freebsd-src/sys/cam/cam_periph.c
Mark Johnston d068ea16e3 cam: Let cam_periph_unmapmem() return an error
As of commit b059686a71, cam_periph_unmapmem() can legitimately fail
if the copyout() operation fails.  However, this failure was never
signaled to upper layers.  In practice it is unlikely to occur
since cap_periph_mapmem() would most likely fail in such
circumstances anyway, but an error is nonetheless possible.

However, some code reading revealed a few paths where the return value
of cam_periph_mapmem() is not checked, and this is definitely a bug.
Add error checking there and let cam_periph_unmapmem() return errors
from copyout().

Reviewed by:	dab, mav
MFC after:	2 weeks
Differential Revision:	https://reviews.freebsd.org/D43201
2023-12-28 12:36:15 -05:00

2252 lines
61 KiB
C

/*-
* Common functions for CAM "type" (peripheral) drivers.
*
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 1997, 1998 Justin T. Gibbs.
* Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/bio.h>
#include <sys/conf.h>
#include <sys/devctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/devicestat.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_compat.h>
#include <cam/cam_queue.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_internal.h>
#include <cam/cam_periph.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/scsi/scsi_pass.h>
static u_int camperiphnextunit(struct periph_driver *p_drv,
u_int newunit, bool wired,
path_id_t pathid, target_id_t target,
lun_id_t lun);
static u_int camperiphunit(struct periph_driver *p_drv,
path_id_t pathid, target_id_t target,
lun_id_t lun,
const char *sn);
static void camperiphdone(struct cam_periph *periph,
union ccb *done_ccb);
static void camperiphfree(struct cam_periph *periph);
static int camperiphscsistatuserror(union ccb *ccb,
union ccb **orig_ccb,
cam_flags camflags,
uint32_t sense_flags,
int *openings,
uint32_t *relsim_flags,
uint32_t *timeout,
uint32_t *action,
const char **action_string);
static int camperiphscsisenseerror(union ccb *ccb,
union ccb **orig_ccb,
cam_flags camflags,
uint32_t sense_flags,
int *openings,
uint32_t *relsim_flags,
uint32_t *timeout,
uint32_t *action,
const char **action_string);
static void cam_periph_devctl_notify(union ccb *ccb);
static int nperiph_drivers;
static int initialized = 0;
struct periph_driver **periph_drivers;
static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
static int periph_selto_delay = 1000;
TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
static int periph_noresrc_delay = 500;
TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
static int periph_busy_delay = 500;
TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
static u_int periph_mapmem_thresh = 65536;
SYSCTL_UINT(_kern_cam, OID_AUTO, mapmem_thresh, CTLFLAG_RWTUN,
&periph_mapmem_thresh, 0, "Threshold for user-space buffer mapping");
void
periphdriver_register(void *data)
{
struct periph_driver *drv = (struct periph_driver *)data;
struct periph_driver **newdrivers, **old;
int ndrivers;
again:
ndrivers = nperiph_drivers + 2;
newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
M_WAITOK);
xpt_lock_buses();
if (ndrivers != nperiph_drivers + 2) {
/*
* Lost race against itself; go around.
*/
xpt_unlock_buses();
free(newdrivers, M_CAMPERIPH);
goto again;
}
if (periph_drivers)
bcopy(periph_drivers, newdrivers,
sizeof(*newdrivers) * nperiph_drivers);
newdrivers[nperiph_drivers] = drv;
newdrivers[nperiph_drivers + 1] = NULL;
old = periph_drivers;
periph_drivers = newdrivers;
nperiph_drivers++;
xpt_unlock_buses();
if (old)
free(old, M_CAMPERIPH);
/* If driver marked as early or it is late now, initialize it. */
if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
initialized > 1)
(*drv->init)();
}
int
periphdriver_unregister(void *data)
{
struct periph_driver *drv = (struct periph_driver *)data;
int error, n;
/* If driver marked as early or it is late now, deinitialize it. */
if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
initialized > 1) {
if (drv->deinit == NULL) {
printf("CAM periph driver '%s' doesn't have deinit.\n",
drv->driver_name);
return (EOPNOTSUPP);
}
error = drv->deinit();
if (error != 0)
return (error);
}
xpt_lock_buses();
for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++)
;
KASSERT(n < nperiph_drivers,
("Periph driver '%s' was not registered", drv->driver_name));
for (; n + 1 < nperiph_drivers; n++)
periph_drivers[n] = periph_drivers[n + 1];
periph_drivers[n + 1] = NULL;
nperiph_drivers--;
xpt_unlock_buses();
return (0);
}
void
periphdriver_init(int level)
{
int i, early;
initialized = max(initialized, level);
for (i = 0; periph_drivers[i] != NULL; i++) {
early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
if (early == initialized)
(*periph_drivers[i]->init)();
}
}
cam_status
cam_periph_alloc(periph_ctor_t *periph_ctor,
periph_oninv_t *periph_oninvalidate,
periph_dtor_t *periph_dtor, periph_start_t *periph_start,
char *name, cam_periph_type type, struct cam_path *path,
ac_callback_t *ac_callback, ac_code code, void *arg)
{
struct periph_driver **p_drv;
struct cam_sim *sim;
struct cam_periph *periph;
struct cam_periph *cur_periph;
path_id_t path_id;
target_id_t target_id;
lun_id_t lun_id;
cam_status status;
u_int init_level;
init_level = 0;
/*
* Handle Hot-Plug scenarios. If there is already a peripheral
* of our type assigned to this path, we are likely waiting for
* final close on an old, invalidated, peripheral. If this is
* the case, queue up a deferred call to the peripheral's async
* handler. If it looks like a mistaken re-allocation, complain.
*/
if ((periph = cam_periph_find(path, name)) != NULL) {
if ((periph->flags & CAM_PERIPH_INVALID) != 0
&& (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
periph->deferred_callback = ac_callback;
periph->deferred_ac = code;
return (CAM_REQ_INPROG);
} else {
printf("cam_periph_alloc: attempt to re-allocate "
"valid device %s%d rejected flags %#x "
"refcount %d\n", periph->periph_name,
periph->unit_number, periph->flags,
periph->refcount);
}
return (CAM_REQ_INVALID);
}
periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
M_NOWAIT|M_ZERO);
if (periph == NULL)
return (CAM_RESRC_UNAVAIL);
init_level++;
sim = xpt_path_sim(path);
path_id = xpt_path_path_id(path);
target_id = xpt_path_target_id(path);
lun_id = xpt_path_lun_id(path);
periph->periph_start = periph_start;
periph->periph_dtor = periph_dtor;
periph->periph_oninval = periph_oninvalidate;
periph->type = type;
periph->periph_name = name;
periph->scheduled_priority = CAM_PRIORITY_NONE;
periph->immediate_priority = CAM_PRIORITY_NONE;
periph->refcount = 1; /* Dropped by invalidation. */
periph->sim = sim;
SLIST_INIT(&periph->ccb_list);
status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
if (status != CAM_REQ_CMP)
goto failure;
periph->path = path;
xpt_lock_buses();
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
if (strcmp((*p_drv)->driver_name, name) == 0)
break;
}
if (*p_drv == NULL) {
printf("cam_periph_alloc: invalid periph name '%s'\n", name);
xpt_unlock_buses();
xpt_free_path(periph->path);
free(periph, M_CAMPERIPH);
return (CAM_REQ_INVALID);
}
periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id,
path->device->serial_num);
cur_periph = TAILQ_FIRST(&(*p_drv)->units);
while (cur_periph != NULL
&& cur_periph->unit_number < periph->unit_number)
cur_periph = TAILQ_NEXT(cur_periph, unit_links);
if (cur_periph != NULL) {
KASSERT(cur_periph->unit_number != periph->unit_number,
("duplicate units on periph list"));
TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
} else {
TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
(*p_drv)->generation++;
}
xpt_unlock_buses();
init_level++;
status = xpt_add_periph(periph);
if (status != CAM_REQ_CMP)
goto failure;
init_level++;
CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n"));
status = periph_ctor(periph, arg);
if (status == CAM_REQ_CMP)
init_level++;
failure:
switch (init_level) {
case 4:
/* Initialized successfully */
break;
case 3:
CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
xpt_remove_periph(periph);
/* FALLTHROUGH */
case 2:
xpt_lock_buses();
TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
xpt_unlock_buses();
xpt_free_path(periph->path);
/* FALLTHROUGH */
case 1:
free(periph, M_CAMPERIPH);
/* FALLTHROUGH */
case 0:
/* No cleanup to perform. */
break;
default:
panic("%s: Unknown init level", __func__);
}
return(status);
}
/*
* Find a peripheral structure with the specified path, target, lun,
* and (optionally) type. If the name is NULL, this function will return
* the first peripheral driver that matches the specified path.
*/
struct cam_periph *
cam_periph_find(struct cam_path *path, char *name)
{
struct periph_driver **p_drv;
struct cam_periph *periph;
xpt_lock_buses();
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
continue;
TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
if (xpt_path_comp(periph->path, path) == 0) {
xpt_unlock_buses();
cam_periph_assert(periph, MA_OWNED);
return(periph);
}
}
if (name != NULL) {
xpt_unlock_buses();
return(NULL);
}
}
xpt_unlock_buses();
return(NULL);
}
/*
* Find peripheral driver instances attached to the specified path.
*/
int
cam_periph_list(struct cam_path *path, struct sbuf *sb)
{
struct sbuf local_sb;
struct periph_driver **p_drv;
struct cam_periph *periph;
int count;
int sbuf_alloc_len;
sbuf_alloc_len = 16;
retry:
sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN);
count = 0;
xpt_lock_buses();
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
if (xpt_path_comp(periph->path, path) != 0)
continue;
if (sbuf_len(&local_sb) != 0)
sbuf_cat(&local_sb, ",");
sbuf_printf(&local_sb, "%s%d", periph->periph_name,
periph->unit_number);
if (sbuf_error(&local_sb) == ENOMEM) {
sbuf_alloc_len *= 2;
xpt_unlock_buses();
sbuf_delete(&local_sb);
goto retry;
}
count++;
}
}
xpt_unlock_buses();
sbuf_finish(&local_sb);
if (sbuf_len(sb) != 0)
sbuf_cat(sb, ",");
sbuf_cat(sb, sbuf_data(&local_sb));
sbuf_delete(&local_sb);
return (count);
}
int
cam_periph_acquire(struct cam_periph *periph)
{
int status;
if (periph == NULL)
return (EINVAL);
status = ENOENT;
xpt_lock_buses();
if ((periph->flags & CAM_PERIPH_INVALID) == 0) {
periph->refcount++;
status = 0;
}
xpt_unlock_buses();
return (status);
}
void
cam_periph_doacquire(struct cam_periph *periph)
{
xpt_lock_buses();
KASSERT(periph->refcount >= 1,
("cam_periph_doacquire() with refcount == %d", periph->refcount));
periph->refcount++;
xpt_unlock_buses();
}
void
cam_periph_release_locked_buses(struct cam_periph *periph)
{
cam_periph_assert(periph, MA_OWNED);
KASSERT(periph->refcount >= 1, ("periph->refcount >= 1"));
if (--periph->refcount == 0)
camperiphfree(periph);
}
void
cam_periph_release_locked(struct cam_periph *periph)
{
if (periph == NULL)
return;
xpt_lock_buses();
cam_periph_release_locked_buses(periph);
xpt_unlock_buses();
}
void
cam_periph_release(struct cam_periph *periph)
{
struct mtx *mtx;
if (periph == NULL)
return;
cam_periph_assert(periph, MA_NOTOWNED);
mtx = cam_periph_mtx(periph);
mtx_lock(mtx);
cam_periph_release_locked(periph);
mtx_unlock(mtx);
}
/*
* hold/unhold act as mutual exclusion for sections of the code that
* need to sleep and want to make sure that other sections that
* will interfere are held off. This only protects exclusive sections
* from each other.
*/
int
cam_periph_hold(struct cam_periph *periph, int priority)
{
int error;
/*
* Increment the reference count on the peripheral
* while we wait for our lock attempt to succeed
* to ensure the peripheral doesn't disappear out
* from user us while we sleep.
*/
if (cam_periph_acquire(periph) != 0)
return (ENXIO);
cam_periph_assert(periph, MA_OWNED);
while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
periph->flags |= CAM_PERIPH_LOCK_WANTED;
if ((error = cam_periph_sleep(periph, periph, priority,
"caplck", 0)) != 0) {
cam_periph_release_locked(periph);
return (error);
}
if (periph->flags & CAM_PERIPH_INVALID) {
cam_periph_release_locked(periph);
return (ENXIO);
}
}
periph->flags |= CAM_PERIPH_LOCKED;
return (0);
}
void
cam_periph_unhold(struct cam_periph *periph)
{
cam_periph_assert(periph, MA_OWNED);
periph->flags &= ~CAM_PERIPH_LOCKED;
if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
wakeup(periph);
}
cam_periph_release_locked(periph);
}
void
cam_periph_hold_boot(struct cam_periph *periph)
{
root_mount_hold_token(periph->periph_name, &periph->periph_rootmount);
}
void
cam_periph_release_boot(struct cam_periph *periph)
{
root_mount_rel(&periph->periph_rootmount);
}
/*
* Look for the next unit number that is not currently in use for this
* peripheral type starting at "newunit". Also exclude unit numbers that
* are reserved by for future "hardwiring" unless we already know that this
* is a potential wired device. Only assume that the device is "wired" the
* first time through the loop since after that we'll be looking at unit
* numbers that did not match a wiring entry.
*/
static u_int
camperiphnextunit(struct periph_driver *p_drv, u_int newunit, bool wired,
path_id_t pathid, target_id_t target, lun_id_t lun)
{
struct cam_periph *periph;
char *periph_name;
int i, val, dunit, r;
const char *dname, *strval;
periph_name = p_drv->driver_name;
for (;;newunit++) {
for (periph = TAILQ_FIRST(&p_drv->units);
periph != NULL && periph->unit_number != newunit;
periph = TAILQ_NEXT(periph, unit_links))
;
if (periph != NULL && periph->unit_number == newunit) {
if (wired) {
xpt_print(periph->path, "Duplicate Wired "
"Device entry!\n");
xpt_print(periph->path, "Second device (%s "
"device at scbus%d target %d lun %d) will "
"not be wired\n", periph_name, pathid,
target, lun);
wired = false;
}
continue;
}
if (wired)
break;
/*
* Don't allow the mere presence of any attributes of a device
* means that it is for a wired down entry. Instead, insist that
* one of the matching criteria from camperiphunit be present
* for the device.
*/
i = 0;
dname = periph_name;
for (;;) {
r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
if (r != 0)
break;
if (newunit != dunit)
continue;
if (resource_string_value(dname, dunit, "sn", &strval) == 0 ||
resource_int_value(dname, dunit, "lun", &val) == 0 ||
resource_int_value(dname, dunit, "target", &val) == 0 ||
resource_string_value(dname, dunit, "at", &strval) == 0)
break;
}
if (r != 0)
break;
}
return (newunit);
}
static u_int
camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
target_id_t target, lun_id_t lun, const char *sn)
{
bool wired = false;
u_int unit;
int i, val, dunit;
const char *dname, *strval;
char pathbuf[32], *periph_name;
periph_name = p_drv->driver_name;
snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
unit = 0;
i = 0;
dname = periph_name;
for (wired = false; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
wired = false) {
if (resource_string_value(dname, dunit, "at", &strval) == 0) {
if (strcmp(strval, pathbuf) != 0)
continue;
wired = true;
}
if (resource_int_value(dname, dunit, "target", &val) == 0) {
if (val != target)
continue;
wired = true;
}
if (resource_int_value(dname, dunit, "lun", &val) == 0) {
if (val != lun)
continue;
wired = true;
}
if (resource_string_value(dname, dunit, "sn", &strval) == 0) {
if (sn == NULL || strcmp(strval, sn) != 0)
continue;
wired = true;
}
if (wired) {
unit = dunit;
break;
}
}
/*
* Either start from 0 looking for the next unit or from
* the unit number given in the resource config. This way,
* if we have wildcard matches, we don't return the same
* unit number twice.
*/
unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
return (unit);
}
void
cam_periph_invalidate(struct cam_periph *periph)
{
cam_periph_assert(periph, MA_OWNED);
/*
* We only tear down the device the first time a peripheral is
* invalidated.
*/
if ((periph->flags & CAM_PERIPH_INVALID) != 0)
return;
CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n"));
if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) {
struct sbuf sb;
char buffer[160];
sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN);
xpt_denounce_periph_sbuf(periph, &sb);
sbuf_finish(&sb);
sbuf_putbuf(&sb);
}
periph->flags |= CAM_PERIPH_INVALID;
periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
if (periph->periph_oninval != NULL)
periph->periph_oninval(periph);
cam_periph_release_locked(periph);
}
static void
camperiphfree(struct cam_periph *periph)
{
struct periph_driver **p_drv;
struct periph_driver *drv;
cam_periph_assert(periph, MA_OWNED);
KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating",
periph->periph_name, periph->unit_number));
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
break;
}
if (*p_drv == NULL) {
printf("camperiphfree: attempt to free non-existant periph\n");
return;
}
/*
* Cache a pointer to the periph_driver structure. If a
* periph_driver is added or removed from the array (see
* periphdriver_register()) while we drop the toplogy lock
* below, p_drv may change. This doesn't protect against this
* particular periph_driver going away. That will require full
* reference counting in the periph_driver infrastructure.
*/
drv = *p_drv;
/*
* We need to set this flag before dropping the topology lock, to
* let anyone who is traversing the list that this peripheral is
* about to be freed, and there will be no more reference count
* checks.
*/
periph->flags |= CAM_PERIPH_FREE;
/*
* The peripheral destructor semantics dictate calling with only the
* SIM mutex held. Since it might sleep, it should not be called
* with the topology lock held.
*/
xpt_unlock_buses();
/*
* We need to call the peripheral destructor prior to removing the
* peripheral from the list. Otherwise, we risk running into a
* scenario where the peripheral unit number may get reused
* (because it has been removed from the list), but some resources
* used by the peripheral are still hanging around. In particular,
* the devfs nodes used by some peripherals like the pass(4) driver
* aren't fully cleaned up until the destructor is run. If the
* unit number is reused before the devfs instance is fully gone,
* devfs will panic.
*/
if (periph->periph_dtor != NULL)
periph->periph_dtor(periph);
/*
* The peripheral list is protected by the topology lock. We have to
* remove the periph from the drv list before we call deferred_ac. The
* AC_FOUND_DEVICE callback won't create a new periph if it's still there.
*/
xpt_lock_buses();
TAILQ_REMOVE(&drv->units, periph, unit_links);
drv->generation++;
xpt_remove_periph(periph);
xpt_unlock_buses();
if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting)
xpt_print(periph->path, "Periph destroyed\n");
else
CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
union ccb ccb;
void *arg;
memset(&ccb, 0, sizeof(ccb));
switch (periph->deferred_ac) {
case AC_FOUND_DEVICE:
ccb.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
xpt_action(&ccb);
arg = &ccb;
break;
case AC_PATH_REGISTERED:
xpt_path_inq(&ccb.cpi, periph->path);
arg = &ccb;
break;
default:
arg = NULL;
break;
}
periph->deferred_callback(NULL, periph->deferred_ac,
periph->path, arg);
}
xpt_free_path(periph->path);
free(periph, M_CAMPERIPH);
xpt_lock_buses();
}
/*
* Map user virtual pointers into kernel virtual address space, so we can
* access the memory. This is now a generic function that centralizes most
* of the sanity checks on the data flags, if any.
* This also only works for up to maxphys memory. Since we use
* buffers to map stuff in and out, we're limited to the buffer size.
*/
int
cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo,
u_int maxmap)
{
int numbufs, i;
uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
uint32_t lengths[CAM_PERIPH_MAXMAPS];
uint32_t dirs[CAM_PERIPH_MAXMAPS];
bzero(mapinfo, sizeof(*mapinfo));
if (maxmap == 0)
maxmap = DFLTPHYS; /* traditional default */
else if (maxmap > maxphys)
maxmap = maxphys; /* for safety */
switch(ccb->ccb_h.func_code) {
case XPT_DEV_MATCH:
if (ccb->cdm.match_buf_len == 0) {
printf("cam_periph_mapmem: invalid match buffer "
"length 0\n");
return(EINVAL);
}
if (ccb->cdm.pattern_buf_len > 0) {
data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
lengths[0] = ccb->cdm.pattern_buf_len;
dirs[0] = CAM_DIR_OUT;
data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
lengths[1] = ccb->cdm.match_buf_len;
dirs[1] = CAM_DIR_IN;
numbufs = 2;
} else {
data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
lengths[0] = ccb->cdm.match_buf_len;
dirs[0] = CAM_DIR_IN;
numbufs = 1;
}
/*
* This request will not go to the hardware, no reason
* to be so strict. vmapbuf() is able to map up to maxphys.
*/
maxmap = maxphys;
break;
case XPT_SCSI_IO:
case XPT_CONT_TARGET_IO:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return(0);
if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
return (EINVAL);
data_ptrs[0] = &ccb->csio.data_ptr;
lengths[0] = ccb->csio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 1;
break;
case XPT_ATA_IO:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return(0);
if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
return (EINVAL);
data_ptrs[0] = &ccb->ataio.data_ptr;
lengths[0] = ccb->ataio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 1;
break;
case XPT_MMC_IO:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return(0);
/* Two mappings: one for cmd->data and one for cmd->data->data */
data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data;
lengths[0] = sizeof(struct mmc_data *);
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data;
lengths[1] = ccb->mmcio.cmd.data->len;
dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 2;
break;
case XPT_SMP_IO:
data_ptrs[0] = &ccb->smpio.smp_request;
lengths[0] = ccb->smpio.smp_request_len;
dirs[0] = CAM_DIR_OUT;
data_ptrs[1] = &ccb->smpio.smp_response;
lengths[1] = ccb->smpio.smp_response_len;
dirs[1] = CAM_DIR_IN;
numbufs = 2;
break;
case XPT_NVME_IO:
case XPT_NVME_ADMIN:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return (0);
if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
return (EINVAL);
data_ptrs[0] = &ccb->nvmeio.data_ptr;
lengths[0] = ccb->nvmeio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 1;
break;
case XPT_DEV_ADVINFO:
if (ccb->cdai.bufsiz == 0)
return (0);
data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
lengths[0] = ccb->cdai.bufsiz;
dirs[0] = CAM_DIR_IN;
numbufs = 1;
/*
* This request will not go to the hardware, no reason
* to be so strict. vmapbuf() is able to map up to maxphys.
*/
maxmap = maxphys;
break;
default:
return(EINVAL);
break; /* NOTREACHED */
}
/*
* Check the transfer length and permissions first, so we don't
* have to unmap any previously mapped buffers.
*/
for (i = 0; i < numbufs; i++) {
if (lengths[i] > maxmap) {
printf("cam_periph_mapmem: attempt to map %lu bytes, "
"which is greater than %lu\n",
(long)(lengths[i]), (u_long)maxmap);
return (E2BIG);
}
}
/*
* This keeps the kernel stack of current thread from getting
* swapped. In low-memory situations where the kernel stack might
* otherwise get swapped out, this holds it and allows the thread
* to make progress and release the kernel mapped pages sooner.
*
* XXX KDM should I use P_NOSWAP instead?
*/
PHOLD(curproc);
for (i = 0; i < numbufs; i++) {
/* Save the user's data address. */
mapinfo->orig[i] = *data_ptrs[i];
/*
* For small buffers use malloc+copyin/copyout instead of
* mapping to KVA to avoid expensive TLB shootdowns. For
* small allocations malloc is backed by UMA, and so much
* cheaper on SMP systems.
*/
if (lengths[i] <= periph_mapmem_thresh &&
ccb->ccb_h.func_code != XPT_MMC_IO) {
*data_ptrs[i] = malloc(lengths[i], M_CAMPERIPH,
M_WAITOK);
if (dirs[i] != CAM_DIR_IN) {
if (copyin(mapinfo->orig[i], *data_ptrs[i],
lengths[i]) != 0) {
free(*data_ptrs[i], M_CAMPERIPH);
*data_ptrs[i] = mapinfo->orig[i];
goto fail;
}
} else
bzero(*data_ptrs[i], lengths[i]);
continue;
}
/*
* Get the buffer.
*/
mapinfo->bp[i] = uma_zalloc(pbuf_zone, M_WAITOK);
/* set the direction */
mapinfo->bp[i]->b_iocmd = (dirs[i] == CAM_DIR_OUT) ?
BIO_WRITE : BIO_READ;
/* Map the buffer into kernel memory. */
if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i], 1) < 0) {
uma_zfree(pbuf_zone, mapinfo->bp[i]);
goto fail;
}
/* set our pointer to the new mapped area */
*data_ptrs[i] = mapinfo->bp[i]->b_data;
}
/*
* Now that we've gotten this far, change ownership to the kernel
* of the buffers so that we don't run afoul of returning to user
* space with locks (on the buffer) held.
*/
for (i = 0; i < numbufs; i++) {
if (mapinfo->bp[i])
BUF_KERNPROC(mapinfo->bp[i]);
}
mapinfo->num_bufs_used = numbufs;
return(0);
fail:
for (i--; i >= 0; i--) {
if (mapinfo->bp[i]) {
vunmapbuf(mapinfo->bp[i]);
uma_zfree(pbuf_zone, mapinfo->bp[i]);
} else
free(*data_ptrs[i], M_CAMPERIPH);
*data_ptrs[i] = mapinfo->orig[i];
}
PRELE(curproc);
return(EACCES);
}
/*
* Unmap memory segments mapped into kernel virtual address space by
* cam_periph_mapmem().
*/
int
cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
{
int error, numbufs, i;
uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
uint32_t lengths[CAM_PERIPH_MAXMAPS];
uint32_t dirs[CAM_PERIPH_MAXMAPS];
if (mapinfo->num_bufs_used <= 0) {
/* nothing to free and the process wasn't held. */
return (0);
}
switch (ccb->ccb_h.func_code) {
case XPT_DEV_MATCH:
if (ccb->cdm.pattern_buf_len > 0) {
data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
lengths[0] = ccb->cdm.pattern_buf_len;
dirs[0] = CAM_DIR_OUT;
data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
lengths[1] = ccb->cdm.match_buf_len;
dirs[1] = CAM_DIR_IN;
numbufs = 2;
} else {
data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
lengths[0] = ccb->cdm.match_buf_len;
dirs[0] = CAM_DIR_IN;
numbufs = 1;
}
break;
case XPT_SCSI_IO:
case XPT_CONT_TARGET_IO:
data_ptrs[0] = &ccb->csio.data_ptr;
lengths[0] = ccb->csio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 1;
break;
case XPT_ATA_IO:
data_ptrs[0] = &ccb->ataio.data_ptr;
lengths[0] = ccb->ataio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 1;
break;
case XPT_MMC_IO:
data_ptrs[0] = (uint8_t **)&ccb->mmcio.cmd.data;
lengths[0] = sizeof(struct mmc_data *);
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
data_ptrs[1] = (uint8_t **)&ccb->mmcio.cmd.data->data;
lengths[1] = ccb->mmcio.cmd.data->len;
dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 2;
break;
case XPT_SMP_IO:
data_ptrs[0] = &ccb->smpio.smp_request;
lengths[0] = ccb->smpio.smp_request_len;
dirs[0] = CAM_DIR_OUT;
data_ptrs[1] = &ccb->smpio.smp_response;
lengths[1] = ccb->smpio.smp_response_len;
dirs[1] = CAM_DIR_IN;
numbufs = 2;
break;
case XPT_NVME_IO:
case XPT_NVME_ADMIN:
data_ptrs[0] = &ccb->nvmeio.data_ptr;
lengths[0] = ccb->nvmeio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 1;
break;
case XPT_DEV_ADVINFO:
data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
lengths[0] = ccb->cdai.bufsiz;
dirs[0] = CAM_DIR_IN;
numbufs = 1;
break;
default:
numbufs = 0;
break;
}
error = 0;
for (i = 0; i < numbufs; i++) {
if (mapinfo->bp[i]) {
/* unmap the buffer */
vunmapbuf(mapinfo->bp[i]);
/* release the buffer */
uma_zfree(pbuf_zone, mapinfo->bp[i]);
} else {
if (dirs[i] != CAM_DIR_OUT) {
int error1;
error1 = copyout(*data_ptrs[i], mapinfo->orig[i],
lengths[i]);
if (error == 0)
error = error1;
}
free(*data_ptrs[i], M_CAMPERIPH);
}
/* Set the user's pointer back to the original value */
*data_ptrs[i] = mapinfo->orig[i];
}
/* allow ourselves to be swapped once again */
PRELE(curproc);
return (error);
}
int
cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
int (*error_routine)(union ccb *ccb,
cam_flags camflags,
uint32_t sense_flags))
{
union ccb *ccb;
int error;
int found;
error = found = 0;
switch(cmd){
case CAMGETPASSTHRU_0x19:
case CAMGETPASSTHRU:
ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
xpt_setup_ccb(&ccb->ccb_h,
ccb->ccb_h.path,
CAM_PRIORITY_NORMAL);
ccb->ccb_h.func_code = XPT_GDEVLIST;
/*
* Basically, the point of this is that we go through
* getting the list of devices, until we find a passthrough
* device. In the current version of the CAM code, the
* only way to determine what type of device we're dealing
* with is by its name.
*/
while (found == 0) {
ccb->cgdl.index = 0;
ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
/* we want the next device in the list */
xpt_action(ccb);
if (strncmp(ccb->cgdl.periph_name,
"pass", 4) == 0){
found = 1;
break;
}
}
if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
(found == 0)) {
ccb->cgdl.periph_name[0] = '\0';
ccb->cgdl.unit_number = 0;
break;
}
}
/* copy the result back out */
bcopy(ccb, addr, sizeof(union ccb));
/* and release the ccb */
xpt_release_ccb(ccb);
break;
default:
error = ENOTTY;
break;
}
return(error);
}
static void
cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb)
{
panic("%s: already done with ccb %p", __func__, done_ccb);
}
static void
cam_periph_done(struct cam_periph *periph, union ccb *done_ccb)
{
/* Caller will release the CCB */
xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED);
done_ccb->ccb_h.cbfcnp = cam_periph_done_panic;
wakeup(&done_ccb->ccb_h.cbfcnp);
}
static void
cam_periph_ccbwait(union ccb *ccb)
{
if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
while (ccb->ccb_h.cbfcnp != cam_periph_done_panic)
xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp,
PRIBIO, "cbwait", 0);
}
KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX &&
(ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG,
("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, "
"status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code,
ccb->ccb_h.status, ccb->ccb_h.pinfo.index));
}
/*
* Dispatch a CCB and wait for it to complete. If the CCB has set a
* callback function (ccb->ccb_h.cbfcnp), it will be overwritten and lost.
*/
int
cam_periph_runccb(union ccb *ccb,
int (*error_routine)(union ccb *ccb,
cam_flags camflags,
uint32_t sense_flags),
cam_flags camflags, uint32_t sense_flags,
struct devstat *ds)
{
struct bintime *starttime;
struct bintime ltime;
int error;
bool must_poll;
uint32_t timeout = 1;
starttime = NULL;
xpt_path_assert(ccb->ccb_h.path, MA_OWNED);
KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0,
("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb,
ccb->ccb_h.func_code, ccb->ccb_h.flags));
/*
* If the user has supplied a stats structure, and if we understand
* this particular type of ccb, record the transaction start.
*/
if (ds != NULL &&
(ccb->ccb_h.func_code == XPT_SCSI_IO ||
ccb->ccb_h.func_code == XPT_ATA_IO ||
ccb->ccb_h.func_code == XPT_NVME_IO)) {
starttime = &ltime;
binuptime(starttime);
devstat_start_transaction(ds, starttime);
}
/*
* We must poll the I/O while we're dumping. The scheduler is normally
* stopped for dumping, except when we call doadump from ddb. While the
* scheduler is running in this case, we still need to poll the I/O to
* avoid sleeping waiting for the ccb to complete.
*
* A panic triggered dump stops the scheduler, any callback from the
* shutdown_post_sync event will run with the scheduler stopped, but
* before we're officially dumping. To avoid hanging in adashutdown
* initiated commands (or other similar situations), we have to test for
* either dumping or SCHEDULER_STOPPED() here.
*
* To avoid locking problems, dumping/polling callers must call
* without a periph lock held.
*/
must_poll = dumping || SCHEDULER_STOPPED();
ccb->ccb_h.cbfcnp = cam_periph_done;
/*
* If we're polling, then we need to ensure that we have ample resources
* in the periph. cam_periph_error can reschedule the ccb by calling
* xpt_action and returning ERESTART, so we have to effect the polling
* in the do loop below.
*/
if (must_poll) {
if (cam_sim_pollable(ccb->ccb_h.path->bus->sim))
timeout = xpt_poll_setup(ccb);
else
timeout = 0;
}
if (timeout == 0) {
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
error = EBUSY;
} else {
xpt_action(ccb);
do {
if (must_poll) {
xpt_pollwait(ccb, timeout);
timeout = ccb->ccb_h.timeout * 10;
} else {
cam_periph_ccbwait(ccb);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
error = 0;
else if (error_routine != NULL) {
/*
* cbfcnp is modified by cam_periph_ccbwait so
* reset it before we call the error routine
* which may call xpt_done.
*/
ccb->ccb_h.cbfcnp = cam_periph_done;
error = (*error_routine)(ccb, camflags, sense_flags);
} else
error = 0;
} while (error == ERESTART);
}
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
cam_release_devq(ccb->ccb_h.path,
/* relsim_flags */0,
/* openings */0,
/* timeout */0,
/* getcount_only */ FALSE);
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
}
if (ds != NULL) {
uint32_t bytes;
devstat_tag_type tag;
bool valid = true;
if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
bytes = ccb->csio.dxfer_len - ccb->csio.resid;
tag = (devstat_tag_type)(ccb->csio.tag_action & 0x3);
} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
bytes = ccb->ataio.dxfer_len - ccb->ataio.resid;
tag = (devstat_tag_type)0;
} else if (ccb->ccb_h.func_code == XPT_NVME_IO) {
bytes = ccb->nvmeio.dxfer_len; /* NB: resid no possible */
tag = (devstat_tag_type)0;
} else {
valid = false;
}
if (valid)
devstat_end_transaction(ds, bytes, tag,
((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ?
DEVSTAT_NO_DATA : (ccb->ccb_h.flags & CAM_DIR_OUT) ?
DEVSTAT_WRITE : DEVSTAT_READ, NULL, starttime);
}
return(error);
}
void
cam_freeze_devq(struct cam_path *path)
{
struct ccb_hdr ccb_h;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n"));
memset(&ccb_h, 0, sizeof(ccb_h));
xpt_setup_ccb(&ccb_h, path, /*priority*/1);
ccb_h.func_code = XPT_NOOP;
ccb_h.flags = CAM_DEV_QFREEZE;
xpt_action((union ccb *)&ccb_h);
}
uint32_t
cam_release_devq(struct cam_path *path, uint32_t relsim_flags,
uint32_t openings, uint32_t arg,
int getcount_only)
{
struct ccb_relsim crs;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n",
relsim_flags, openings, arg, getcount_only));
memset(&crs, 0, sizeof(crs));
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
crs.ccb_h.func_code = XPT_REL_SIMQ;
crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
crs.release_flags = relsim_flags;
crs.openings = openings;
crs.release_timeout = arg;
xpt_action((union ccb *)&crs);
return (crs.qfrozen_cnt);
}
#define saved_ccb_ptr ppriv_ptr0
static void
camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
{
union ccb *saved_ccb;
cam_status status;
struct scsi_start_stop_unit *scsi_cmd;
int error = 0, error_code, sense_key, asc, ascq;
uint16_t done_flags;
scsi_cmd = (struct scsi_start_stop_unit *)
&done_ccb->csio.cdb_io.cdb_bytes;
status = done_ccb->ccb_h.status;
if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if (scsi_extract_sense_ccb(done_ccb,
&error_code, &sense_key, &asc, &ascq)) {
/*
* If the error is "invalid field in CDB",
* and the load/eject flag is set, turn the
* flag off and try again. This is just in
* case the drive in question barfs on the
* load eject flag. The CAM code should set
* the load/eject flag by default for
* removable media.
*/
if ((scsi_cmd->opcode == START_STOP_UNIT) &&
((scsi_cmd->how & SSS_LOEJ) != 0) &&
(asc == 0x24) && (ascq == 0x00)) {
scsi_cmd->how &= ~SSS_LOEJ;
if (status & CAM_DEV_QFRZN) {
cam_release_devq(done_ccb->ccb_h.path,
0, 0, 0, 0);
done_ccb->ccb_h.status &=
~CAM_DEV_QFRZN;
}
xpt_action(done_ccb);
goto out;
}
}
error = cam_periph_error(done_ccb, 0,
SF_RETRY_UA | SF_NO_PRINT);
if (error == ERESTART)
goto out;
if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) {
cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
}
} else {
/*
* If we have successfully taken a device from the not
* ready to ready state, re-scan the device and re-get
* the inquiry information. Many devices (mostly disks)
* don't properly report their inquiry information unless
* they are spun up.
*/
if (scsi_cmd->opcode == START_STOP_UNIT)
xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL);
}
/* If we tried long wait and still failed, remember that. */
if ((periph->flags & CAM_PERIPH_RECOVERY_WAIT) &&
(done_ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY)) {
periph->flags &= ~CAM_PERIPH_RECOVERY_WAIT;
if (error != 0 && done_ccb->ccb_h.retry_count == 0)
periph->flags |= CAM_PERIPH_RECOVERY_WAIT_FAILED;
}
/*
* After recovery action(s) completed, return to the original CCB.
* If the recovery CCB has failed, considering its own possible
* retries and recovery, assume we are back in state where we have
* been originally, but without recovery hopes left. In such case,
* after the final attempt below, we cancel any further retries,
* blocking by that also any new recovery attempts for this CCB,
* and the result will be the final one returned to the CCB owher.
*/
saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
KASSERT(saved_ccb->ccb_h.func_code == XPT_SCSI_IO,
("%s: saved_ccb func_code %#x != XPT_SCSI_IO",
__func__, saved_ccb->ccb_h.func_code));
KASSERT(done_ccb->ccb_h.func_code == XPT_SCSI_IO,
("%s: done_ccb func_code %#x != XPT_SCSI_IO",
__func__, done_ccb->ccb_h.func_code));
saved_ccb->ccb_h.periph_links = done_ccb->ccb_h.periph_links;
done_flags = done_ccb->ccb_h.alloc_flags;
bcopy(saved_ccb, done_ccb, sizeof(struct ccb_scsiio));
done_ccb->ccb_h.alloc_flags = done_flags;
xpt_free_ccb(saved_ccb);
if (done_ccb->ccb_h.cbfcnp != camperiphdone)
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
if (error != 0)
done_ccb->ccb_h.retry_count = 0;
xpt_action(done_ccb);
out:
/* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */
cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
}
/*
* Generic Async Event handler. Peripheral drivers usually
* filter out the events that require personal attention,
* and leave the rest to this function.
*/
void
cam_periph_async(struct cam_periph *periph, uint32_t code,
struct cam_path *path, void *arg)
{
switch (code) {
case AC_LOST_DEVICE:
cam_periph_invalidate(periph);
break;
default:
break;
}
}
void
cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
{
struct ccb_getdevstats cgds;
memset(&cgds, 0, sizeof(cgds));
xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
cgds.ccb_h.func_code = XPT_GDEV_STATS;
xpt_action((union ccb *)&cgds);
cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
}
void
cam_periph_freeze_after_event(struct cam_periph *periph,
struct timeval* event_time, u_int duration_ms)
{
struct timeval delta;
struct timeval duration_tv;
if (!timevalisset(event_time))
return;
microtime(&delta);
timevalsub(&delta, event_time);
duration_tv.tv_sec = duration_ms / 1000;
duration_tv.tv_usec = (duration_ms % 1000) * 1000;
if (timevalcmp(&delta, &duration_tv, <)) {
timevalsub(&duration_tv, &delta);
duration_ms = duration_tv.tv_sec * 1000;
duration_ms += duration_tv.tv_usec / 1000;
cam_freeze_devq(periph->path);
cam_release_devq(periph->path,
RELSIM_RELEASE_AFTER_TIMEOUT,
/*reduction*/0,
/*timeout*/duration_ms,
/*getcount_only*/0);
}
}
static int
camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb,
cam_flags camflags, uint32_t sense_flags,
int *openings, uint32_t *relsim_flags,
uint32_t *timeout, uint32_t *action, const char **action_string)
{
struct cam_periph *periph;
int error;
switch (ccb->csio.scsi_status) {
case SCSI_STATUS_OK:
case SCSI_STATUS_COND_MET:
case SCSI_STATUS_INTERMED:
case SCSI_STATUS_INTERMED_COND_MET:
error = 0;
break;
case SCSI_STATUS_CMD_TERMINATED:
case SCSI_STATUS_CHECK_COND:
error = camperiphscsisenseerror(ccb, orig_ccb,
camflags,
sense_flags,
openings,
relsim_flags,
timeout,
action,
action_string);
break;
case SCSI_STATUS_QUEUE_FULL:
{
/* no decrement */
struct ccb_getdevstats cgds;
/*
* First off, find out what the current
* transaction counts are.
*/
memset(&cgds, 0, sizeof(cgds));
xpt_setup_ccb(&cgds.ccb_h,
ccb->ccb_h.path,
CAM_PRIORITY_NORMAL);
cgds.ccb_h.func_code = XPT_GDEV_STATS;
xpt_action((union ccb *)&cgds);
/*
* If we were the only transaction active, treat
* the QUEUE FULL as if it were a BUSY condition.
*/
if (cgds.dev_active != 0) {
int total_openings;
/*
* Reduce the number of openings to
* be 1 less than the amount it took
* to get a queue full bounded by the
* minimum allowed tag count for this
* device.
*/
total_openings = cgds.dev_active + cgds.dev_openings;
*openings = cgds.dev_active;
if (*openings < cgds.mintags)
*openings = cgds.mintags;
if (*openings < total_openings)
*relsim_flags = RELSIM_ADJUST_OPENINGS;
else {
/*
* Some devices report queue full for
* temporary resource shortages. For
* this reason, we allow a minimum
* tag count to be entered via a
* quirk entry to prevent the queue
* count on these devices from falling
* to a pessimisticly low value. We
* still wait for the next successful
* completion, however, before queueing
* more transactions to the device.
*/
*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
}
*timeout = 0;
error = ERESTART;
*action &= ~SSQ_PRINT_SENSE;
break;
}
/* FALLTHROUGH */
}
case SCSI_STATUS_BUSY:
/*
* Restart the queue after either another
* command completes or a 1 second timeout.
*/
periph = xpt_path_periph(ccb->ccb_h.path);
if (periph->flags & CAM_PERIPH_INVALID) {
error = ENXIO;
*action_string = "Periph was invalidated";
} else if ((sense_flags & SF_RETRY_BUSY) != 0 ||
ccb->ccb_h.retry_count > 0) {
if ((sense_flags & SF_RETRY_BUSY) == 0)
ccb->ccb_h.retry_count--;
error = ERESTART;
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
| RELSIM_RELEASE_AFTER_CMDCMPLT;
*timeout = 1000;
} else {
error = EIO;
*action_string = "Retries exhausted";
}
break;
case SCSI_STATUS_RESERV_CONFLICT:
default:
error = EIO;
break;
}
return (error);
}
static int
camperiphscsisenseerror(union ccb *ccb, union ccb **orig,
cam_flags camflags, uint32_t sense_flags,
int *openings, uint32_t *relsim_flags,
uint32_t *timeout, uint32_t *action, const char **action_string)
{
struct cam_periph *periph;
union ccb *orig_ccb = ccb;
int error, recoveryccb;
uint16_t flags;
#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL)
biotrack(ccb->csio.bio, __func__);
#endif
periph = xpt_path_periph(ccb->ccb_h.path);
recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone);
if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) {
/*
* If error recovery is already in progress, don't attempt
* to process this error, but requeue it unconditionally
* and attempt to process it once error recovery has
* completed. This failed command is probably related to
* the error that caused the currently active error recovery
* action so our current recovery efforts should also
* address this command. Be aware that the error recovery
* code assumes that only one recovery action is in progress
* on a particular peripheral instance at any given time
* (e.g. only one saved CCB for error recovery) so it is
* imperitive that we don't violate this assumption.
*/
error = ERESTART;
*action &= ~SSQ_PRINT_SENSE;
} else {
scsi_sense_action err_action;
struct ccb_getdev cgd;
/*
* Grab the inquiry data for this device.
*/
memset(&cgd, 0, sizeof(cgd));
xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
err_action = scsi_error_action(&ccb->csio, &cgd.inq_data,
sense_flags);
error = err_action & SS_ERRMASK;
/*
* Do not autostart sequential access devices
* to avoid unexpected tape loading.
*/
if ((err_action & SS_MASK) == SS_START &&
SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) {
*action_string = "Will not autostart a "
"sequential access device";
goto sense_error_done;
}
/*
* Avoid recovery recursion if recovery action is the same.
*/
if ((err_action & SS_MASK) >= SS_START && recoveryccb) {
if (((err_action & SS_MASK) == SS_START &&
ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) ||
((err_action & SS_MASK) == SS_TUR &&
(ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) {
err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
*timeout = 500;
}
}
/*
* If the recovery action will consume a retry,
* make sure we actually have retries available.
*/
if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
if (ccb->ccb_h.retry_count > 0 &&
(periph->flags & CAM_PERIPH_INVALID) == 0)
ccb->ccb_h.retry_count--;
else {
*action_string = "Retries exhausted";
goto sense_error_done;
}
}
if ((err_action & SS_MASK) >= SS_START) {
/*
* Do common portions of commands that
* use recovery CCBs.
*/
orig_ccb = xpt_alloc_ccb_nowait();
if (orig_ccb == NULL) {
*action_string = "Can't allocate recovery CCB";
goto sense_error_done;
}
/*
* Clear freeze flag for original request here, as
* this freeze will be dropped as part of ERESTART.
*/
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
KASSERT(ccb->ccb_h.func_code == XPT_SCSI_IO,
("%s: ccb func_code %#x != XPT_SCSI_IO",
__func__, ccb->ccb_h.func_code));
flags = orig_ccb->ccb_h.alloc_flags;
bcopy(ccb, orig_ccb, sizeof(struct ccb_scsiio));
orig_ccb->ccb_h.alloc_flags = flags;
}
switch (err_action & SS_MASK) {
case SS_NOP:
*action_string = "No recovery action needed";
error = 0;
break;
case SS_RETRY:
*action_string = "Retrying command (per sense data)";
error = ERESTART;
break;
case SS_FAIL:
*action_string = "Unretryable error";
break;
case SS_START:
{
int le;
/*
* Send a start unit command to the device, and
* then retry the command.
*/
*action_string = "Attempting to start unit";
periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
/*
* Check for removable media and set
* load/eject flag appropriately.
*/
if (SID_IS_REMOVABLE(&cgd.inq_data))
le = TRUE;
else
le = FALSE;
scsi_start_stop(&ccb->csio,
/*retries*/1,
camperiphdone,
MSG_SIMPLE_Q_TAG,
/*start*/TRUE,
/*load/eject*/le,
/*immediate*/FALSE,
SSD_FULL_SIZE,
/*timeout*/50000);
break;
}
case SS_TUR:
{
/*
* Send a Test Unit Ready to the device.
* If the 'many' flag is set, we send 120
* test unit ready commands, one every half
* second. Otherwise, we just send one TUR.
* We only want to do this if the retry
* count has not been exhausted.
*/
int retries;
if ((err_action & SSQ_MANY) != 0 && (periph->flags &
CAM_PERIPH_RECOVERY_WAIT_FAILED) == 0) {
periph->flags |= CAM_PERIPH_RECOVERY_WAIT;
*action_string = "Polling device for readiness";
retries = 120;
} else {
*action_string = "Testing device for readiness";
retries = 1;
}
periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
scsi_test_unit_ready(&ccb->csio,
retries,
camperiphdone,
MSG_SIMPLE_Q_TAG,
SSD_FULL_SIZE,
/*timeout*/5000);
/*
* Accomplish our 500ms delay by deferring
* the release of our device queue appropriately.
*/
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
*timeout = 500;
break;
}
default:
panic("Unhandled error action %x", err_action);
}
if ((err_action & SS_MASK) >= SS_START) {
/*
* Drop the priority, so that the recovery
* CCB is the first to execute. Freeze the queue
* after this command is sent so that we can
* restore the old csio and have it queued in
* the proper order before we release normal
* transactions to the device.
*/
ccb->ccb_h.pinfo.priority--;
ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
ccb->ccb_h.saved_ccb_ptr = orig_ccb;
error = ERESTART;
*orig = orig_ccb;
}
sense_error_done:
*action = err_action;
}
return (error);
}
/*
* Generic error handler. Peripheral drivers usually filter
* out the errors that they handle in a unique manner, then
* call this function.
*/
int
cam_periph_error(union ccb *ccb, cam_flags camflags,
uint32_t sense_flags)
{
struct cam_path *newpath;
union ccb *orig_ccb, *scan_ccb;
struct cam_periph *periph;
const char *action_string;
cam_status status;
int frozen, error, openings, devctl_err;
uint32_t action, relsim_flags, timeout;
action = SSQ_PRINT_SENSE;
periph = xpt_path_periph(ccb->ccb_h.path);
action_string = NULL;
status = ccb->ccb_h.status;
frozen = (status & CAM_DEV_QFRZN) != 0;
status &= CAM_STATUS_MASK;
devctl_err = openings = relsim_flags = timeout = 0;
orig_ccb = ccb;
/* Filter the errors that should be reported via devctl */
switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
case CAM_CMD_TIMEOUT:
case CAM_REQ_ABORTED:
case CAM_REQ_CMP_ERR:
case CAM_REQ_TERMIO:
case CAM_UNREC_HBA_ERROR:
case CAM_DATA_RUN_ERR:
case CAM_SCSI_STATUS_ERROR:
case CAM_ATA_STATUS_ERROR:
case CAM_SMP_STATUS_ERROR:
case CAM_DEV_NOT_THERE:
case CAM_NVME_STATUS_ERROR:
devctl_err++;
break;
default:
break;
}
switch (status) {
case CAM_REQ_CMP:
error = 0;
action &= ~SSQ_PRINT_SENSE;
break;
case CAM_SCSI_STATUS_ERROR:
error = camperiphscsistatuserror(ccb, &orig_ccb,
camflags, sense_flags, &openings, &relsim_flags,
&timeout, &action, &action_string);
break;
case CAM_AUTOSENSE_FAIL:
error = EIO; /* we have to kill the command */
break;
case CAM_UA_ABORT:
case CAM_UA_TERMIO:
case CAM_MSG_REJECT_REC:
/* XXX Don't know that these are correct */
error = EIO;
break;
case CAM_SEL_TIMEOUT:
if ((camflags & CAM_RETRY_SELTO) != 0) {
if (ccb->ccb_h.retry_count > 0 &&
(periph->flags & CAM_PERIPH_INVALID) == 0) {
ccb->ccb_h.retry_count--;
error = ERESTART;
/*
* Wait a bit to give the device
* time to recover before we try again.
*/
relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
timeout = periph_selto_delay;
break;
}
action_string = "Retries exhausted";
}
/* FALLTHROUGH */
case CAM_DEV_NOT_THERE:
error = ENXIO;
action = SSQ_LOST;
break;
case CAM_REQ_INVALID:
case CAM_PATH_INVALID:
case CAM_NO_HBA:
case CAM_PROVIDE_FAIL:
case CAM_REQ_TOO_BIG:
case CAM_LUN_INVALID:
case CAM_TID_INVALID:
case CAM_FUNC_NOTAVAIL:
error = EINVAL;
break;
case CAM_SCSI_BUS_RESET:
case CAM_BDR_SENT:
/*
* Commands that repeatedly timeout and cause these
* kinds of error recovery actions, should return
* CAM_CMD_TIMEOUT, which allows us to safely assume
* that this command was an innocent bystander to
* these events and should be unconditionally
* retried.
*/
case CAM_REQUEUE_REQ:
/* Unconditional requeue if device is still there */
if (periph->flags & CAM_PERIPH_INVALID) {
action_string = "Periph was invalidated";
error = ENXIO;
} else if (sense_flags & SF_NO_RETRY) {
error = EIO;
action_string = "Retry was blocked";
} else {
error = ERESTART;
action &= ~SSQ_PRINT_SENSE;
}
break;
case CAM_RESRC_UNAVAIL:
/* Wait a bit for the resource shortage to abate. */
timeout = periph_noresrc_delay;
/* FALLTHROUGH */
case CAM_BUSY:
if (timeout == 0) {
/* Wait a bit for the busy condition to abate. */
timeout = periph_busy_delay;
}
relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
/* FALLTHROUGH */
case CAM_ATA_STATUS_ERROR:
case CAM_NVME_STATUS_ERROR:
case CAM_SMP_STATUS_ERROR:
case CAM_REQ_CMP_ERR:
case CAM_CMD_TIMEOUT:
case CAM_UNEXP_BUSFREE:
case CAM_UNCOR_PARITY:
case CAM_DATA_RUN_ERR:
default:
if (periph->flags & CAM_PERIPH_INVALID) {
error = ENXIO;
action_string = "Periph was invalidated";
} else if (ccb->ccb_h.retry_count == 0) {
error = EIO;
action_string = "Retries exhausted";
} else if (sense_flags & SF_NO_RETRY) {
error = EIO;
action_string = "Retry was blocked";
} else {
ccb->ccb_h.retry_count--;
error = ERESTART;
}
break;
}
if ((sense_flags & SF_PRINT_ALWAYS) ||
CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO))
action |= SSQ_PRINT_SENSE;
else if (sense_flags & SF_NO_PRINT)
action &= ~SSQ_PRINT_SENSE;
if ((action & SSQ_PRINT_SENSE) != 0)
cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) {
if (error != ERESTART) {
if (action_string == NULL)
action_string = "Unretryable error";
xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
error, action_string);
} else if (action_string != NULL)
xpt_print(ccb->ccb_h.path, "%s\n", action_string);
else {
xpt_print(ccb->ccb_h.path,
"Retrying command, %d more tries remain\n",
ccb->ccb_h.retry_count);
}
}
if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0))
cam_periph_devctl_notify(orig_ccb);
if ((action & SSQ_LOST) != 0) {
lun_id_t lun_id;
/*
* For a selection timeout, we consider all of the LUNs on
* the target to be gone. If the status is CAM_DEV_NOT_THERE,
* then we only get rid of the device(s) specified by the
* path in the original CCB.
*/
if (status == CAM_SEL_TIMEOUT)
lun_id = CAM_LUN_WILDCARD;
else
lun_id = xpt_path_lun_id(ccb->ccb_h.path);
/* Should we do more if we can't create the path?? */
if (xpt_create_path(&newpath, periph,
xpt_path_path_id(ccb->ccb_h.path),
xpt_path_target_id(ccb->ccb_h.path),
lun_id) == CAM_REQ_CMP) {
/*
* Let peripheral drivers know that this
* device has gone away.
*/
xpt_async(AC_LOST_DEVICE, newpath, NULL);
xpt_free_path(newpath);
}
}
/* Broadcast UNIT ATTENTIONs to all periphs. */
if ((action & SSQ_UA) != 0)
xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb);
/* Rescan target on "Reported LUNs data has changed" */
if ((action & SSQ_RESCAN) != 0) {
if (xpt_create_path(&newpath, NULL,
xpt_path_path_id(ccb->ccb_h.path),
xpt_path_target_id(ccb->ccb_h.path),
CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
scan_ccb = xpt_alloc_ccb_nowait();
if (scan_ccb != NULL) {
scan_ccb->ccb_h.path = newpath;
scan_ccb->ccb_h.func_code = XPT_SCAN_TGT;
scan_ccb->crcn.flags = 0;
xpt_rescan(scan_ccb);
} else {
xpt_print(newpath,
"Can't allocate CCB to rescan target\n");
xpt_free_path(newpath);
}
}
}
/* Attempt a retry */
if (error == ERESTART || error == 0) {
if (frozen != 0)
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
if (error == ERESTART)
xpt_action(ccb);
if (frozen != 0)
cam_release_devq(ccb->ccb_h.path,
relsim_flags,
openings,
timeout,
/*getcount_only*/0);
}
return (error);
}
#define CAM_PERIPH_DEVD_MSG_SIZE 256
static void
cam_periph_devctl_notify(union ccb *ccb)
{
struct cam_periph *periph;
struct ccb_getdev *cgd;
struct sbuf sb;
int serr, sk, asc, ascq;
char *sbmsg, *type;
sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT);
if (sbmsg == NULL)
return;
sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN);
periph = xpt_path_periph(ccb->ccb_h.path);
sbuf_printf(&sb, "device=%s%d ", periph->periph_name,
periph->unit_number);
sbuf_cat(&sb, "serial=\"");
if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) {
xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path,
CAM_PRIORITY_NORMAL);
cgd->ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)cgd);
if (cgd->ccb_h.status == CAM_REQ_CMP)
sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len);
xpt_free_ccb((union ccb *)cgd);
}
sbuf_cat(&sb, "\" ");
sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status);
switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
case CAM_CMD_TIMEOUT:
sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout);
type = "timeout";
break;
case CAM_SCSI_STATUS_ERROR:
sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status);
if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq))
sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ",
serr, sk, asc, ascq);
type = "error";
break;
case CAM_ATA_STATUS_ERROR:
sbuf_cat(&sb, "RES=\"");
ata_res_sbuf(&ccb->ataio.res, &sb);
sbuf_cat(&sb, "\" ");
type = "error";
break;
case CAM_NVME_STATUS_ERROR:
{
struct ccb_nvmeio *n = &ccb->nvmeio;
sbuf_printf(&sb, "sc=\"%02x\" sct=\"%02x\" cdw0=\"%08x\" ",
NVME_STATUS_GET_SC(n->cpl.status),
NVME_STATUS_GET_SCT(n->cpl.status), n->cpl.cdw0);
type = "error";
break;
}
default:
type = "error";
break;
}
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
sbuf_cat(&sb, "CDB=\"");
scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb);
sbuf_cat(&sb, "\" ");
break;
case XPT_ATA_IO:
sbuf_cat(&sb, "ACB=\"");
ata_cmd_sbuf(&ccb->ataio.cmd, &sb);
sbuf_cat(&sb, "\" ");
break;
case XPT_NVME_IO:
case XPT_NVME_ADMIN:
{
struct ccb_nvmeio *n = &ccb->nvmeio;
struct nvme_command *cmd = &n->cmd;
// XXX Likely should be nvme_cmd_sbuf
sbuf_printf(&sb, "opc=\"%02x\" fuse=\"%02x\" cid=\"%04x\" "
"nsid=\"%08x\" cdw10=\"%08x\" cdw11=\"%08x\" cdw12=\"%08x\" "
"cdw13=\"%08x\" cdw14=\"%08x\" cdw15=\"%08x\" ",
cmd->opc, cmd->fuse, cmd->cid, cmd->nsid, cmd->cdw10,
cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14, cmd->cdw15);
break;
}
default:
break;
}
if (sbuf_finish(&sb) == 0)
devctl_notify("CAM", "periph", type, sbuf_data(&sb));
sbuf_delete(&sb);
free(sbmsg, M_CAMPERIPH);
}
/*
* Sysctl to force an invalidation of the drive right now. Can be
* called with CTLFLAG_MPSAFE since we take periph lock.
*/
int
cam_periph_invalidate_sysctl(SYSCTL_HANDLER_ARGS)
{
struct cam_periph *periph;
int error, value;
periph = arg1;
value = 0;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error != 0 || req->newptr == NULL || value != 1)
return (error);
cam_periph_lock(periph);
cam_periph_invalidate(periph);
cam_periph_unlock(periph);
return (0);
}