big packet check.

Enable RSF to prevent zero-length packets while in Netmap mode.

DMA cache coherency update (ported from Linux).

Reviewed by: imp
Pull Request: https://github.com/freebsd/freebsd-src/pull/1103
2024-04-28 19:57:51 -06:00

2870 lines
77 KiB
C

/*
* AMD 10Gb Ethernet driver
*
* Copyright (c) 2014-2016,2020 Advanced Micro Devices, Inc.
*
* This file is available to you under your choice of the following two
* licenses:
*
* License 1: GPLv2
*
* This file is free software; you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or (at
* your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*
* License 2: Modified BSD
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "xgbe.h"
#include "xgbe-common.h"
#include <net/if_dl.h>
static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
{
return (if_getmtu(pdata->netdev) + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
}
static unsigned int
xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec)
{
unsigned long rate;
unsigned int ret;
rate = pdata->sysclk_rate;
/*
* Convert the input usec value to the watchdog timer value. Each
* watchdog timer value is equivalent to 256 clock cycles.
* Calculate the required value as:
* ( usec * ( system_clock_mhz / 10^6 ) / 256
*/
ret = (usec * (rate / 1000000)) / 256;
return (ret);
}
static unsigned int
xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt)
{
unsigned long rate;
unsigned int ret;
rate = pdata->sysclk_rate;
/*
* Convert the input watchdog timer value to the usec value. Each
* watchdog timer value is equivalent to 256 clock cycles.
* Calculate the required value as:
* ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
*/
ret = (riwt * 256) / (rate / 1000000);
return (ret);
}
static int
xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
{
unsigned int pblx8, pbl;
unsigned int i;
pblx8 = DMA_PBL_X8_DISABLE;
pbl = pdata->pbl;
if (pdata->pbl > 32) {
pblx8 = DMA_PBL_X8_ENABLE;
pbl >>= 3;
}
for (i = 0; i < pdata->channel_count; i++) {
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
pblx8);
if (pdata->channel[i]->tx_ring)
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
PBL, pbl);
if (pdata->channel[i]->rx_ring)
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
PBL, pbl);
}
return (0);
}
static int
xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
pdata->tx_osp_mode);
}
return (0);
}
static int
xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
{
unsigned int i;
for (i = 0; i < pdata->rx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
return (0);
}
static int
xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
{
unsigned int i;
for (i = 0; i < pdata->tx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
return (0);
}
static int
xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
{
unsigned int i;
for (i = 0; i < pdata->rx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
return (0);
}
static int
xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
{
unsigned int i;
for (i = 0; i < pdata->tx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
return (0);
}
static int
xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
pdata->rx_riwt);
}
return (0);
}
static int
xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
{
return (0);
}
static void
xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
pdata->rx_buf_size);
}
}
static void
xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
{
unsigned int i;
int tso_enabled = (if_getcapenable(pdata->netdev) & IFCAP_TSO);
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
axgbe_printf(1, "TSO in channel %d %s\n", i, tso_enabled ? "enabled" : "disabled");
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, tso_enabled ? 1 : 0);
}
}
static void
xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
{
unsigned int i;
int sph_enable_flag = XGMAC_IOREAD_BITS(pdata, MAC_HWF1R, SPHEN);
axgbe_printf(1, "sph_enable %d sph feature enabled?: %d\n",
pdata->sph_enable, sph_enable_flag);
if (pdata->sph_enable && sph_enable_flag)
axgbe_printf(0, "SPH Enabled\n");
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
if (pdata->sph_enable && sph_enable_flag) {
/* Enable split header feature */
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
} else {
/* Disable split header feature */
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 0);
}
/* per-channel confirmation of SPH being disabled/enabled */
int val = XGMAC_DMA_IOREAD_BITS(pdata->channel[i], DMA_CH_CR, SPH);
axgbe_printf(0, "%s: SPH %s in channel %d\n", __func__,
(val ? "enabled" : "disabled"), i);
}
if (pdata->sph_enable && sph_enable_flag)
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
}
static int
xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
unsigned int index, unsigned int val)
{
unsigned int wait;
int ret = 0;
mtx_lock(&pdata->rss_mutex);
if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
ret = -EBUSY;
goto unlock;
}
XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
wait = 1000;
while (wait--) {
if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
goto unlock;
DELAY(1000);
}
ret = -EBUSY;
unlock:
mtx_unlock(&pdata->rss_mutex);
return (ret);
}
static int
xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
{
unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(uint32_t);
unsigned int *key = (unsigned int *)&pdata->rss_key;
int ret;
while (key_regs--) {
ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
key_regs, *key++);
if (ret)
return (ret);
}
return (0);
}
static int
xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
{
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i,
pdata->rss_table[i]);
if (ret)
return (ret);
}
return (0);
}
static int
xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const uint8_t *key)
{
memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
return (xgbe_write_rss_hash_key(pdata));
}
static int
xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const uint32_t *table)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
return (xgbe_write_rss_lookup_table(pdata));
}
static int
xgbe_enable_rss(struct xgbe_prv_data *pdata)
{
int ret;
if (!pdata->hw_feat.rss)
return (-EOPNOTSUPP);
/* Program the hash key */
ret = xgbe_write_rss_hash_key(pdata);
if (ret)
return (ret);
/* Program the lookup table */
ret = xgbe_write_rss_lookup_table(pdata);
if (ret)
return (ret);
/* Set the RSS options */
XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
/* Enable RSS */
XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
axgbe_printf(0, "RSS Enabled\n");
return (0);
}
static int
xgbe_disable_rss(struct xgbe_prv_data *pdata)
{
if (!pdata->hw_feat.rss)
return (-EOPNOTSUPP);
XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
axgbe_printf(0, "RSS Disabled\n");
return (0);
}
static void
xgbe_config_rss(struct xgbe_prv_data *pdata)
{
int ret;
if (!pdata->hw_feat.rss)
return;
/* Check if the interface has RSS capability */
if (pdata->enable_rss)
ret = xgbe_enable_rss(pdata);
else
ret = xgbe_disable_rss(pdata);
if (ret)
axgbe_error("error configuring RSS, RSS disabled\n");
}
static int
xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
{
unsigned int max_q_count, q_count;
unsigned int reg, reg_val;
unsigned int i;
/* Clear MTL flow control */
for (i = 0; i < pdata->rx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
/* Clear MAC flow control */
max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
reg = MAC_Q0TFCR;
for (i = 0; i < q_count; i++) {
reg_val = XGMAC_IOREAD(pdata, reg);
XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
XGMAC_IOWRITE(pdata, reg, reg_val);
reg += MAC_QTFCR_INC;
}
return (0);
}
static int
xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
{
unsigned int max_q_count, q_count;
unsigned int reg, reg_val;
unsigned int i;
/* Set MTL flow control */
for (i = 0; i < pdata->rx_q_count; i++) {
unsigned int ehfc = 0;
if (pdata->rx_rfd[i]) {
/* Flow control thresholds are established */
/* TODO - enable pfc/ets support */
ehfc = 1;
}
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
axgbe_printf(1, "flow control %s for RXq%u\n",
ehfc ? "enabled" : "disabled", i);
}
/* Set MAC flow control */
max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
reg = MAC_Q0TFCR;
for (i = 0; i < q_count; i++) {
reg_val = XGMAC_IOREAD(pdata, reg);
/* Enable transmit flow control */
XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
/* Set pause time */
XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
XGMAC_IOWRITE(pdata, reg, reg_val);
reg += MAC_QTFCR_INC;
}
return (0);
}
static int
xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
return (0);
}
static int
xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
return (0);
}
static int
xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
{
if (pdata->tx_pause)
xgbe_enable_tx_flow_control(pdata);
else
xgbe_disable_tx_flow_control(pdata);
return (0);
}
static int
xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
{
if (pdata->rx_pause)
xgbe_enable_rx_flow_control(pdata);
else
xgbe_disable_rx_flow_control(pdata);
return (0);
}
static void
xgbe_config_flow_control(struct xgbe_prv_data *pdata)
{
xgbe_config_tx_flow_control(pdata);
xgbe_config_rx_flow_control(pdata);
XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 0);
}
static void
xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
{
struct xgbe_channel *channel;
unsigned int i, ver;
/* Set the interrupt mode if supported */
if (pdata->channel_irq_mode)
XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
pdata->channel_irq_mode);
ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
for (i = 0; i < pdata->channel_count; i++) {
channel = pdata->channel[i];
/* Clear all the interrupts which are set */
XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
/* Clear all interrupt enable bits */
channel->curr_ier = 0;
/* Enable following interrupts
* NIE - Normal Interrupt Summary Enable
* AIE - Abnormal Interrupt Summary Enable
* FBEE - Fatal Bus Error Enable
*/
if (ver < 0x21) {
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
} else {
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
}
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
if (channel->tx_ring) {
/* Enable the following Tx interrupts
* TIE - Transmit Interrupt Enable (unless using
* per channel interrupts in edge triggered
* mode)
*/
if (!pdata->per_channel_irq || pdata->channel_irq_mode)
XGMAC_SET_BITS(channel->curr_ier,
DMA_CH_IER, TIE, 1);
}
if (channel->rx_ring) {
/* Enable following Rx interrupts
* RBUE - Receive Buffer Unavailable Enable
* RIE - Receive Interrupt Enable (unless using
* per channel interrupts in edge triggered
* mode)
*/
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
if (!pdata->per_channel_irq || pdata->channel_irq_mode)
XGMAC_SET_BITS(channel->curr_ier,
DMA_CH_IER, RIE, 1);
}
XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
}
}
static void
xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
{
unsigned int mtl_q_isr;
unsigned int q_count, i;
q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
for (i = 0; i < q_count; i++) {
/* Clear all the interrupts which are set */
mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
/* No MTL interrupts to be enabled */
XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
}
}
static void
xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
{
unsigned int mac_ier = 0;
/* Enable Timestamp interrupt */
XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
/* Enable all counter interrupts */
XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
/* Enable MDIO single command completion interrupt */
XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
}
static int
xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
{
unsigned int ss;
switch (speed) {
case SPEED_1000:
ss = 0x03;
break;
case SPEED_2500:
ss = 0x02;
break;
case SPEED_10000:
ss = 0x00;
break;
default:
return (-EINVAL);
}
if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
return (0);
}
static int
xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
{
/* Put the VLAN tag in the Rx descriptor */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
/* Don't check the VLAN type */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
/* Check only C-TAG (0x8100) packets */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
/* Enable VLAN tag stripping */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
axgbe_printf(0, "VLAN Stripping Enabled\n");
return (0);
}
static int
xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
axgbe_printf(0, "VLAN Stripping Disabled\n");
return (0);
}
static int
xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
{
/* Enable VLAN filtering */
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
/* Enable VLAN Hash Table filtering */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
/* Disable VLAN tag inverse matching */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
/* Only filter on the lower 12-bits of the VLAN tag */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
/* In order for the VLAN Hash Table filtering to be effective,
* the VLAN tag identifier in the VLAN Tag Register must not
* be zero. Set the VLAN tag identifier to "1" to enable the
* VLAN Hash Table filtering. This implies that a VLAN tag of
* 1 will always pass filtering.
*/
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
axgbe_printf(0, "VLAN filtering Enabled\n");
return (0);
}
static int
xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
{
/* Disable VLAN filtering */
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
axgbe_printf(0, "VLAN filtering Disabled\n");
return (0);
}
static uint32_t
xgbe_vid_crc32_le(__le16 vid_le)
{
uint32_t crc = ~0;
uint32_t temp = 0;
unsigned char *data = (unsigned char *)&vid_le;
unsigned char data_byte = 0;
int i, bits;
bits = get_bitmask_order(VLAN_VID_MASK);
for (i = 0; i < bits; i++) {
if ((i % 8) == 0)
data_byte = data[i / 8];
temp = ((crc & 1) ^ data_byte) & 1;
crc >>= 1;
data_byte >>= 1;
if (temp)
crc ^= CRC32_POLY_LE;
}
return (crc);
}
static int
xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
{
uint32_t crc;
uint16_t vid;
uint16_t vlan_hash_table = 0;
__le16 vid_le = 0;
axgbe_printf(1, "%s: Before updating VLANHTR 0x%x\n", __func__,
XGMAC_IOREAD(pdata, MAC_VLANHTR));
/* Generate the VLAN Hash Table value */
for_each_set_bit(vid, pdata->active_vlans, VLAN_NVID) {
/* Get the CRC32 value of the VLAN ID */
vid_le = cpu_to_le16(vid);
crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
vlan_hash_table |= (1 << crc);
axgbe_printf(1, "%s: vid 0x%x vid_le 0x%x crc 0x%x "
"vlan_hash_table 0x%x\n", __func__, vid, vid_le, crc,
vlan_hash_table);
}
/* Set the VLAN Hash Table filtering register */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
axgbe_printf(1, "%s: After updating VLANHTR 0x%x\n", __func__,
XGMAC_IOREAD(pdata, MAC_VLANHTR));
return (0);
}
static int
xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable)
{
unsigned int val = enable ? 1 : 0;
if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
return (0);
axgbe_printf(1, "%s promiscous mode\n", enable? "entering" : "leaving");
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
/* Hardware will still perform VLAN filtering in promiscuous mode */
if (enable) {
axgbe_printf(1, "Disabling rx vlan filtering\n");
xgbe_disable_rx_vlan_filtering(pdata);
} else {
if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
axgbe_printf(1, "Enabling rx vlan filtering\n");
xgbe_enable_rx_vlan_filtering(pdata);
}
}
return (0);
}
static int
xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable)
{
unsigned int val = enable ? 1 : 0;
if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
return (0);
axgbe_printf(1,"%s allmulti mode\n", enable ? "entering" : "leaving");
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
return (0);
}
static void
xgbe_set_mac_reg(struct xgbe_prv_data *pdata, char *addr, unsigned int *mac_reg)
{
unsigned int mac_addr_hi, mac_addr_lo;
uint8_t *mac_addr;
mac_addr_lo = 0;
mac_addr_hi = 0;
if (addr) {
mac_addr = (uint8_t *)&mac_addr_lo;
mac_addr[0] = addr[0];
mac_addr[1] = addr[1];
mac_addr[2] = addr[2];
mac_addr[3] = addr[3];
mac_addr = (uint8_t *)&mac_addr_hi;
mac_addr[0] = addr[4];
mac_addr[1] = addr[5];
axgbe_printf(1, "adding mac address %pM at %#x\n", addr, *mac_reg);
XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
}
XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
*mac_reg += MAC_MACA_INC;
XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
*mac_reg += MAC_MACA_INC;
}
static void
xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
{
unsigned int mac_reg;
unsigned int addn_macs;
mac_reg = MAC_MACA1HR;
addn_macs = pdata->hw_feat.addn_mac;
xgbe_set_mac_reg(pdata, pdata->mac_addr, &mac_reg);
addn_macs--;
/* Clear remaining additional MAC address entries */
while (addn_macs--)
xgbe_set_mac_reg(pdata, NULL, &mac_reg);
}
static int
xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
{
/* TODO - add support to set mac hash table */
xgbe_set_mac_addn_addrs(pdata);
return (0);
}
static int
xgbe_set_mac_address(struct xgbe_prv_data *pdata, uint8_t *addr)
{
unsigned int mac_addr_hi, mac_addr_lo;
mac_addr_hi = (addr[5] << 8) | (addr[4] << 0);
mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
(addr[1] << 8) | (addr[0] << 0);
XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
return (0);
}
static int
xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
{
unsigned int pr_mode, am_mode;
pr_mode = ((if_getflags(pdata->netdev) & IFF_PPROMISC) != 0);
am_mode = ((if_getflags(pdata->netdev) & IFF_ALLMULTI) != 0);
xgbe_set_promiscuous_mode(pdata, pr_mode);
xgbe_set_all_multicast_mode(pdata, am_mode);
xgbe_add_mac_addresses(pdata);
return (0);
}
static int
xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
{
unsigned int reg;
if (gpio > 15)
return (-EINVAL);
reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
reg &= ~(1 << (gpio + 16));
XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
return (0);
}
static int
xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
{
unsigned int reg;
if (gpio > 15)
return (-EINVAL);
reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
reg |= (1 << (gpio + 16));
XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
return (0);
}
static int
xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
{
unsigned long flags;
unsigned int mmd_address, index, offset;
int mmd_data;
if (mmd_reg & MII_ADDR_C45)
mmd_address = mmd_reg & ~MII_ADDR_C45;
else
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
/* The PCS registers are accessed using mmio. The underlying
* management interface uses indirect addressing to access the MMD
* register sets. This requires accessing of the PCS register in two
* phases, an address phase and a data phase.
*
* The mmio interface is based on 16-bit offsets and values. All
* register offsets must therefore be adjusted by left shifting the
* offset 1 bit and reading 16 bits of data.
*/
mmd_address <<= 1;
index = mmd_address & ~pdata->xpcs_window_mask;
offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
spin_lock_irqsave(&pdata->xpcs_lock, flags);
XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
mmd_data = XPCS16_IOREAD(pdata, offset);
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
return (mmd_data);
}
static void
xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
int mmd_data)
{
unsigned long flags;
unsigned int mmd_address, index, offset;
if (mmd_reg & MII_ADDR_C45)
mmd_address = mmd_reg & ~MII_ADDR_C45;
else
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
/* The PCS registers are accessed using mmio. The underlying
* management interface uses indirect addressing to access the MMD
* register sets. This requires accessing of the PCS register in two
* phases, an address phase and a data phase.
*
* The mmio interface is based on 16-bit offsets and values. All
* register offsets must therefore be adjusted by left shifting the
* offset 1 bit and writing 16 bits of data.
*/
mmd_address <<= 1;
index = mmd_address & ~pdata->xpcs_window_mask;
offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
spin_lock_irqsave(&pdata->xpcs_lock, flags);
XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
XPCS16_IOWRITE(pdata, offset, mmd_data);
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
}
static int
xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
{
unsigned long flags;
unsigned int mmd_address;
int mmd_data;
if (mmd_reg & MII_ADDR_C45)
mmd_address = mmd_reg & ~MII_ADDR_C45;
else
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
/* The PCS registers are accessed using mmio. The underlying APB3
* management interface uses indirect addressing to access the MMD
* register sets. This requires accessing of the PCS register in two
* phases, an address phase and a data phase.
*
* The mmio interface is based on 32-bit offsets and values. All
* register offsets must therefore be adjusted by left shifting the
* offset 2 bits and reading 32 bits of data.
*/
spin_lock_irqsave(&pdata->xpcs_lock, flags);
XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
return (mmd_data);
}
static void
xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
int mmd_data)
{
unsigned int mmd_address;
unsigned long flags;
if (mmd_reg & MII_ADDR_C45)
mmd_address = mmd_reg & ~MII_ADDR_C45;
else
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
/* The PCS registers are accessed using mmio. The underlying APB3
* management interface uses indirect addressing to access the MMD
* register sets. This requires accessing of the PCS register in two
* phases, an address phase and a data phase.
*
* The mmio interface is based on 32-bit offsets and values. All
* register offsets must therefore be adjusted by left shifting the
* offset 2 bits and writing 32 bits of data.
*/
spin_lock_irqsave(&pdata->xpcs_lock, flags);
XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
}
static int
xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
{
switch (pdata->vdata->xpcs_access) {
case XGBE_XPCS_ACCESS_V1:
return (xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg));
case XGBE_XPCS_ACCESS_V2:
default:
return (xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg));
}
}
static void
xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
int mmd_data)
{
switch (pdata->vdata->xpcs_access) {
case XGBE_XPCS_ACCESS_V1:
return (xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data));
case XGBE_XPCS_ACCESS_V2:
default:
return (xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data));
}
}
static unsigned int
xgbe_create_mdio_sca(int port, int reg)
{
unsigned int mdio_sca, da;
da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
mdio_sca = 0;
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
return (mdio_sca);
}
static int
xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg,
uint16_t val)
{
unsigned int mdio_sca, mdio_sccd;
mtx_lock_spin(&pdata->mdio_mutex);
mdio_sca = xgbe_create_mdio_sca(addr, reg);
XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
mdio_sccd = 0;
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
EWOULDBLOCK) {
axgbe_error("%s: MDIO write error\n", __func__);
mtx_unlock_spin(&pdata->mdio_mutex);
return (-ETIMEDOUT);
}
mtx_unlock_spin(&pdata->mdio_mutex);
return (0);
}
static int
xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg)
{
unsigned int mdio_sca, mdio_sccd;
mtx_lock_spin(&pdata->mdio_mutex);
mdio_sca = xgbe_create_mdio_sca(addr, reg);
XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
mdio_sccd = 0;
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
EWOULDBLOCK) {
axgbe_error("%s: MDIO read error\n", __func__);
mtx_unlock_spin(&pdata->mdio_mutex);
return (-ETIMEDOUT);
}
mtx_unlock_spin(&pdata->mdio_mutex);
return (XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA));
}
static int
xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
enum xgbe_mdio_mode mode)
{
unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
switch (mode) {
case XGBE_MDIO_MODE_CL22:
if (port > XGMAC_MAX_C22_PORT)
return (-EINVAL);
reg_val |= (1 << port);
break;
case XGBE_MDIO_MODE_CL45:
break;
default:
return (-EINVAL);
}
XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
return (0);
}
static int
xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
{
return (!XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN));
}
static int
xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
axgbe_printf(0, "Receive checksum offload Disabled\n");
return (0);
}
static int
xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
axgbe_printf(0, "Receive checksum offload Enabled\n");
return (0);
}
static void
xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
{
struct xgbe_ring_desc *rdesc = rdata->rdesc;
/* Reset the Tx descriptor
* Set buffer 1 (lo) address to zero
* Set buffer 1 (hi) address to zero
* Reset all other control bits (IC, TTSE, B2L & B1L)
* Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
*/
rdesc->desc0 = 0;
rdesc->desc1 = 0;
rdesc->desc2 = 0;
rdesc->desc3 = 0;
wmb();
}
static void
xgbe_tx_desc_init(struct xgbe_channel *channel)
{
struct xgbe_ring *ring = channel->tx_ring;
struct xgbe_ring_data *rdata;
int i;
int start_index = ring->cur;
/* Initialze all descriptors */
for (i = 0; i < ring->rdesc_count; i++) {
rdata = XGBE_GET_DESC_DATA(ring, i);
/* Initialize Tx descriptor */
xgbe_tx_desc_reset(rdata);
}
/* Update the total number of Tx descriptors */
XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
/* Update the starting address of descriptor ring */
rdata = XGBE_GET_DESC_DATA(ring, start_index);
XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
upper_32_bits(rdata->rdata_paddr));
XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
lower_32_bits(rdata->rdata_paddr));
}
static void
xgbe_rx_desc_init(struct xgbe_channel *channel)
{
struct xgbe_ring *ring = channel->rx_ring;
struct xgbe_ring_data *rdata;
unsigned int start_index = ring->cur;
/*
* Just set desc_count and the starting address of the desc list
* here. Rest will be done as part of the txrx path.
*/
/* Update the total number of Rx descriptors */
XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
/* Update the starting address of descriptor ring */
rdata = XGBE_GET_DESC_DATA(ring, start_index);
XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
upper_32_bits(rdata->rdata_paddr));
XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
lower_32_bits(rdata->rdata_paddr));
}
static int
xgbe_dev_read(struct xgbe_channel *channel)
{
struct xgbe_prv_data *pdata = channel->pdata;
struct xgbe_ring *ring = channel->rx_ring;
struct xgbe_ring_data *rdata;
struct xgbe_ring_desc *rdesc;
struct xgbe_packet_data *packet = &ring->packet_data;
unsigned int err, etlt, l34t = 0;
axgbe_printf(1, "-->xgbe_dev_read: cur = %d\n", ring->cur);
rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
rdesc = rdata->rdesc;
/* Check for data availability */
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
return (1);
rmb();
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
/* TODO - Timestamp Context Descriptor */
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CONTEXT, 1);
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CONTEXT_NEXT, 0);
return (0);
}
/* Normal Descriptor, be sure Context Descriptor bit is off */
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
/* Indicate if a Context Descriptor is next */
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CONTEXT_NEXT, 1);
/* Get the header length */
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
FIRST, 1);
rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
RX_NORMAL_DESC2, HL);
if (rdata->rx.hdr_len)
pdata->ext_stats.rx_split_header_packets++;
} else
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
FIRST, 0);
/* Get the RSS hash */
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
RSS_HASH, 1);
packet->rss_hash = le32_to_cpu(rdesc->desc1);
l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
switch (l34t) {
case RX_DESC3_L34T_IPV4_TCP:
packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV4;
break;
case RX_DESC3_L34T_IPV4_UDP:
packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV4;
break;
case RX_DESC3_L34T_IPV6_TCP:
packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV6;
break;
case RX_DESC3_L34T_IPV6_UDP:
packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV6;
break;
default:
packet->rss_hash_type = M_HASHTYPE_OPAQUE;
break;
}
}
/* Not all the data has been transferred for this packet */
if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
/* This is not the last of the data for this packet */
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
LAST, 0);
return (0);
}
/* This is the last of the data for this packet */
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
LAST, 1);
/* Get the packet length */
rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
/* Set checksum done indicator as appropriate */
/* TODO - add tunneling support */
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CSUM_DONE, 1);
/* Check for errors (only valid in last descriptor) */
err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
axgbe_printf(1, "%s: err=%u, etlt=%#x\n", __func__, err, etlt);
if (!err || !etlt) {
/* No error if err is 0 or etlt is 0 */
if (etlt == 0x09 &&
(if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
VLAN_CTAG, 1);
packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
RX_NORMAL_DESC0, OVT);
axgbe_printf(1, "vlan-ctag=%#06x\n", packet->vlan_ctag);
}
} else {
unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
RX_PACKET_ATTRIBUTES, TNP);
if ((etlt == 0x05) || (etlt == 0x06)) {
axgbe_printf(1, "%s: err1 l34t %d err 0x%x etlt 0x%x\n",
__func__, l34t, err, etlt);
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CSUM_DONE, 0);
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
TNPCSUM_DONE, 0);
pdata->ext_stats.rx_csum_errors++;
} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
axgbe_printf(1, "%s: err2 l34t %d err 0x%x etlt 0x%x\n",
__func__, l34t, err, etlt);
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CSUM_DONE, 0);
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
TNPCSUM_DONE, 0);
pdata->ext_stats.rx_vxlan_csum_errors++;
} else {
axgbe_printf(1, "%s: tnp %d l34t %d err 0x%x etlt 0x%x\n",
__func__, tnp, l34t, err, etlt);
axgbe_printf(1, "%s: Channel: %d SR 0x%x DSR 0x%x \n",
__func__, channel->queue_index,
XGMAC_DMA_IOREAD(channel, DMA_CH_SR),
XGMAC_DMA_IOREAD(channel, DMA_CH_DSR));
axgbe_printf(1, "%s: ring cur %d dirty %d\n",
__func__, ring->cur, ring->dirty);
axgbe_printf(1, "%s: Desc 0x%08x-0x%08x-0x%08x-0x%08x\n",
__func__, rdesc->desc0, rdesc->desc1, rdesc->desc2,
rdesc->desc3);
XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
FRAME, 1);
}
}
axgbe_printf(1, "<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n",
channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur);
return (0);
}
static int
xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
{
/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT));
}
static int
xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
{
/* Rx and Tx share LD bit, so check TDES3.LD bit */
return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD));
}
static int
xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
{
struct xgbe_prv_data *pdata = channel->pdata;
axgbe_printf(1, "enable_int: DMA_CH_IER read - 0x%x\n",
channel->curr_ier);
switch (int_id) {
case XGMAC_INT_DMA_CH_SR_TI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
break;
case XGMAC_INT_DMA_CH_SR_TPS:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
break;
case XGMAC_INT_DMA_CH_SR_TBU:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
break;
case XGMAC_INT_DMA_CH_SR_RI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
break;
case XGMAC_INT_DMA_CH_SR_RBU:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
break;
case XGMAC_INT_DMA_CH_SR_RPS:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
break;
case XGMAC_INT_DMA_CH_SR_TI_RI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
break;
case XGMAC_INT_DMA_CH_SR_FBE:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
break;
case XGMAC_INT_DMA_ALL:
channel->curr_ier |= channel->saved_ier;
break;
default:
return (-1);
}
XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
axgbe_printf(1, "enable_int: DMA_CH_IER write - 0x%x\n",
channel->curr_ier);
return (0);
}
static int
xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
{
struct xgbe_prv_data *pdata = channel->pdata;
axgbe_printf(1, "disable_int: DMA_CH_IER read - 0x%x\n",
channel->curr_ier);
switch (int_id) {
case XGMAC_INT_DMA_CH_SR_TI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
break;
case XGMAC_INT_DMA_CH_SR_TPS:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
break;
case XGMAC_INT_DMA_CH_SR_TBU:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
break;
case XGMAC_INT_DMA_CH_SR_RI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
break;
case XGMAC_INT_DMA_CH_SR_RBU:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
break;
case XGMAC_INT_DMA_CH_SR_RPS:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
break;
case XGMAC_INT_DMA_CH_SR_TI_RI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
break;
case XGMAC_INT_DMA_CH_SR_FBE:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
break;
case XGMAC_INT_DMA_ALL:
channel->saved_ier = channel->curr_ier;
channel->curr_ier = 0;
break;
default:
return (-1);
}
XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
axgbe_printf(1, "disable_int: DMA_CH_IER write - 0x%x\n",
channel->curr_ier);
return (0);
}
static int
__xgbe_exit(struct xgbe_prv_data *pdata)
{
unsigned int count = 2000;
/* Issue a software reset */
XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
DELAY(10);
/* Poll Until Poll Condition */
while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
DELAY(500);
if (!count)
return (-EBUSY);
return (0);
}
static int
xgbe_exit(struct xgbe_prv_data *pdata)
{
int ret;
/* To guard against possible incorrectly generated interrupts,
* issue the software reset twice.
*/
ret = __xgbe_exit(pdata);
if (ret) {
axgbe_error("%s: exit error %d\n", __func__, ret);
return (ret);
}
return (__xgbe_exit(pdata));
}
static int
xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
{
unsigned int i, count;
if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
return (0);
for (i = 0; i < pdata->tx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
/* Poll Until Poll Condition */
for (i = 0; i < pdata->tx_q_count; i++) {
count = 2000;
while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
MTL_Q_TQOMR, FTQ))
DELAY(500);
if (!count)
return (-EBUSY);
}
return (0);
}
static void
xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
{
unsigned int sbmr;
sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
/* Set enhanced addressing mode */
XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
/* Set the System Bus mode */
XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
/* Set descriptor fetching threshold */
if (pdata->vdata->tx_desc_prefetch)
XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
pdata->vdata->tx_desc_prefetch);
if (pdata->vdata->rx_desc_prefetch)
XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
pdata->vdata->rx_desc_prefetch);
}
static void
xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
if (pdata->awarcr)
XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
}
static void
xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Set Tx to weighted round robin scheduling algorithm */
XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
/* Set Tx traffic classes to use WRR algorithm with equal weights */
for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
MTL_TSA_ETS);
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
}
/* Set Rx to strict priority algorithm */
XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
}
static void
xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
unsigned int queue, unsigned int q_fifo_size)
{
unsigned int frame_fifo_size;
unsigned int rfa, rfd;
frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
axgbe_printf(1, "%s: queue %d q_fifo_size %d frame_fifo_size 0x%x\n",
__func__, queue, q_fifo_size, frame_fifo_size);
/* TODO - add pfc/ets related support */
/* This path deals with just maximum frame sizes which are
* limited to a jumbo frame of 9,000 (plus headers, etc.)
* so we can never exceed the maximum allowable RFA/RFD
* values.
*/
if (q_fifo_size <= 2048) {
/* rx_rfd to zero to signal no flow control */
pdata->rx_rfa[queue] = 0;
pdata->rx_rfd[queue] = 0;
return;
}
if (q_fifo_size <= 4096) {
/* Between 2048 and 4096 */
pdata->rx_rfa[queue] = 0; /* Full - 1024 bytes */
pdata->rx_rfd[queue] = 1; /* Full - 1536 bytes */
return;
}
if (q_fifo_size <= frame_fifo_size) {
/* Between 4096 and max-frame */
pdata->rx_rfa[queue] = 2; /* Full - 2048 bytes */
pdata->rx_rfd[queue] = 5; /* Full - 3584 bytes */
return;
}
if (q_fifo_size <= (frame_fifo_size * 3)) {
/* Between max-frame and 3 max-frames,
* trigger if we get just over a frame of data and
* resume when we have just under half a frame left.
*/
rfa = q_fifo_size - frame_fifo_size;
rfd = rfa + (frame_fifo_size / 2);
} else {
/* Above 3 max-frames - trigger when just over
* 2 frames of space available
*/
rfa = frame_fifo_size * 2;
rfa += XGMAC_FLOW_CONTROL_UNIT;
rfd = rfa + frame_fifo_size;
}
pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
axgbe_printf(1, "%s: forced queue %d rfa 0x%x rfd 0x%x\n", __func__,
queue, pdata->rx_rfa[queue], pdata->rx_rfd[queue]);
}
static void
xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
unsigned int *fifo)
{
unsigned int q_fifo_size;
unsigned int i;
for (i = 0; i < pdata->rx_q_count; i++) {
q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
axgbe_printf(1, "%s: fifo[%d] - 0x%x q_fifo_size 0x%x\n",
__func__, i, fifo[i], q_fifo_size);
xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
}
}
static void
xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < pdata->rx_q_count; i++) {
axgbe_printf(1, "%s: queue %d rfa %d rfd %d\n", __func__, i,
pdata->rx_rfa[i], pdata->rx_rfd[i]);
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
pdata->rx_rfa[i]);
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
pdata->rx_rfd[i]);
axgbe_printf(1, "%s: MTL_Q_RQFCR 0x%x\n", __func__,
XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR));
}
}
static unsigned int
xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
{
/* The configured value may not be the actual amount of fifo RAM */
return (min_t(unsigned int, pdata->tx_max_fifo_size,
pdata->hw_feat.tx_fifo_size));
}
static unsigned int
xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
{
/* The configured value may not be the actual amount of fifo RAM */
return (min_t(unsigned int, pdata->rx_max_fifo_size,
pdata->hw_feat.rx_fifo_size));
}
static void
xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count,
unsigned int *fifo)
{
unsigned int q_fifo_size;
unsigned int p_fifo;
unsigned int i;
q_fifo_size = fifo_size / queue_count;
/* Calculate the fifo setting by dividing the queue's fifo size
* by the fifo allocation increment (with 0 representing the
* base allocation increment so decrement the result by 1).
*/
p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
if (p_fifo)
p_fifo--;
/* Distribute the fifo equally amongst the queues */
for (i = 0; i < queue_count; i++)
fifo[i] = p_fifo;
}
static unsigned int
xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count,
unsigned int *fifo)
{
unsigned int i;
MPASS(powerof2(XGMAC_FIFO_MIN_ALLOC));
if (queue_count <= IEEE_8021QAZ_MAX_TCS)
return (fifo_size);
/* Rx queues 9 and up are for specialized packets,
* such as PTP or DCB control packets, etc. and
* don't require a large fifo
*/
for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
fifo_size -= XGMAC_FIFO_MIN_ALLOC;
}
return (fifo_size);
}
static void
xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
{
unsigned int fifo_size;
unsigned int fifo[XGBE_MAX_QUEUES];
unsigned int i;
fifo_size = xgbe_get_tx_fifo_size(pdata);
axgbe_printf(1, "%s: fifo_size 0x%x\n", __func__, fifo_size);
xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
for (i = 0; i < pdata->tx_q_count; i++) {
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
axgbe_printf(1, "Tx q %d FIFO Size 0x%x\n", i,
XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR));
}
axgbe_printf(1, "%d Tx hardware queues, %d byte fifo per queue\n",
pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
}
static void
xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
{
unsigned int fifo_size;
unsigned int fifo[XGBE_MAX_QUEUES];
unsigned int prio_queues;
unsigned int i;
/* TODO - add pfc/ets related support */
/* Clear any DCB related fifo/queue information */
fifo_size = xgbe_get_rx_fifo_size(pdata);
prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
axgbe_printf(1, "%s: fifo_size 0x%x rx_q_cnt %d prio %d\n", __func__,
fifo_size, pdata->rx_q_count, prio_queues);
/* Assign a minimum fifo to the non-VLAN priority queues */
fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
for (i = 0; i < pdata->rx_q_count; i++) {
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
axgbe_printf(1, "Rx q %d FIFO Size 0x%x\n", i,
XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR));
}
xgbe_calculate_flow_control_threshold(pdata, fifo);
xgbe_config_flow_control_threshold(pdata);
axgbe_printf(1, "%u Rx hardware queues, %u byte fifo/queue\n",
pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
}
static void
xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
{
unsigned int qptc, qptc_extra, queue;
unsigned int prio_queues;
unsigned int ppq, ppq_extra, prio;
unsigned int mask;
unsigned int i, j, reg, reg_val;
/* Map the MTL Tx Queues to Traffic Classes
* Note: Tx Queues >= Traffic Classes
*/
qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
for (j = 0; j < qptc; j++) {
axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
Q2TCMAP, i);
pdata->q2tc_map[queue++] = i;
}
if (i < qptc_extra) {
axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
Q2TCMAP, i);
pdata->q2tc_map[queue++] = i;
}
}
/* Map the 8 VLAN priority values to available MTL Rx queues */
prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
reg = MAC_RQC2R;
reg_val = 0;
for (i = 0, prio = 0; i < prio_queues;) {
mask = 0;
for (j = 0; j < ppq; j++) {
axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
mask |= (1 << prio);
pdata->prio2q_map[prio++] = i;
}
if (i < ppq_extra) {
axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
mask |= (1 << prio);
pdata->prio2q_map[prio++] = i;
}
reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
continue;
XGMAC_IOWRITE(pdata, reg, reg_val);
reg += MAC_RQC2_INC;
reg_val = 0;
}
/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
reg = MTL_RQDCM0R;
reg_val = 0;
for (i = 0; i < pdata->rx_q_count;) {
reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
continue;
XGMAC_IOWRITE(pdata, reg, reg_val);
reg += MTL_RQDCM_INC;
reg_val = 0;
}
}
static void
xgbe_config_mac_address(struct xgbe_prv_data *pdata)
{
xgbe_set_mac_address(pdata, if_getlladdr(pdata->netdev));
/*
* Promisc mode does not work as intended. Multicast traffic
* is triggering the filter, so enable Receive All.
*/
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, RA, 1);
/* Filtering is done using perfect filtering and hash filtering */
if (pdata->hw_feat.hash_table_size) {
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
}
}
static void
xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
{
unsigned int val;
val = (if_getmtu(pdata->netdev) > XGMAC_STD_PACKET_MTU) ? 1 : 0;
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
}
static void
xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
{
xgbe_set_speed(pdata, pdata->phy_speed);
}
static void
xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
{
if ((if_getcapenable(pdata->netdev) & IFCAP_RXCSUM))
xgbe_enable_rx_csum(pdata);
else
xgbe_disable_rx_csum(pdata);
}
static void
xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
{
/* Indicate that VLAN Tx CTAGs come from context descriptors */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
/* Set the current VLAN Hash Table register value */
xgbe_update_vlan_hash_table(pdata);
if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
axgbe_printf(1, "Enabling rx vlan filtering\n");
xgbe_enable_rx_vlan_filtering(pdata);
} else {
axgbe_printf(1, "Disabling rx vlan filtering\n");
xgbe_disable_rx_vlan_filtering(pdata);
}
if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
axgbe_printf(1, "Enabling rx vlan stripping\n");
xgbe_enable_rx_vlan_stripping(pdata);
} else {
axgbe_printf(1, "Disabling rx vlan stripping\n");
xgbe_disable_rx_vlan_stripping(pdata);
}
}
static uint64_t
xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
{
bool read_hi;
uint64_t val;
if (pdata->vdata->mmc_64bit) {
switch (reg_lo) {
/* These registers are always 32 bit */
case MMC_RXRUNTERROR:
case MMC_RXJABBERERROR:
case MMC_RXUNDERSIZE_G:
case MMC_RXOVERSIZE_G:
case MMC_RXWATCHDOGERROR:
read_hi = false;
break;
default:
read_hi = true;
}
} else {
switch (reg_lo) {
/* These registers are always 64 bit */
case MMC_TXOCTETCOUNT_GB_LO:
case MMC_TXOCTETCOUNT_G_LO:
case MMC_RXOCTETCOUNT_GB_LO:
case MMC_RXOCTETCOUNT_G_LO:
read_hi = true;
break;
default:
read_hi = false;
}
}
val = XGMAC_IOREAD(pdata, reg_lo);
if (read_hi)
val |= ((uint64_t)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
return (val);
}
static void
xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
{
struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
stats->txoctetcount_gb +=
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
stats->txframecount_gb +=
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
stats->txbroadcastframes_g +=
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
stats->txmulticastframes_g +=
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
stats->tx64octets_gb +=
xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
stats->tx65to127octets_gb +=
xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
stats->tx128to255octets_gb +=
xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
stats->tx256to511octets_gb +=
xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
stats->tx512to1023octets_gb +=
xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
stats->tx1024tomaxoctets_gb +=
xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
stats->txunicastframes_gb +=
xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
stats->txmulticastframes_gb +=
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
stats->txbroadcastframes_g +=
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
stats->txunderflowerror +=
xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
stats->txoctetcount_g +=
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
stats->txframecount_g +=
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
stats->txpauseframes +=
xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
stats->txvlanframes_g +=
xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
}
static void
xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
{
struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
stats->rxframecount_gb +=
xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
stats->rxoctetcount_gb +=
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
stats->rxoctetcount_g +=
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
stats->rxbroadcastframes_g +=
xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
stats->rxmulticastframes_g +=
xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
stats->rxcrcerror +=
xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
stats->rxrunterror +=
xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
stats->rxjabbererror +=
xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
stats->rxundersize_g +=
xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
stats->rxoversize_g +=
xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
stats->rx64octets_gb +=
xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
stats->rx65to127octets_gb +=
xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
stats->rx128to255octets_gb +=
xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
stats->rx256to511octets_gb +=
xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
stats->rx512to1023octets_gb +=
xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
stats->rx1024tomaxoctets_gb +=
xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
stats->rxunicastframes_g +=
xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
stats->rxlengtherror +=
xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
stats->rxoutofrangetype +=
xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
stats->rxpauseframes +=
xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
stats->rxfifooverflow +=
xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
stats->rxvlanframes_gb +=
xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
stats->rxwatchdogerror +=
xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
}
static void
xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
{
struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
/* Freeze counters */
XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
stats->txoctetcount_gb +=
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
stats->txframecount_gb +=
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
stats->txbroadcastframes_g +=
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
stats->txmulticastframes_g +=
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
stats->tx64octets_gb +=
xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
stats->tx65to127octets_gb +=
xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
stats->tx128to255octets_gb +=
xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
stats->tx256to511octets_gb +=
xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
stats->tx512to1023octets_gb +=
xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
stats->tx1024tomaxoctets_gb +=
xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
stats->txunicastframes_gb +=
xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
stats->txmulticastframes_gb +=
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
stats->txbroadcastframes_gb +=
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
stats->txunderflowerror +=
xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
stats->txoctetcount_g +=
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
stats->txframecount_g +=
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
stats->txpauseframes +=
xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
stats->txvlanframes_g +=
xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
stats->rxframecount_gb +=
xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
stats->rxoctetcount_gb +=
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
stats->rxoctetcount_g +=
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
stats->rxbroadcastframes_g +=
xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
stats->rxmulticastframes_g +=
xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
stats->rxcrcerror +=
xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
stats->rxrunterror +=
xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
stats->rxjabbererror +=
xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
stats->rxundersize_g +=
xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
stats->rxoversize_g +=
xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
stats->rx64octets_gb +=
xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
stats->rx65to127octets_gb +=
xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
stats->rx128to255octets_gb +=
xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
stats->rx256to511octets_gb +=
xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
stats->rx512to1023octets_gb +=
xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
stats->rx1024tomaxoctets_gb +=
xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
stats->rxunicastframes_g +=
xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
stats->rxlengtherror +=
xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
stats->rxoutofrangetype +=
xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
stats->rxpauseframes +=
xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
stats->rxfifooverflow +=
xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
stats->rxvlanframes_gb +=
xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
stats->rxwatchdogerror +=
xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
/* Un-freeze counters */
XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
}
static void
xgbe_config_mmc(struct xgbe_prv_data *pdata)
{
/* Set counters to reset on read */
XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
/* Reset the counters */
XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
}
static void
xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
{
unsigned int tx_status;
unsigned long tx_timeout;
/* The Tx engine cannot be stopped if it is actively processing
* packets. Wait for the Tx queue to empty the Tx fifo. Don't
* wait forever though...
*/
tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
while (ticks < tx_timeout) {
tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
(XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
break;
DELAY(500);
}
if (ticks >= tx_timeout)
axgbe_printf(1, "timed out waiting for Tx queue %u to empty\n",
queue);
}
static void
xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
{
unsigned int tx_dsr, tx_pos, tx_qidx;
unsigned int tx_status;
unsigned long tx_timeout;
if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
return (xgbe_txq_prepare_tx_stop(pdata, queue));
/* Calculate the status register to read and the position within */
if (queue < DMA_DSRX_FIRST_QUEUE) {
tx_dsr = DMA_DSR0;
tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
} else {
tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
DMA_DSRX_TPS_START;
}
/* The Tx engine cannot be stopped if it is actively processing
* descriptors. Wait for the Tx engine to enter the stopped or
* suspended state. Don't wait forever though...
*/
tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
while (ticks < tx_timeout) {
tx_status = XGMAC_IOREAD(pdata, tx_dsr);
tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
if ((tx_status == DMA_TPS_STOPPED) ||
(tx_status == DMA_TPS_SUSPENDED))
break;
DELAY(500);
}
if (ticks >= tx_timeout)
axgbe_printf(1, "timed out waiting for Tx DMA channel %u to stop\n",
queue);
}
static void
xgbe_enable_tx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Enable each Tx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
}
/* Enable each Tx queue */
for (i = 0; i < pdata->tx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
MTL_Q_ENABLED);
/* Enable MAC Tx */
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
}
static void
xgbe_disable_tx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Prepare for Tx DMA channel stop */
for (i = 0; i < pdata->tx_q_count; i++)
xgbe_prepare_tx_stop(pdata, i);
/* Disable MAC Tx */
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
/* Disable each Tx queue */
for (i = 0; i < pdata->tx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
/* Disable each Tx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
}
}
static void
xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
{
unsigned int rx_status;
unsigned long rx_timeout;
/* The Rx engine cannot be stopped if it is actively processing
* packets. Wait for the Rx queue to empty the Rx fifo. Don't
* wait forever though...
*/
rx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
while (ticks < rx_timeout) {
rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
(XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
break;
DELAY(500);
}
if (ticks >= rx_timeout)
axgbe_printf(1, "timed out waiting for Rx queue %d to empty\n",
queue);
}
static void
xgbe_enable_rx(struct xgbe_prv_data *pdata)
{
unsigned int reg_val, i;
/* Enable each Rx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
}
/* Enable each Rx queue */
reg_val = 0;
for (i = 0; i < pdata->rx_q_count; i++)
reg_val |= (0x02 << (i << 1));
XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
/* Enable MAC Rx */
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
}
static void
xgbe_disable_rx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Disable MAC Rx */
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
/* Prepare for Rx DMA channel stop */
for (i = 0; i < pdata->rx_q_count; i++)
xgbe_prepare_rx_stop(pdata, i);
/* Disable each Rx queue */
XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
/* Disable each Rx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
}
}
static void
xgbe_powerup_tx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Enable each Tx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
}
/* Enable MAC Tx */
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
}
static void
xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Prepare for Tx DMA channel stop */
for (i = 0; i < pdata->tx_q_count; i++)
xgbe_prepare_tx_stop(pdata, i);
/* Disable MAC Tx */
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
/* Disable each Tx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
}
}
static void
xgbe_powerup_rx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Enable each Rx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
}
}
static void
xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Disable each Rx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
}
}
static int
xgbe_init(struct xgbe_prv_data *pdata)
{
struct xgbe_desc_if *desc_if = &pdata->desc_if;
int ret;
/* Flush Tx queues */
ret = xgbe_flush_tx_queues(pdata);
if (ret) {
axgbe_error("error flushing TX queues\n");
return (ret);
}
/*
* Initialize DMA related features
*/
xgbe_config_dma_bus(pdata);
xgbe_config_dma_cache(pdata);
xgbe_config_osp_mode(pdata);
xgbe_config_pbl_val(pdata);
xgbe_config_rx_coalesce(pdata);
xgbe_config_tx_coalesce(pdata);
xgbe_config_rx_buffer_size(pdata);
xgbe_config_tso_mode(pdata);
xgbe_config_sph_mode(pdata);
xgbe_config_rss(pdata);
desc_if->wrapper_tx_desc_init(pdata);
desc_if->wrapper_rx_desc_init(pdata);
xgbe_enable_dma_interrupts(pdata);
/*
* Initialize MTL related features
*/
xgbe_config_mtl_mode(pdata);
xgbe_config_queue_mapping(pdata);
xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
xgbe_config_tx_fifo_size(pdata);
xgbe_config_rx_fifo_size(pdata);
/*TODO: Error Packet and undersized good Packet forwarding enable
(FEP and FUP)
*/
xgbe_enable_mtl_interrupts(pdata);
/*
* Initialize MAC related features
*/
xgbe_config_mac_address(pdata);
xgbe_config_rx_mode(pdata);
xgbe_config_jumbo_enable(pdata);
xgbe_config_flow_control(pdata);
xgbe_config_mac_speed(pdata);
xgbe_config_checksum_offload(pdata);
xgbe_config_vlan_support(pdata);
xgbe_config_mmc(pdata);
xgbe_enable_mac_interrupts(pdata);
return (0);
}
void
xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
{
hw_if->tx_complete = xgbe_tx_complete;
hw_if->set_mac_address = xgbe_set_mac_address;
hw_if->config_rx_mode = xgbe_config_rx_mode;
hw_if->enable_rx_csum = xgbe_enable_rx_csum;
hw_if->disable_rx_csum = xgbe_disable_rx_csum;
hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
hw_if->read_mmd_regs = xgbe_read_mmd_regs;
hw_if->write_mmd_regs = xgbe_write_mmd_regs;
hw_if->set_speed = xgbe_set_speed;
hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
hw_if->set_gpio = xgbe_set_gpio;
hw_if->clr_gpio = xgbe_clr_gpio;
hw_if->enable_tx = xgbe_enable_tx;
hw_if->disable_tx = xgbe_disable_tx;
hw_if->enable_rx = xgbe_enable_rx;
hw_if->disable_rx = xgbe_disable_rx;
hw_if->powerup_tx = xgbe_powerup_tx;
hw_if->powerdown_tx = xgbe_powerdown_tx;
hw_if->powerup_rx = xgbe_powerup_rx;
hw_if->powerdown_rx = xgbe_powerdown_rx;
hw_if->dev_read = xgbe_dev_read;
hw_if->enable_int = xgbe_enable_int;
hw_if->disable_int = xgbe_disable_int;
hw_if->init = xgbe_init;
hw_if->exit = xgbe_exit;
/* Descriptor related Sequences have to be initialized here */
hw_if->tx_desc_init = xgbe_tx_desc_init;
hw_if->rx_desc_init = xgbe_rx_desc_init;
hw_if->tx_desc_reset = xgbe_tx_desc_reset;
hw_if->is_last_desc = xgbe_is_last_desc;
hw_if->is_context_desc = xgbe_is_context_desc;
/* For FLOW ctrl */
hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
/* For RX coalescing */
hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
hw_if->usec_to_riwt = xgbe_usec_to_riwt;
hw_if->riwt_to_usec = xgbe_riwt_to_usec;
/* For RX and TX threshold config */
hw_if->config_rx_threshold = xgbe_config_rx_threshold;
hw_if->config_tx_threshold = xgbe_config_tx_threshold;
/* For RX and TX Store and Forward Mode config */
hw_if->config_rsf_mode = xgbe_config_rsf_mode;
hw_if->config_tsf_mode = xgbe_config_tsf_mode;
/* For TX DMA Operating on Second Frame config */
hw_if->config_osp_mode = xgbe_config_osp_mode;
/* For MMC statistics support */
hw_if->tx_mmc_int = xgbe_tx_mmc_int;
hw_if->rx_mmc_int = xgbe_rx_mmc_int;
hw_if->read_mmc_stats = xgbe_read_mmc_stats;
/* For Receive Side Scaling */
hw_if->enable_rss = xgbe_enable_rss;
hw_if->disable_rss = xgbe_disable_rss;
hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
}